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The propagation of plane harmonic waves in an elastic medium in which there is a 
periodic distribution of infinitely long, cylindrical pores is analyzed. The waves propagate 
perpendicular to the pores and the approach used is a finite element method based on 
Galerkin’s technique. Results on dispersion, for several values of porosity, and on strain 
energy distributions within a typical half-cell are given. Also, as a check on the dynamic 
results, equivalent elastic moduli are derived by using a static analysis. 

1. INTRODUCTION 

The dynamic strength of composite materials is becoming a topic of increasing importance 
as the demand for energy efficient materials continues to rise. In reference [l] we have 
considered the basic problem of harmonic wave propagation in a composite consisting of a 
viscoelastic matrix reinforced by a doubly periodic array of cylindrical elastic fibers. As a 
further step towards a fuller understanding, in the present work we consider harmonic 
wave propagation in an elastic medium with a doubly periodic array of cylindrical pores. 

Porosity can have a significant effect on the geometric dispersion of waves, and hence on 
dynamic strength, as indicated by the experiments of Okuko, Sve and Whittier [2]. A 
similar conclusion was reached by Nayfeh [3], who used a continuum theory of the 
Hegemier, Gurtman and Nayfeh type [4] to model propagation in a periodic array of 
perfectly bonded elastic laminates, one of which in turn contained a periodic array of 
cylindrical elastic inclusions (porosity being simulated by setting the values of the material 
constants to zero). Sve [5] also investigated a similar problem. He used a low frequency 
model to assess propagation normal to the laminates of a periodic, two-phase composite, 
one constituent having a random distribution of pores. Beltzer [6] presented a model for 
longitudinal wave propagation in which porosity was taken to be a Poisson stochastic 
process, the size, number and configuration of the pores being regarded as random 
parameters. 

The work reported here is concerned with the problem of harmonic wave propagation in 
an elastic medium in which there is a periodic distribution of cylindrical pores of infinite 
length. As pointed out in reference [ 11, the geometrical complexity of such problems, even 
for a plane strain state such as considered here, renders them intractable analytically when 
linear, so-called “exact” theories are used. However as the work presented here and in 
reference [l] shows, and indeed this is in part the aim of the work, advances in finite 
element modeling and computational procedures prove to be adequate to meet the 
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challenge, even within the framework of modest budgets. Specifically, the field equations 
are transformed into integral expressions via Galerkin’s method and then a finite element 
method leads to an algebraic eigenvalue problem, this latter being solved by modern 
matrix inversion procedures. Results on dispersion are given for several values of porosity. 
Also given are plots of amplitude and strain energy distributions within a typical half-cell. 

As a check on the dynamic results, and as a contribution in its own right, equivalent 
elastic moduli are presented in the Appendix; these are obtained by using a static analysis 
similar to that given by Gaonkar [7]. This supplements the work of MacKenzie [8], who 
calculated the compressibility and shear modulus for a medium in which there was a 
random distribution of small spherical holes of different sizes and of Hashin [9] who gave 
bounds for the moduli of a medium in which there was a finite concentration of spherical 
elastic inclusions. 

2. FORMULATION OF THE PROBLEM 

The displacement equations of motion for a plane strain state in the absence of body 
forces may be written, on assuming harmonic time dependency (see reference [l]), as 

G(a2U/ay2+a2v/axay)+g a2u/ax2+pa2v/axay+pW2~=0, (1) 

G(a2u/ax ay+a2v/ax2)+p a2u/ax ayfg a2v/ay2 +p2v = 0, (2) 

where G is the shear modulus, g = K + $G, K being the bulk modulus, /3 = K - $G, p is the 
mass density and w denotes radian frequency. The actual physical displacements fi and d 
are given by 

6(x, y, t) = u (x, y ) e’“‘, 0(x, y, t) = v(x, y) e’“‘, (394) 

so that u and v are in general complex. 
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Figure 1. Doubly periodic configuration of the pores and a typical cell. 

Symmetry dictates that only a typical half cell need be considered (see Figure 1). Then 
Floquet theory yields the following quasiperiodicity conditions, on taking the origin of 
co-ordinates at the pore center: 

(5,6) u(i, y) =eiqau(-i, y), v(4, y) =eiqav(-i, y), 

~u(-:,Y), ~v(~,y)=eiq”~v(-~,y), (7,8) 
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where 4 denotes the wavenumber of the harmonic wave. Since the wave is taken to be 
propagating parallel to the x-axis, symmetry requires that the normal displacements and 
shear stresses be zero on the half-cell boundaries at y = 0 and y = a/2: i.e., 

v(x,O)=O=v x,; , ( > ~,x,o,=o=~(x,~). (9,lO) 

In addition, the pore boundaries are taken to be traction free so that the normal and shear 
stresses are zero there. 

The above problem is not amenable to analytical techniques, and hence numerical 
methods must be employed; these will now be described. 

3. NUMERICAL PROCEDURES 

Galerkin’s technique was employed in reference [l], and in view of the experience 
gained in that work, it was decided to use the same approach here. After using it and 
integration by parts, equations (1) and (2) become 

+ 1 [G(~+$)sin&+(e~+p~)cos6)~ds=O, 

JR 

(11) 

+ 1 (G(~+~)cosE+(@~+~?$sinE]+ds=O. 

JR 

(12) 

Here 0 is the domain of interest, Cu is the angle between the x-axis and the outward normal 
to the surface M and equations (11) and (12) are to hold for all smooth functions 4. 
Integration by parts was used to generate a form in which the boundary conditions are 
more readily handled. 

A finite element method is no? used, The domain R is divided into triangular 
subdomains (see Figure 2) in each of which u and u are approximated by 

U(-% Y)= i! u,4j(% Y), z1(x2 Y) = i u&j(Xv Y), (13,141 
j=l j=l 

where the basis functions +j are taken to be linear functions over each subdomain and to 
satisfy 

4jtXiv yi) = Sij, (15) 

where Sij is the Kronecker delta and (Xi, yi) are the co-ordinates of a node. Inserting 
equations (13) and (14) into equations (11) and (12) and performing the integrations leads 
to the matrix equation 

[K+S+M]{u}=0, (16) 
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Figure 2. A typical half cell and its finite element mesh configuration. 

where K and S are stiffness matrices, with S involving the boundary conditions (9) and 
(lo), M is the mass matrix and {u}‘= (ur, ul, . . . , un, u,), II being the total number of 
nodes. The quasiperiodicity conditions (7) and (8) are handled as in reference [l] by 
adding, in the numerical work, a column outside the edge of the original discretization. 
Also as in reference [l], the algebraic eigenvalueproblem stemming from equation (16) 
can be written as A(o, q){$} = 0, or, upon splitting A and 4 into real and imaginary parts, 
as 

where 

WJ, 4)&Z) = 0, (17) 

The eigenvalues w can be obtained from the function 

f(w) = det N(w). (19) 

By using the so-called LU decomposition, N(w) can be written as 

N(w) = L!LU, (20) 
where 17 is a permutation matrix, L is a lower triangular matrix with unit diagonal 
elements and U is an upper triangular matrix. Then equation (19) can be written as 

(21) 

where the Vii are the diagonal elements of U. An iterative technique called the secant 
method is then used to determine the zeroes of f(w). In this method, successive approxi- 
mations to w are determined from 

uk+2 = [Ok+lf(Wk)-Okf(Wk+l)]/[f(Ok)-f(Wk+1)1, k = 0, 1~2, . . . . 

Equation (21) is used to monitor whether the eigenvalue is overshot or not. 

(22) 

4. RESULTS 

The actual numerical procedure was as follows. First the values of w for 4 = 0 were 
found. Then, with attention focussed on a given mode, a non-zero value of 4 was specified 
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and, as an initial guess, w was incremented by a small amount. In this way modes were 
swept out individually, proceeding from left to right. 

A specific material was chosen to study the effects of the porosity P (defined as the ratio 
of the void area to the area of the half cell without the void): namely, the aluminium alloy 
2024-T4, which has the properties K = 0.696 x 10” N/m*, G = 0.276 x 10” N/m*, p = 
0.277 x lo4 kg/m3. 

The first seven modes are shown in Figures 3(a)-(d), where the dimensionless frequency 
W = was is plotted against the dimensionless wavenumber 4 = qa, for P = 0,636, 
0*385,0*196 and O-049, respectively. Note that 4 is taken to vary between 0 and 7r, since, 
as shown by Nemat-Nasser [lo], the dispersion relations in problems of this type are 
periodic with period IT. 
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Figure 3. Dispersion relations. (a) Porosity P = 0.636; (b) porosity P = 0.385; (c) porosity P = 0.196; 
(d) porosity P = 0.049. 

An important point to note is the presence of the “no-pass bands”: i.e., regions in which 
no real wavenumbers can be found for certain frequencies. Such bands have also been 
discovered in related works (see reference [lo]). Also, the following trend may be inferred 
as P goes to zero: the first mode tends to become straight and the remaining curves 
combine to form a horizontal line, this latter representing a non-propagating event. These 
observations are consistent with the fact that in an infinite medium there is only one wave 
speed for longitudinal propagation. 

The largest value of the group velocity d&/d@ occurs in the first mode at zero values of 
frequency and wavenumber. This observation could lend weight to approximate theories 
based on large wavenumbers and low frequencies. This group velocity (normalized by its 
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Figure 4. Comparison between the static and dynamic values of the normalized, infinite wavelength, lowest 
mode group velocity C/Co as a function of the porosity P. 

zero porosity value) is shown as a function of porosity P in Figure 4. Shown there also is the 
same quantity obtained from an “equivalent moduli” approach presented in the Appen- 
dix. As can be seen, the comparison is very good with, in both cases, the group velocity 
decreasing uniformly with increasing values of P. Note also in Figures 3(a)-(d) that the 
group velocities for the higher modes are zero at 4 = 0 and 7r. This has been experimentally 
verified in other cases (see reference [ll]). 

Some studies on amplitude and energy distributions were also undertaken. The physical 
quantities fi and 17 can be expressed in the form 

C = A, cos (wt + &), fi = A, cos (of + c#J”), 

where A,, and A, are amplitudes, and CJ$, and (b, are phase angles. Figures 5(a) and (b) 
show dimensionless first mode amplitudes A,, and A, as functions of x/a for the 
wavenumber 4 = 7r (this implies that the wavelength A = 2a), elevation y = 0.325 a and 
porosity P = 0.196. Note that the scale of the ordinate in Figure 5(b) is l/20 of that in 
Figure 5(a), which implies that the displacement in the y-direction is much smaller than 
that in the x-direction. This is due to the boundary conditions confining the motion in the 
y-direction along the upper and lower edges. 

Another quantity of interest is .the strain energy. For a plane strain state, the strain 
energy WI of a single element can be written in terms of the strains exx, E,,~ and sxy as 
follows: 

WI = t [ [ k)=[HIW dRi (23) 

where 

-1, V, 0 
p”: 0, 1, 0 1 . 

(l-&q 

(24,25) 
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Figure 5. Dimensionless first mode amplitude (a) A, and (b) ,4, as a function of x/a. 4 = 7~, y = 0.325 a, 
P= 0.196. 

By using the displacement fields given by equations (13), (14) and (15) and the standard 
strain displacement relations, {E} and hence WI can be calculated. Then the strain energy 
distribution in a typical half cell can be obtained, with the value for each triangular element 
taken to be localized at its centroid. Figure 6(a) shows contours of constant, dimensionless 
strain energy in the first mode for 4 = 7r and the porosity P = 0.049. Note that a symmetric 
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Figure 6. DimenSionless strain energy distribution in the first mode. (a) q = T, P = 0.049; (b) 4 = 2.4, 
P=O.196. 
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pattern is obtained since the wavelength A = 2a. Note further that the strain energy has its 
peak values in the vicinity of the top of the pore, showing that dynamicstress concentration 
has occurred. Figure 6(b) gives first mode contours for P = O-196 and 4 = 2.4, which 
corresponds to A = 2.62 a. The pattern is now unsymmetric since A is not an integer 
multiple of a. It is interesting to note that the peak values of the strain energy are not in the 
immediate vicinity of the void, but instead occur near the location of the peak amplitude of 
the incoming wave. 
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APPENDIX: EQUIVALENT MODULI FOR A POROUS MEDIUM 

In this appendix, equivalent moduli (and density) for a porous medium will be calculated 
by using Gaonkar’s [7] static method. This is done partly as a check on some of the results 
obtained by using the dynamic analysis, but also it is felt to have some value in its own right. 

To begin, the boundary conditions are taken to be (see Figure 2) 

u(-a/2, y) = C1 on AB, v (x, a/2) = Cz on AD, (AL A2) 

u(a/2, y) = 0 on CD, u (x, 0) = 0 on BE, FC, (A3, A4) 

where C1 and C, are constants, being the relative displacements between AB and CD, and 
AD and BE (or FC), respectively. In addition, the curve EF is taken to be traction free. 

By using a finite element method (here actually one based on Rayleigh-Ritz techniques 
was used), the equilibrium equations can be written in the matrix form 

where {f) is a 2n x 1 nodal force vector, n being the number of nodes. Equation (A5) 
together with the boundary conditions can be solved by using Gaussian elimination 
techniques, and by this procedure the unknown nodal forces are determined. Then, 
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average stresses are defined by (for unit thickness in the y-direction) 

481 

(A6-AS) 

where f k and f 1 are the X- and y-nodal force components at the ith node on the side AB 
and fc is the y-nodal force component at the jth node on the side AD. 

By analogy with the stress-strain relations for a plane strain state, equivalent moduli for 
the porous medium are defined by 

6X-,X = [E/(1 + C)(l-2V)][(l- V)F;, + E,,], (A9) 

~~,=[~/(1+~)(1-2~)][~~~,,+(1-ij)8yy], (AlO) 

CFXxy = [J!?/( 1 + F)]E,,, (All) 

in which, J?? and C are equivalent moduli, SX,,, CYv and cFXY are as given in equations (A6), 
(A7) and (AS) and EX,,, Evv and ExY are average normal and shear strains which are 
approximated by 

F,, = Cl/a, EYy = 2CJa, Exy = 0. (Al2-A14) 

In equations (A9), (AlO) and (All), eXX, c?,,,,, eXxy, ZX,,, F,,, and EXY are known quantities so 
that E and P can be obtained. 

The corresponding equivalent density p is defined by p = (1 -P)&, where P is the 
porosity and PO is the density when P is equal to zero. 
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Figure Al. Variation with the porosity P of the normalized equivalent (a) Young’s modulus E/E,,, (b) bulk 
modulus K/K,, (c) shear modulus G/Go and (d) Poisson’s ratio V/Y,,. 
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The boundary conditions in equations (9) and (10) are different from those in this 
appendix. The former have zero displacements in the y-direction on the upper and lower 
edges of the half cell and the latter have not. Equivalence can be obtained by modifying I? 
in this appendix (the so-called “laterally unconstrained case”) to ,??’ (the so-called 
“laterally constrained case”) by (see reference [ 121) 

B’=JG(l+)/(l+v)(l-2F). (AW 

The ratio C = mp is the infinite wavelength group velocity of waves propagating in 
the lowest mode. A comparison between the normalized value of it and the dynamic results 
is given in Figure 4, which, to repeat, shows excellent agreement. 

As items of interest and value in their own right, Figures Al(a)-(d) show the variations 
of normalized equivalent values of Young’s modulus, the bulk modulus, the shear modulus 
and the Poisson’s ratio, with the porosity P. The normalizing factors are the zero porosity 
values. 


