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A slider can be expected to wear in due time to a shape that gives a uni- 
form contact pressure and consequently uniform friction stress. Computa- 
tion of the worn shape is discussed using the theory of elasticity. The results 
show that the trailing edge may be worn down more than the leading edge. 
The worn shape at a sharp comer may be either convex or concave depen- 
ding on the elastic constants, the friction coefficient and the corner angle. 

Unless a slider is ‘machined exactly to the required shape, the pressure 
distribution between the slider and the base will not be uniform during the 
early stages of motion. However, if it is assumed that the rate of wear is 
higher at larger pressures, the slider will eventually wear to a shape that gives 
a uniform pressure under a constant load. Then by Coulomb’s law the fric- 
tion stress will also be uniform. 

The purpose of this paper is to illustrate how the shape of a worn slider 
can be determined using theory of elasticity. We assume that there are no 
plastic deformations and that the temperatures do not reach a level such 
that the thermal stresses become important. For simplicity we start first with 
a rectangular slider moving on a half-space and take the problem as two di- 
mensional. We assume that the elastic moduli of the slider are much larger 
than the moduli of the half-space and we take the slider as rigid although it 
can wear. Next we study the worn comer of an elastic slider on a half-space 
by means of asymptotic analysis. In both problems the boundary conditions 
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are written in the operating state, i.e. when the slider transmits forces. How- 
ever, in the case of the elastic corner the worn shape is that of the stress- 
free state or when the slider is unloaded. In the case of a rigid slider the 
shapes for the operating and stress-free states are the same. Moreover, the 
shape of the rigid slider is the same as the shape of an elastic slider but in 
the operating state. 

2. The wom shape of an ~~~i~a~i~ rigid slider 
The two-dimensional situation considered is shown in Fig. 1. A slider 

that is elastically rigid in comparison to the base against which it is pressed 
is vertically guided and moves to the right. (The assumption that the slider is 
rigid is discussed in Section 4.) The slider reaches a steady state profile 
when the distribution of contact pressure becomes uniform. It is then a 
simple matter to compute the shape of the worn slider. This is done by 
taking advantage of the known elasticity solutions for the two-dimensional 
half-space subjected to a uniform pressure p and uniform shearing tractions 
q over the interval (- a, a). 

The Airy stress function for the pressure loading is (ref. 1, p.106) 

in which the counterclockwise angles t7 1 and 8 a are counted as positive. The 
displacements in polar coordinates for the biharmonic function 4 = r% are 

K-f 
ur = -re 

2/J 
(2) 

K+l 

k3 = - --rlogr 
5% 

(3) 

where IZ denotes the shear modulus, K = 3 - 4~ for plane strain and v is 
Poisson’s ratio. Using eqns. (2) and (3), the vertical displacement at the sur- 
face x = 0 can be obtained by superposing the contributions of the two 
terms in eqn. (1). Thus 

Fig. 1. Geometry of the elastically rigid slider. 



P(K +I) 
u,(O, Y) = - - 4nC1 O-2 log r2 + rl log h) 
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(4) 

The required results for a shear load can be extracted from an exercise 
problem given by Timoshenko and Goodier (ref. 1, p. 147). Thus the Airy 
stress function is 

f# = &-(rf(log r2 cos 2e2 -e2 sin 2e2) +r# logr2 - 

- rf (log rl cos 213 r -13~ sin2e1)-rf logrI} (5) 

where q is positive if the tangential tractions applied to the half-space act 
in the direction of increasing y. The Airy stress function 

$ =r2(logrcos28 -e sin281 

corresponds to the displacements 

u, = - -$r{(2 log r + 1) cos 28 - 28 sin 28) (6) 

ue = -&r{(2 log r + 1) sin 28 + 28 cos 28) (7) 

ad@ = r2 log r yields 

K-l 

U, = -r(log r - 1) 
2P 

(8) 

K+l 

UO = -re 
2i.l 

(9) 

Superposing these results to obtain the vertical displacement in the interval 
[3CI<c(e1=A/2ande2= - n/2) for the Airy stress function (5) we have 

ux(O,Y)=- 
q(K - 1) 

81-4 
(r2 - rl) 1ul-c a (10) 

The vertical displacement of the half-space is computed from eqns. (4) 
and (10) by noting that when x = 0 

r1 =a+y (11) 

r2 =a-y (12) 
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and that 

p=Pj2a (13) 

Q = fP (14) 

where P is the total force pressing the slider against the base and f denotes 
the coefficient of kinetic friction. Thus 

IYI -c a (15) 

if a constant term corresponding to a rigid body displacement is added to 
render the arguments of the log~ithmic terms d~ensionless. 

Equation (15) is also the expression for the profile of the worn slider. 
The shapes for K = 2 (v = i) and a few values of the friction coefficient are 
shown in Fig. 2. The rather unexpected result is that the slider is worn down 
more at its trailing than at its leading edge. The slopes at the edges are infi- 
nite. 

3. The corner of an elastic slider 
The problem becomes much more difficult if the slider is elastic because 

the deformations of the slider must also be found. However, it is possible to 
find the worn shape near a sharp corner from simple asymptotic analysis. 

The situation considered is shown in Fig. 3. The mechanical boundary 
conditions are 

o!$’ (r,O) = U$J) (r,O) = fp (16) 

Fig. 2. Profile of the worn slider for various coefficients of friction. 
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Fig. 3. Geometry of the comer of an elastic slider. 

af$(r,O) = orj(r,O) = -p (17) 

o$)(r,y) = ofi(r,r) = 0 (18) 

a$(r, - n) = o$(r, - n) = 0 (19) 

Equation (16) allows us to take into account both directions of sliding by 
permitting f to assume both positive and negative values. Thus f > 0 corres- 
ponds to motion of the slider to the right and f < 0 to motion to the left. 
There will be a gap g,, between the worn slider and the half-space if the slider 
is not pressed against the base. This gap disappears when the slider is loaded 
by forces corresponding to the operating condition. Thus 

g,(r) = ur’(r,O) - u’,l’(r,O) (20) 

The quantity g,,(r) is precisely what defines the worn shape near the sharp 
comer. 

The mathematical problem is readily set up using the catalogues of elas- 
tic fields that are suitable for the asymptotic analysis. The sets of elastic 
fields denoted by {A}, . . . . (0) are given in ref. 2 and the sets {E}, . . . . . (H) in 
ref. 3. The first four sets correspond to stresses that are proportional to rmh 
The stresses in the last four sets contain the terms r-’ and r-’ log r. It is 
clear from eqns. (16) and (17) that we must choose 

X=0 (21) 

The simultaneous equations for the unknown coefficients AI, Br, .., Hr 
and AZ, &, r.., Hz associated with the elastic fields in the two bodies can be 
written by inspection if use is made of the catalogues. The eight boundary 
conditions yield 16 equations because the terms containing log r must satisfy 
the boundary conditions by themselves. Neither the system of the equations 
nor the values of most of the coefficients are of immediate interest. When 
only the dominant terms are retained the gap in the stress-free state is 

g0o(r1 = &~~dyZ +l)+Hs}- &%(Q +l)+H,} 
I 

rlogr (22) 

and the simultaneous equations yield for the required coefficients 
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F 

1 
= P{Sb 27 + to- cos 27)) 

2(1- cos 27 - y sin 27) (23) 

F2 = ~1277 (24) 

H, =H2 =0 (25) 
Equation (22) shows that there are two possible shapes. If the term in square 
brackets in eqn. (22) is positive the slider wears to a convex shape near the 
comer. However, if the term is negative the shape is concave. 

It is also possible to reason from the asymptotics that thermal effects 
do not influence the worn shape in the vicinity of a sharp comer. The bound- 
ary condition on the heat fluxes in the contact region is 

qy’(r,O) - qr’(r,O) = Ulflp (26) 

where the right-hand side is the rate per unit area at which heat is generated 
by friction. For the right-hand side to be constant requires that h = - 1 in 
the thermal problem, but the displacements then contain the terms with r2 
and r2 log r [ 31 and they are of higher order than r log r in eqn. (22) for 
small r. 

4. Conclusion 
We can distinguish between the worn shape in the operating state when 

the slider transmits forces and the shape in the stress-free state when the 
slider is not loaded. It becomes clear from the derivation for the rigid slider 
that eqn. (15) also gives the shape of an elastic slider in the operating state. 
Consequently the operating shape depends neither on the overall geometry 
of the slider nor on its elastic constants. Similarly, nothing needs to be said 
about the details of loading or how the slider is guided. If the slider is lifted 
off the base it will undergo deformations as the pressure and shearing trac- 
tions on its worn face are removed, and these deformations which lead to a 
change in shape depend on all the factors mentioned. Of course the stress- 
free shape is nearly the same as the operating shape if the slider is much 
more rigid than the base. 

An interesting conclusion is that finding the shape of an elastic slider in 
the operating state requires the solution of an elasticity problem for the 
sliding base only. 
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