
Journal of Sound and Vibration (1980) 69(2), 251-264 

HARMONIC WAVE PROPAGATION IN AN INFINITE 
VISCOELASTIC MEDIUM WITH A PERIODIC ARRAY OF 

CYLINDRICAL ELASTIC FIBERSt 

T.-C. MA:, R. A. SCOTT AND W. H. YANG 
Department of Mechanical Engineering and Applied Mechanics, University of Michigan, Ann Arbor, 

Michigan 48109, U.S.A. 

(Received 29 May 1979, and in revisedform 28 September 1979) 

The work involves the propagation of plane harmonic waves in an infinite isotropic 
medium in which a doubly periodic array of cylindrical fibers is embedded. The direction 
of propagation is perpendicular to the fibers and the matrix material is taken to be visco- 
elastic in shear, modeled through hereditary integrals. A finite element method based 
on Galerkin‘s technique is employed, which leads to a non-linear eigenvalue problem. 
An iterative scheme is used to obtain two modes of dispersion, for both real and imaginary 
wave numbers, for a specific composite. 

1. INTRODUCTION 

Because of their attractive strength to weight properties, composite materials continue 
to receive considerable attention in the mechanics literature, as regards both statics and 
dynamics (see reference Cl]). A common assumption in addressing wave propagation has 
been that both matrix and filler materials behave elastically and recent reviews of such work 
can be found in references [2-4]. In many situations however, the matrix material behaves 
viscoelastically, and work along these lines has started to emerge. Stern, Redford and Yew 
[S] used an effective modulus theory to analyze one-dimensional wave propagation in a 
laminated medium consisting of alternating layers of elastic and viscoelastic materials. 
Demiray and Eringen [6] developed a two-dimensional lattice dynamics model to study 
harmonic wave propagation in a fibrous material, in which they assumed that the visco- 
elastic matrix carries the shear and the fibers carry the tensile forces. Mukherjee and Lee 
[7,8] used finite difference and variational methods to examine one-dimensional wave 
propagation in a viscoelastic laminated composite. Sutherland [9] presented some experi- 
mental studies on dispersion in fiber reinforced viscoelastic materials. The correspondence 
principle could be used to obtain information where analytical results are available, such 
as is the case for some approximate theories. However, such results are not available when 
linear “exact”theories are used, such as here. 

The present paper is an extension of the finite element work of Golub, Jenning and Yang 
[lo] on harmonic wave propagation in an infinite elastic medium reinforced by a periodic 
array of cylindrical elastic fibers, the direction of propagation being perpendicular to the 
fibers. Here the matrix material is taken to be viscoelastic in shear, but to behave elastically 
under hydrostatic load, a not uncommon assumption (see reference [ 111). Such a problem 
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is intractable analytically and difficult numerically. One of the goals of the present study 
was to see if modern developments in computation could lead to useful results within the 
framework of a limited budget. It was found that the technique employed, namely, a finite 
element scheme based on Galerkin’s method together with an iterative matrix solution 
technique, was indeed a powerful tool for attacking this class of problems. 

2. EQUATIONS OF MOTION 

The model employed consists of a doubly periodic array of circular cylindrical fibers 
embedded in an infinite matrix, the direction of wave propagation being perpendicular to 
the fibers (see Figure 1). Each constituent is taken to be homogeneous and isotropic. Under 
these circumstances, a plane strain state holds and for harmonic wave motion, the following 
forms are assumed, in standard notation: 

6_(x, Y, 4 = c&, Y) e iwt, CYv(x, Y, r) = cYv(x, Y) e imt, ZJx, y, t) = e.Jx, y) e’“‘, (1) 

ii@, y, t) = 4x, Y) e iWl, 6(x, y, t) = 0(x, y) e’“‘. (2) 

The problem being examined is one of forced motion, with a remote source of forcing, so 
that o can be regarded as real. Introducing the hydrostatic stress, 

c = $JXX + OYY + @zz)’ (3) 

and deviatoric stresses, 

OLX = 0 XX - d = $20 XX - CT 
YY 

- (TJ, OiY = CrYY - 0 = +(2a YY - gzz - cx,), 

olz = fJzz - r7 = $(20zr - Cr.__ - Q’ fJkX = crXY’ (4) 

gives, in the absence of body forces, the equations of motion for either constituent : 

; (0 + a!&,) +$- (f&) + pdu = 0,; (cr;,)+g (D + r&) + po2u = 0. (5>6) 

Attention will now be focused temporarily on the matrix material. Making the common 
assumption that the behavior is elastic under hydrostatic stress, one gets 

g = eK.s, 

where K is the bulk modulus and E is the dilatational strain defined by 

(7) 

E = $Exx + Eyy). 

0 0 0 0 0 

--_+o 0 0 0 0 
Dlrectlon of 
wove propagot~on X 

0 0 0 0 0 

Figure 1. Material geometry. 
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For an isotropic linear viscoelastic material, the deviatoric stresses are given by 

s 

f 
a;i(x, y, t) = Y(t - z) dEIj(X, y, z), i = x, y. j = x, y, 

-m 
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(9) 

where Y is the relaxation function and the distortion strains EIi are defined by 

E -’ = 
x.X L - CC = .QX - @,, + tyy) = $2EXX - EJ’ 

& -’ = E 
YY YY 

- E = EYY - $Exx + Eyy) = $EYY - “J 

E -1 = E 
XY XY’ (10) 

The strain displacement relations are 

%x = aii/ax, iyy = aqay, ixv = +faiqay + aqax), (11) 

and using them, together with equations (lH4), (8) and (lo), equations (9) can be written as 

a;#, y) = X(o) $i(x, y), i = x, y, j = x, y, (12) 
where 

2G(o) = io 
s 

m y(q) eCioe dq (13) 
0 

and is called the complex modulus. Using equations (7), (lo), (11) and (12) equations (5) 
and (6) become 

G(a%/ay2 + aS/axay) + B a22(/ax2 + fi a2qaxay + pw2~ = 0, 

i2(a%/axay -t a2v/ax2) + fi a%/axay + & a20lay + pw2~ = 0, 

where for the viscoelastic material 
G = G,(o), & = Kti + ;G@), ,4’ = K, - iGo( 

and for the elastic material 

(14) 

S = G,, a = K, + $G,, ,L3 = Ke - fGe. 

From Floquet theory, the following quasi-periodicity conditions must be satisfied: 

U($y) = eiqau(-i, y), v($ y) = eiq~z(--~,y), 

&u($ y) = eiqa&u( -i, y), sv($ y) = eiqa&v( -i. y), (15) 

where 4 denotes wavenumber. In addition, symmetry requires that the normal displace- 
ments and shear stresses are zero on the half-cell boundaries at y = 0 and a/2: 

u(x, 0) = v ( > au a x,; = 0, qx, 0) = - ay i > 
x,- =o. 

ay 2 (16) 

Finally, perfect bonding is assumed at the matrix-fiber interface, so that the displacements 
and stresses are continuous there. 

3. NUMERICAL PROCEDURE 

Since energy methods are not convenient for viscoelastic media, Galerkin’s technique 
(see reference [12]) is used here. Applying it to equations (14) and integrating by parts 
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yields 

(17) 

where Q is the.domain of interest and a is the angle between the normal vector to LX2 and 
the x-axis. Equations (17) must hold for all smooth functions 4. The finite element method 
will now be employed. 

The domain Sz in equations (17) is divided into m triangular subdomains in each of which 
u, v are approximated by a combination of three linear basis functions 4,i: 

‘(‘3 Y) = i ‘,j4j(‘> Y)? Nx> Y) = fi ‘,j+jtx? Y)’ (18) 
j= 1 ,j= 1 

Here 4j are taken to be linear functions over each triangular subdomain and to satisfy 
4j(xi, yJ = 6,,, where aij d enotes the Kronecker delta and (xi, yi) are the co-ordinates of a 
node. Substituting equations (18) into equations (17) and carrying out the integrations, the 
details of which can be found in reference [13], yields the system of homogeneous equations 
in the variables {nj, v,~J~ = 1, n}, in matrix notation, 

[K+S+M]u=O, (19) 

where U’ = (u,, ui,. . . , u,,, un), K and S are viscoelastic stiffness matrices, with S containing 
the boundary conditions (16) and M is the mass matrix. A difficult feature of the present work 
is that all of the matrices are functions of o, so that a non-linear eigenvalue problem arises. 

The quasi-periodicity conditions (15) are handled as follows. In the numerical work a 
column is added outside the edge CD, the extent of the original discretization. This is 

I I I I I I I I I I 
-0.5 -0.4 

I 
-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 

Figure 2. Dimensionless half cell and its finite element mesh configuration for the fiber reinforced, viscoelastic 
medium. The dashed curve indicates the matrix-fiber interface.. 
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illustrated by an example in Figure 2. In the matrix operations it is required that 
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um = um, $a, un = un, eiqa, vm = vm> eiqa, lln = vnf eiqa 

for the number pairs 

(m, m’) = (I, ll), (2,12), (3,13), (4,14), (5,15), 

(n, n’) = (6,16), (7,17), (8, lg), (9,19), (10,20). (21) 

Equations (20) guarantee the satisfaction of the first two conditions in equations (15). 
The derivative conditions in equations (15) are satisfied as follows: 

au 
X6 w (ul - u,)/l = (ull - u16)eiqa/l x E eiqa, 

16 

(22) 

where 1 is the distance between nodal points 1 and 6 and 11 and 16. &/ax is handled simi- 
larly. The perfect bonding condition is handled by treating those interface nodal points 
as interior points in the finite element formulation, thereby automatically satisfying con- 
tinuity of displacements. 

The final form of the algebraic eigenvalue problem may be written as 

.4(W 4) ti = 0, (23) 

where A and ti are complex. On letting A = Al + iAi, II/ = I,$, + ill/, equation (23) becomes 
the real algebraic system 

N(w 4) t = 0, (24) 
where 

(25) 

Although the matrix and vector in equation (24) are real, the eigenvalues could be complex. 
For steady, forced oscillations, only the real eigenvalues o are sought. These in general 
correspond to complex wavenumbers 4, which implies spatial decay of the waves. 

The secant iterative method is used to solve the roots of the scalar function f(o) = 
det(N(o)), which can be evaluated by using the result 

det(N(w)) = (det P’) (det L) (det U) = + fi U,,, (26) 
i=l 

where P’L U is the L U decomposition of the matrix N and Uii are the diagonal elements of 
U. In the secant method successive approximations to o are calculated by 

@k-b2 = (27) 

where oO, o1 are two initial estimates of a root. Equation (26) is used to check whether the 
true eigenvalue has been overshot. 

4. NUMERICAL RESULTS 

The fiber material is taken to be the aluminum alloy 2024-T4 with properties Ke = 
0.696 x 10” N/m’, G, = 0276 x 1011 N/m’ and p, = O-277 x lo4 kg/m3. The matrix 
material is taken to be a natural vulcanized rubber with properties K, = 3-O x 109N/m2 
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TABLE 1 

Complex modulus for natural, vulcanized rubber 

log,@ I 

(NYrn2) G" 
W/m’) 

- 4.0 4.68 x lo5 1.86 x 104 
-35 4.79 1.91 
- 3.0 4.79 1.91 
-2.5 4.90 1.91 
- 2.0 5.13 1.91 
- 1.5 5.25 1.95 
-1.0 5.37 2.14 
-0.5 5.50 2.35 

0.0 5.76 2.63 
0.5 5.89 3.02 
1.0 6.17 3.39 
1.5 6.46 4.37 
2.0 7.08 6.17 
2.5 7.77 11.5 
3.0 8951 22.4 
3.5 10.3 47.9 

- 4.0 13.5 95.5 
4.5 19.1 214.0 
5.0 28.2 502.0 
5.5 50.2 1290.0 
6.0 107.0 3090.0 
6.5 339.0 7590.0 
7.0 1180.0 15200.0 
7.5 3390.0 33900.0 
8.0 6610.0 26300.0 
8.5 9330.0 23500.0 
9.0 11800.0 18700.0 
9.5 13800.0 13800.0 

10.0 14100.0 9550.0 
10.5 14100.0 6460.0 
11.0 14500.0 4170.0 

and p = 1-O x lo3 kg/m3. The real and imaginary parts of the complex modulus G, G’ 
and Gpz, respectively, are shown in Table 1 as functions of frequency o. To obtain values of 
o which are not given by the table, a second order least-square curve fitting technique was 
used. 

The unavailability of other “exact-theory” results made comparisons impossible, so 
that considerable additional care had to be taken in the actual computational process. 
Discretization errors are of the order of h2, where h is the distance between adjacent nodes. 
Studies were made on the value of some typical eigenvalues as a function of h and, by noting 
the asymptotic values, an accurate mesh size could be chosen. The studies led to a choice 
of 82 elements, which gave accuracy in the 2-3 “/, range. Round-off error was assessed by 
comparing some single and double precision runs, as described in the book by Conte and 
De Boor [14]. Discrepancies of no more than 3”/, arose, which was felt to be satisfactory. 

The wavenumber q is in general complex, i.e., q = q, + iq, and the relation between w 
and q constitutes a surface. For the sake of visualization, only plots of o versus q, and qi 
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Figure 3. Dimensionless frequency versus real part of wavenumber. (a) First mode: (b) second mode. --, 
y1 = 0.0; --) i1 = 0.15; -‘-( (II =z 0.30. 
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Figure 4. Dimensionless frequency versus imaginary part of wavenumber. (a) First mode; (b) second mode. 
_, 4, _ 0.0; -.-, 4, = 0.6; --, <r = 1.2; _..-, 4, = 1.8; ---, 4, = 2.4; -... , q; = =. 
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are presented. Results are given for the first two modes of propagation for the case b = 0.5a. 
Figure 3 presents the dimensionless frequency G = wadx versus dimensionless real 
wavenumber i,, = ~2 for several values of the dimensionless imaginary wavenumber 
& = CQZ. It is seen that the curves rise with increasing yi, a feature that is much more pro- 
nounced for the second mode, as Figure 3(b) shows. The same phenomena can also be 
clearly seen in the plots of 5 versus ii for several values of 4, given in Figure 4. Note that 
the values of G associated with the second mode are orders of magnitude greater than those 
in the first mode. This implies the rapid damping of the higher modes, an important point 
to remember in the construction of approximate theories, since only low frequencies may 
be significant. Note further that attenuation increases with frequency, a trend also found by 
Sutherland [9] in related experimental work on fiber-reinforced quartz phenolic. 

The figures also show that pass and no-pass bands exist. Actually they are a three- 
dimensional zone between the surfaces of the first and second modes. Note too that the 
slopes of the w versus 4, curves at i, 7 0, z are zero, except at the origin, and that the largest 
slope of the first mode is at the origm. These features also occur when the matrix material 
is elastic. 
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