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This paper investigates the problem facing national planners who realize that 
their successors may employ different social welfare criteria for determining 
economic policies than they do. In such a situation, we show that the present 
planners may want to leave future generations a smaller capital stock than they 
would if they thought the stock would be managed in a way consistent with 
their own preferences. On the other hand, we also identify cases in which the 
opposite is true. We obtain the results by studying an optimal aggregate growth 
model the utility function of which changes randomly from one generation to the 
next. We analyze the model using a system of functional equations in place of the 
conventional Bellman equation from dynamic programming theory. 

Optimal growth models (see, for example, [3, 121) posit the existence of 
a societal utility function registering a nation’s tastes over possible time paths 
of average per capita consumption. At a given time such a function 
presumably represents an amalgamation of the preference orderings of 
existing citizens, the citizens being able to weigh the benefits of alternative 
levels of present consumption against those of corresponding amounts 
of consumption for future cohorts. 

Customarily optimal growth models adopt two key postulates: (1) each 
generation’s societal utility function is additively separable between time 
periods and stationary in the Koopmans’ [6, postulate 41 sense, and (2) 
all cohorts have the same function. These assumptions ensure that as one 
generation adjusts its aggregate saving to maximize national welfare, it is 
coincidentally behaving exactly as previous generations would have wanted 
it to. That fact enables modelers to use Bellman’s “principle of optimality” 
to define the indirect utility function of each generation with a single recursive 
functional equation, the so-called Bellman equation. The equation often 
provides useful characterizations of society’s best behavior. 

* I am indebted to my colleague Alan Deardorff and to two anonymous referees for 
many helpful comments on earlier drafts of this paper. 
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The purpose of this paper is to drop the second assumption listed in the 
preceding paragraph, asking instead the following question: If succeeding 
generations might have different preferences, how should the present one 
behave: Because a society’s membership changes over time, logically 
national preferences could too. But if they do, one cohort cannot assume 
future societies will consume and save exactly the amounts it would like. 
So, the Bellman equation will no longer be valid. We show that if national 
preferences change randomly over time, however, we can develop a system 
of two simultaneous functional equations replacing Bellman’s single one. 
Employed together, the new equations can determine equilibrium behavior 
for all generations. Under restrictive, but familiar, additional hypotheses 
we exhibit a solution to the system of equations and show that in various 
cases intergenerational preference variability unambiguously raises or lowers 
optimal aggegate saving. 

1. THE MODEL 

The problem of how much one cohort is to save if it knows its descendants 
may have different preferences seems very difficult. In order to make any 
headway, therefore, we make the following assumptions. 

First, we assume each generation’s societal (von Neumann-Morgenstern) 
preference ordering is a stationary member of the Bergson class: 

U = i hi . u(C, , 6) 
i=O 

(1) 

with 

u(C, b) = b 9 Cb, b E (-co, 0) u (0, l).’ (4 

The variable Co measures average per capita consumption for the present 
generation, C, is average per capita consumption for the next, and so on. 
We will often find G = a(b) = l/(1 - b), negative the inverse of the elas- 
ticity of marginal utility with respect to current consumption, more con- 
venient to work with than the constant b. We require that the subjective 
discount factor h be between 0 and 1. 

Second, we assume a linear technology: if Qt is average per capita output 
at time t, then 

et+, = x . (Qt - C,) 
1 We omit the logarithmic, or b = 0, case. The Appendix and the discussion in Section 

3 show that b = 0 is the dividing line for case-by-case analyses. 



58 JOHN P. LAITNER 

(provided Qt - Ct 3 0). In words, Ql - C, is the capital stock bequeathed 
per capita at time t, and the positive constant h is the average productivity 
of capital divided by 1 plus the rate of population growth. 

Suppose, for the moment, that all generations have the same preference- 
ordering parameters h and b. Then if v(Q, h, b) stands for the maximum 
possible utility subject to line (3) of a generation with average income Q, 

u(Q, h, b) = v$y {utQ - S, 6) + h * t&Y, h, 4). 

In fact, if hhb -c 1, 

(4) 

u(Q, h, 6) = b . (l/( 1 - (h/l>“))‘/” * Qe, (5) 

where A = A(b) = hb (see Levhari and Srinivasan [7]). If s(Q, h, 6) gives 
the unique maximizing value of S for the right-hand side of line (4), 

s(Q, h, b) = (h@ * Q. (6) 

We will use lines (5) and (6) for comparisons in Section 3. To prevent 
confusion, from this point forward we will name all alternative indirect 
utility functions and optimal saving rules with capital letters. 

2. DIFFERING PREFERENCE ORDERINGS 

We now let every cohort have its own values for h and b. For the sake of 
simplicity we assume that each generation’s pair (h, b) is an independent 
realization from a fixed distribution (although we could develop functional 
equations for any case in which pairs are generated by a Markov process). 
We also assume that each cohort makes its consumption-saving decision 
without knowing the parameter pairs which will apply to future generations, 
although each cohort does know the distribution from which all pairs are 
sampled. 

The assumption that the sampling distribution for pairs (h, b) does not 
change over time gives the new model a recursive structure, which we exploit 
as follows. Let (h, , b,) characterize the preferences of generation t. Let 
h, * R(h& , h, , b,) stand for the discounted expected utility accruing to 
generation t (vicariously) from the consumption of future cohorts (i.e., 
from G+, , G+, ,... ). Note that the values of C,,, , Ct+z ,... will depend not 
only on the average bequest per capita generation t leaves, St, but also on 
(h t+l 3 bt+J, (hi+, 7 b,+A.... Because of the stationarity of generation t’s 
preference ordering, however, its vicarious expected utility from Ct+z , C,,, ,... 
must be ht2 . R(h * (et+, - Ct+l), h, , b,). The function R(*) needs no time 
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subscript because the time horizon is infinite. So, if S(Q,+r , h,,, , b,,,) gives 
the saving of generation t + 1 when its taste parameters are h,,, and bt+r , 
the function R(a) must obey 

where A,,, and b”,,, are random variables. Note that the present cohort 
uses h, and bt in all of its utility calculations, although it cannot force sub- 
sequent generations to determine their saving rates using the same constants.2 

Generation t f 1 determines the function S(e) from its own utility maxi- 
mization problem. Assuming it uses h,,, . R(XS,+, , h,,, , b,,,) to compute 
its vicarious expected utility from C,,, , Ct+s ,..., we have 

Combining (7) and (8) and streamlining the notation slightly, we have a 
recursive system of two functional equations, 

NQ, h, 6) = WQ - S(Q, h”, 61, @I + h * EEWWQ, h, h h, @I, (9) 

4Q - S(Q, h, 61, 6) + h * R@S(Q, h, b), h, 6) 

= $y HP - S, 6) + h . R@S, h, 63, (10) 

in two “variables,” R(e) and S(n). 
Tf h and 6 are the same for every cohort, the right-hand side of Eq. (9) 

equals the left-hand side of (10). In that case substitution will reduce the 
system to the single functional equation of Section 1, Eq. (4). If h and 6 
can vary over time, however, the right-hand side of (9) and the left-hand side 
of (10) are not necessarily equal, so collapsing the system to one equation is 
not feasible. 

Suppose (R(.), S(.)) solves Eqs. (9) and (IO). Then as shown below, we 
can think of S(Q, h, 6) as giving the desired saving for a generation with 

1 The present generation uses h, and 6, in its calculations because its direct utility func- 
tion (see line (1)) depends on Ct, Ct+, ,.... If U depended on C, and the utility of future 
generations instead, then the present cohort’s calculations in line (7) would depend on 
CR *+1 1 &,d and (&+, , 6,+,), but not (h, , bd. 
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taste parameters h and b and per capita national product Q. The indirect 
utility function for such a generation is 

v(Q, h, b) = 4Q - S(Q, h, b), 6) 
+ h - R(h * S(Q, h, 4, h, b). (11) 

To rule out anomalies, however, such as R(Q, h, b) = 00 all Q, which satis- 
fies lines (9) and (10) if, for example, S(Q, h, b) = Q/2, we require that to 
constitute a solution for our model, (R(e), S(o)) must satisfy the following 
restriction in addition to the two functional equations above: for any Q > 0, 

,l, 
R(Q, /I, b) = 1 hi . E[u(t< , b)], (12) 

i=l 

where &, = Q, t?,, = h, 6,, = b, and 8( = h * S(&, , 6,-r, Ji-,) and 
c;i = Qi - ,S($&, I?, , &) all i > 1. This new restriction comes from line 
(1) and the definition of I?(.). 

We could easily modify our functional equations to encompass nonlinear 
technologies and direct utility functions outside of the Bergson class. The 
advantage of making the strong assumptions of lines (l)-(3), however, is 
that, given them, we can often prove the existence of a solution (R(*), S(.)) 
to lines (9), (IO), and (12), and, as Section 3 shows, we can compare the 
resulting saving function S(.) with s(s) from section 1.3 

To solve the simultaneous equations of lines (9) and (10) let us try a func- 
tional form for I?(.) similar to the one used in Section 1: 

R(Q, h, b) = b - r(h, b) . Qb. (13) 

Substituting this into Eq. (IO), the optimal saving rule is 

S(Q, 11, 6) = ( 
(h . (1 . r(h, b)) 

1 + (h . A . r(h, b))” 1 ’ ” (14) 

where, as always, cr = I/( I - 6) and A = hb. Inserting (13) and (14) into 
Eq. (9), we find that 

r(h, 6) = E [ ( 
I 

1 + (h ’ A . r(h”, 6))a 11 
b + r(h, b) * h . /l(b) 

.E 
[i 

(R 3 (1”. r(R, 6)y b 

I 11 $ (6 . ii . r(R, 6))a J 
(15) 

s The general procedure for solving the Bellman equation is the “method of successive 
approximations” (see [I]). That will not work for Eqs. (9) and (10) because the set of finite 
time horizon indirect utility functions generated by the method will not form a monotone 
sequence the way it does in Bellman’s problems. 



OPTIMAL NATIONAL SAVING 61 

(where /1” = il(b”) and 15 = o(b)), so that r(., .) must satisfy 

r(h, 6) = 
E[(l/(l + (R . A . r(h, b))d))b] 

1 - h . n(b) . E[(((h . (1” . r(R, b”))6)/(1 + (R . (1” . rqm ’ 
(16) 

Equation (16) shows that if a solution function R(e) of the type shown in 
line (13) exists, r(., .) must have the form 

4@) 
rth, b, = 1 - /? . /l(b) . #(h) . (17) 

where 

If we can find a solution pair (4(s),+(.)) for the latter two equations, then 
the functions of lines (13) and (14) will solve Eqs. (9) and (10). 

The following proposition supplies sufficiency conditions for the existence 
of a solution to lines (18) and (I 9). 

PROPOSITION. Let aN pairs (h, b) be contained in H x B = [h, , h,] x 
[bL , bU]. Lez u* = a(b[,), 01 = h, . MinbEB{Ll(b)}, and 6 = hV . Max,,,fLl(b)}. 
Suppose either 

(i) B C (0, 1) and 6 < I, or 

(ii) BC(-x1,0) and 19. [(l/c+* + l]-br. = 0* < I. 

Then Eqs. (18) and (19) have a solution. The solution defines a pair of functions 
(R(.), S(e)) solving Eqs. (9) and (lo), and R(s) satis$es Eq. (12). 

The Appendix provides a proof. 
For those cases in which a solution does exist, the Appendix’s fixed-point 

arguments give few clues about uniqueness. In fact our method of solving 
Eqs. (9) and (10) does not allow us to rule out solutions with functional forms 
other than those of lines (13) and (14) anyway. Regardless of whether a 
solution pair I?(.), S(.)) is unique, however, we can interpret it as a Nash 
equilibrium: Suppose (I?*(.), S*(a)) satisfies (9)-(12). If S*(.) will determine 
the saving of all future cohorts, lines (1) and (3) and the definition of R(.) 
show that R(v) must be uniquely determined for the present cohort. But, 
line (12) shows R(.) = R*(.).4 Thus, S(.) = S*(.) will work on the left- 

4 Note that in terms of the notation we are using here, line(l2) requires that R*(Q, /I, h) -= 
f, hi . E[l,(C:, ) b)]. 
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hand side of line (10). So, if all generations except one adopt the saving 
function S*(a), the remaining cohort cannot do bettert than to adopt S*(e) for 
itself.5 

3. THE AVERAGE PROPENSITY TO SAVE 

Section 2 developed a specific class of equilibrium solutions for our eco- 
nomy with intergenerational preference differences. Within the class all 
optimal aggregate saving functions are linear. We will now compare the 
implied average propensity to save with that obtained from the conventional 
analysis outlined in Section 1. 

Intergenerational variability of h and b lowers optimal saving for the 
present generation if for that generation b > 0, and raises optimal saving 
if b < 0. To prove this, for r&e) and#(*) g enerated in the proof of our propo- 
sition, define 

(Note that c+(b) 3 0 and +(b) 2 0 all b in our solutions.) Then Eq. (14) 
shows that 

S(Q, h, b) = K~4“/&Wl * Q. (21) 

Since Section 1 establishes that the optimal saving rule with a constant dis- 
count rate h and elasticity u is s(Q, h, b) = (hA)o * Q, we can compare S(e) 
and s(a) by comparing g(hA) and I. 

Differentiating g(e) with respect to z we find that g(.) is strictly convex if 
b > 0 and strictly concave if b < 0. Tn each case g(e) has a single critical 
point, say, z*, and 

g(z*) = (q%(b)‘/” + c,h(b)llb)-ob. (22) 

If Z is a random variable and G(e) is conve_x, G(E[2]) ,( E[G(Z)]. 
Therefore, if Z(C$, $) = [h . (1” * #(6)/( 1 - h” . A * #(6))18, we have 
(Jw/(l + b 2)) I) lib < E[(l/(l + .C))b’b] = E[l/(l + L?)] and (E[(Z/(l + 
5?))b])1’b < E[Z/( 1 + Z)]. Thus, lines (18) and (19) show that 

d(b)‘/” + #(bYb G E [ 1 + +!(+, +, ] + E [ “(?’ ‘) 
1 -t 44, 4) 

] = 1. (23) 

6 Note that for the solutions derived in the Appendix (R*(.), S*(.)) will be a perfect Nash 
equilibrium, In fact, (R*(.), S*(.)) also constitutes what Blackorby et al. [2], Hammond 
[5], and Peleg and Yaari [9] call a “sophisticated equilibrium,” which is a slightly stronger 
concept than a Nash equilibrium (see [9]). 
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Lines (22) and (23) show that 

g(z*) 3 (a 1 for b >(<)O. (24) 

Convexity and concavity then establish 

so, 
g(z) 3 (<I 1 for b > (<) 0 all z > 0. (25) 

%i!, k b) < (2) 4Q, k b) if b > (<) 0. (26) 

The following is an intuitive explanation of the effects of uncertainty 
on the average propensity to save. The definitions of v(.) (see Section 1) and 
V(v) (see line (11)) show that U(Q) 3 V(Q) all Q > 0: U(Q) gives the indirect 
utility of the present generation under the ideal (for it) conditions that all 
future cohorts will behave just as it wants them to.6 V(.) < v(e) implies 
I?(*) < a(-) (see lines (ll), (IO), and (4)). But R(a) and v(e) have the same 
functional form with respect to Q. Thus, when b > 0, variability of h and 
b can lower R(.) only by making aR(Q, h, b)/aQ < &(Q, h, b)/i?Q, which, 
in turn, leads to a lower level of saving. On the other hand, if b -=c 0, u(e) 
and R(a) are negative so R(m) < II(*) requires aR(Q, h, b) aQ > &(Q, h, b)/aQ, 
which means saving will be greater in the variable-parameter case. 

4. CONCLUSION 

Existing papers on the subject of intergenerational preference differences 
deal for the most part with three issues: identifying various behavioral 
strategies given changing preferences-see Strotz [14] and Pollak [II]; 
proving the existence of Nash or “sophisticated” equilibrium solutions for 
such models-see Phelps and Pollak [lo], Peleg and paari [9], and Blackorby 
et al. [2]; and establishing the Pareto efficiency (or, more likely, the lack of 
Pareto efficiency) of such equilibria or proving the existence of overall 
orderings which could induce sophisticated behavior through time and which 
have “sensible” properties-see Phelps and Pollack [lo], Blackorby et al. [2], 
Hammond [5], and Goldman [4]. The present work differs from this literature 
as follows. Although we study intergenerational preference differences, we 
assume the differences appear randomly over time. Thus, at any given time, 
the policymakers in our economy do not have the information-requirement 
burdens of, for instance, their counterparts in the Peleg-l’aari economy: 
when calculating equilibrium behavior in the latter situation, policymakers 

B We could establish u(Q) > V(Q) all Q > 0 rigorously using the inequalities of line (25). 

642/22/1-s 
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must know the exact utility functions of all future generations; in our model, 
policymakers only need to know the present generation’s utility function 
and the distribution function for (h, b) pairs. Our framework also enables 
us to derive specific comparative static results in Section 3: we show that 
intergenerational preference variability will cause society’s equilibrium 
average propensity to save to decline (rise) if the present generation’s elas- 
ticity of marginal utility with respect to consumption-b - l-is between 
- 1 and 0 (is less than - 1). On the other hand, as is the case in other studies 
cited above, we do not claim (or expect) that our equilibria are Pareto 
efficient. 

APPENDIX 

The following is a proof of the proposition in Section 2. 

Proof. Let Pt4(-1, #(*>I = t$*t-1, #*(*>>, where +*@I = fYC(*), ~4-1, b) 
and #*(b) =f2($(*),$(*), b) (see lines (18) and (19)). 

Step 1. Suppose case (i). Let r = {(d(e), #(+)): 4(m), #(e) are continuous; 
4(b), #(b) E [0, l] all b E B). Note that ($(a), Q/I(*)) E r implies &l(b)+(b) < 
0 -=c 1 all (h, b) E H x B. 

Define 4=(m) = [l + (l/(1 - 8)>“*]-b. Let y = hL. . Min,,,{fl(b)) * &(bu). 
Define tiL(.) = [(l/y)“* + l]-b. Then r,hL(b), $L(b) > 0 all b E B. Define 
r* = ((d(e), #(e)) E IY 4(b) > +L(b), #(b) 3 #L(b) all b E B}. Then lines 
(18)-(19) show F(r*) C r*. 

Step 2. Suppose case (ii). Define r = {(d(e),+(*)): r$(*),#(*) are contin- 
uous; h’l(b)c+h(b) < B* all (A, b) E H x B; and, 4(b), $(b) > 1 all b E B}. 
Let (h*>, #(.)) E r and($*t-), +*(.I> = FC‘(d(-1, #(-I>. Then 4*(b), #*tb) 3 1 
all b E B (see lines (18)-(19)). 

Let 4,(b) = [(l/a)‘* + 1]-b. Then #(b) < z,h,(b) all b E B implies 
h’l(b)#(b) < 0* < 1 all (h, b) E H x B by hypothesis (ii). 

Define y* = [l/(1 - 8*)p* and j3 = --b&l - bL). Then /3 E (0, 1). 
Define g(x) = 1 + y*xS. Then lim,,, g(x)/x = 0. So, there exists x* > 1 
with g(x*) < x*. Fix such an x*. 

Define 4,(b) = x *-‘. Define r* = {(d(e), #(e)) 6 IT d(b) < &@), $0) < 
A@) all b E Bl. Let t$t.), J-N->) E I’* and ($*(-I, #*t-N = F(+(*), #t+)). Then 
line (19) shows $*(b) < z,hu(b) all b E B. Line (18) shows +*(b) < E[{l + 
Y*G#umYl < (1 + y*~*‘}-~ = { g(x*)}-” -C X*-b = 4,(b). SO, F(r*) C r*. 

Step 3. In case (i) let I’* be defined as in Step 1; in case (ii) let r* be 
defined as in Step 2. Let (4(e), $(.)) E r*. Then 4(b), #(b) > 0 all b E B 
and hd(b)#(b) < 1 all (A, b) E H x B. So, if we adopt the uniform norm on 
r*-ho, N>), <B<% $CN E r* implies I W>, #U> - <B<% 60 I = 
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Maxfswb,B I (b(b) - $(b)L supbEB j I@) - G(b)\}-then F(a) is continuous 
on r*. r* is convex. Thus, Schauder’s fixed-point theorem (see Smart 
[13]) shows that F(e) will have a fixed point on r* if F(r*) is contained in 
a compact subset of r *. Each fixed point for F(.) defines a solutions to 
Eqs. (18) and (19). 

Step 4. Since (+(e),+(m)) E r* implies $(6) and 1 - &l(b)+(b) are 
bounded away from 0 for all (h, b) E H x B, for each case (i.e., case (i) and 
case (ii)) there exists a finite constant 6 such that / ajr(r$(*),#(.), b)/Zb I, 
I 8fz($(+),$(.), b)/% 1 < 6 all (I$(.),$(.)) f I’* and b E B. Then I b - b* I < 
e/8 implies 1(4*(b) - +*(b*)\, I #*(b) - #*(b*)( < E if (4(a), #(e)) E P 
and (4*(o), #*(a)) = P($(.), #(.)). So, r** = F(r*) is equicontinuous. 
Thus, r*** = Closure (r**) is also. So, Ascoli’s theorem (see Munkres [S]) 
shows r*** is compact. Thus, Step 3 shows F(s) has a fixed point on r*. 

Step 5. Let (d(.),+(e)) E r* b e a fixed point for I?(.). Use lines (13), 
(14), and (17) to define a pair (R(e), S(a)) from ($(*),$(a)). Then (R(m), S(e)) 
solves Eqs. (9) and (10). In terms of the notation of line (12) Eq. (9) shows 
R(Q, h, b) = XT=, hi . E[u(ci , b)] + Vi1 * E[R(&,+, , &+1 , &-+&I any T > 1. 
Thus, if we can show F+l . E[R(&+, , &-+r , &+r)] -+ 0 for each Q > 0 
as T -+ cc, we will have established that R(a) satisfies line (12). 

Suppose case (i). Then for all (h, b) E H x B, r(h, b) > 0 (see line (17)) 
because 4(b) 3 0 and 1 > 8 >, 0 * #(b). Let ru = l/(1 - 0). Then 
0 < r(h, b) < rLi all (h, b) E H x B. Hence, 0 < Vi-l . EIR(&T--l , h”r.L1 , 
&,+,)I < hT+l * b . ru * Qb * E[(&, * il . ..* . fT)b] . A(b)T-+l, where fj = 
(tq . /I(&) * r(h”, ) b”J)“z/[l + (& * cl(&) . Y(& ) &))“‘I, oi = l/(1 - 6,) all 
i = o,..., T. Then Sj E [0, l), so 0 < hT+r * EIR(&TA1 , Ii,,., , &.,,)I < tITtl . 
rc’ . Qb. But, tIT+l . Y” . Qb -tOasT-+coforanyQ>O. 

Suppose case (ii). Then r(h, b) >, 0 (see line (17)) for all (h, b) E H x B. 
Let ru = MaxbpB &,(b)/(l - 0*). Then r(h, b) < ru all (h, b) E H x B. 
Using the definition of & from the preceding paragraph, 0 3 IF1 . EIR(&T+l, 
h”T,l 3 &,+,)] > hT+l . b . rc7 * Qb * E[(S, . f, . ... * &)b] . A(b)T+l > /Y-t1 + b . 
ru * Qb. But, 1 Pi1 . b * rL, * Qb / - 0 as T + cn for each Q > 0. Q.E.D. 
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