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A phase space cell method for prowdmg a global descrlptlon of the motions of a physical system IS outlined. The key 
feature IS a coarse-gram~ng approxlmotlon to the phase-space probablbty dlstrlbution. Constants of motion and other con- 
stramts are mcorporared to reduce the dlmenslonallty of computations Time-mdependent and time-dependent methods of 
solution arc dlscussed. 

1. Introduction 

The calculation of average dynamlcal propertles of 
chemical systems from the mteractlons of mdwldual 
atoms and molecules IS often practically very doCult 
although conceprually relatively simple Given a poten- 
tial energy hypersurface for the atoms comprlsmg a 
system, It IS easy (although perhaps time consummg) 
to integrate the classrcal equations of motion to ob- 
tam representative phase traJectories for the system 
[ I] To characterize accurately the dynamical proper- 
ties of the system, however, may require averagmg 
over so many uutlal degrees of freedom that the num- 
ber of traJectorles required IS so large that the calcula- 
tion becomes unfeaable. In the present work we out- 
lme a method m which the motions of a system are 
followed srmultaneously for appropriate drstnbutIons 
of initial conditions, rather than for mdlvldual lrutlal 
condltrons as IS done m traditIona trajectory calcula- 
tions [2]. Our approach is thus global, rather than lo- 
cal In addltlon, our method, which we designate as 
the “phase space cell method” @CM), exphcltly utd- 
lzes the constraints on a system to reduce the dlmen- 
slonahty of the calculation. 

In the present work we focus our attention on on- 
ly part of the phase space associated wrth the system 
of interest_ In this respect this work is somewhat sim- 
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dar to the approaches of others in which only part of 
the complete phase space IS consldered and in which 
master equation methods are used [3-6]_ The present 
work IS also somewhat similar m spuit to the wave 
packet approach of Heller [7] _ 

2. Genera! considerations 

We consider a system with 3N degrees of freedom 
and describe the motion of Its 3N-6 internal degrees 
of freedom using the generahzed coordinates Q and 
theu conJugate momentap. We assume that the mo- 
tion of the system can be described classically and 
that the potential energy V(q) and its partial derive- 
tlves aV(q)/Q are known. In addrtion, we restrict 
our attention to a fLved value of the total energy E. 
The standard approach to characterlzlng the macro- 
scopic dynamic behavior of such a system IS to con- 
sider representative trajectories of the system [l I_ One 
numerIcally Integrates Ham&on’s equatrons of motion 
for many %utral“ conditions chosen from the appro- 
pnate rrucrocanomcal ensemble and obtams time de- 
pendent dlstrrbutlons of observable quantities. For es- 
ample, different regions of phase space may bz rdenti- 
fied with different product states or species so that 
transitlon rates or branchmg ratios can be calculated. 

WhlIe examirung “representative” individual tra- 

jectories is occaslonaily useful m identifying “typical” 
patterns of motion, generally one is more interested in 
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average quantities In fact. it Is often only average quan- 
tlties which are physlcally observable Calculatmg clas- 
sical traJectorles IS certainly stralghtforward. but It also 
provides much more mformatlon than IS generally 
needed. Furthermore, constramts upon the system are 
rarely utlhzed m Integrating the equations of motion. 
These constramts may be Inherent m the mechanics. 
such as the conservation of energy and momzntum. or 
they may be constramts which are unposed upon a 
system This second typ2 of constramt Includes, for 
example, the restrlctlon that the atoms c2mprlsmg a 
system be collmear or coplanar. It also Includes the re- 
strictlon that the mltlal energy In a particular wbra- 
tlonal or rotatlonal mode be fazed at its corresponding 
quantum mechanlcal value, as IS done in quasIclassIcal 
traJ?CtOry CakUhtlOns 

We next present a method In which the constramts 
on a system are used to reduce the dimenslonahty of 
the calculation and m which the motions of a system 
are followed smlultaneously for appropr.ate distnbu- 
tlons of mltial condltlons. rather than separately for 
lndwdual lnltlal condltlons 

3. General method 

We now consider the general features of the phase 
space cell method and, m the subsequent sectlons, 
present two alternate forms in which It may be used 
[‘7] _ We first seek to choose a “good” set of general- 
ized coordmates 9, ones which convemently describe 
the system of interest We choose these coordmates 
with several crlterla m mmd. First. they should natural- 
ly portray the motion of the system (e g as natural 
colhslon coordmates do for reactive scattermg sys- 
tems)_ Second, they should separate the Internal de- 
grees of freedom from the unmtrrzstmg translation of 
and rotation about the center of mass And third, they 
should lend themselves to th2 e\phcn mcluslon m the 
calculation of the other constramts upon the system 
Of cours2, no coordmates wdl be Ideal m all three of 
these respects, so some compromlses will be necessary 
m choosq the best coordinates for a particular sys- 
tem. The phase space of the system, which we deng- 
nate as r” , consists of the coordmates 9 and their con- 
Jugate momenta p_ The constant energy hypersurfaces 
of I” may be either finite or mfimte, dependmg on 
the nature of the system. They are finite for bound 
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systems and mfmlte if the system can separate mto at 
least two parts which can recede mfmltely far from 
each other in configuration space. If the constant ener- 
gy hypersurfaces of I?’ are finite. we consider all of 
lY”, while if they are mfirute, we consider only that part 
of r” for which all particles or groups of particles are 
non-neghglbly Interacting with the rest of the system. 
We designate as f’ that portion of r” upon which we 
focus attention. 

We now consider a mlcrocanorucal ensemble of sys- 
tems representing the physical system of Interest. In 
appllcatlon to a reactlon A + BC + AB + C, say, a ‘-sys- 
tern” WIII cdnslst of a smgle molecular umt ABC, so 
that the dlmenslonahty of r” IS twice the number of 
posmon coordmates used to describe ABC From this 
ensemble we choose a portion of the representative 
systems on whch to focus our attention. We postpone 
for the moment a full dlscusslon of which representa- 
tive systems we choose. The phase densny po(9.p_ t) 
IS then the probability density at the phase point (9.~) 
at time t. such that pod’ = p. d9 dp IS the fraction of 
system pomts to be found m the volume dr about the 
pomt (q.p) at time t Of course, p. can be non-z2ro 
only on the hyp2rsurface(s) of r which satisfy the con- 
stramts on the system For convemence of notation. 
let p(q,p, t) be a function whose value IS equal to the 
value of po(9,p. t) for all pomts (q,p) on the hyper- 
surface(s) of r which satisfies th2 constramts on the 
system and whose value IS arbitrary elsewhere 

We now consider the phase space r and dtvlde It m- 
to “cells” These cells need not be all the same size or 
shape; the only requirement on them IS that each 
phase pomt m r be m one and only one cell We label 
the cells by the index i. lettmg c, designate the region 
comprlsmg the lth cell Further, we deslgnate the 
probability that a representative system be wlthm cell 
I at tulle t by f’,(t), which 1s given by 

Here T E (9,~) and the product is over the various con- - 
stramts on the system Each of the PZ constraints is 
represented by a Dirac delta function For example, 
the constraint that the total energy IS fixed IS repre- 
sented by 6 (E - E(T)). where E is the total energy of 
the system and E(T) 1s the total energy at the point T 
in phase space The quantity P,(r) IS Just the coarse- 
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gramed probabrhty at trme t If the drvrsron of phase 
space into cells is fine enough, this course-gramed 
probabrlrty can be used to descnbe adequately the dy- 
namrcal behavror of the system_ 

Choosmg a time Interval At, we have APl(t,At) = 
P,(t+At) -Pi(t) A system whose representative point 
1s wrthm cell I at time t may have its representative 
pomt wrthm a different cell, say cell i, at trme t + At. 
We designate as c,(At) the portion of cell iwhose 
potnts are connected by phase trajectorres of duration 
At to points m celli. Thus, all systems whose represen- 
tative pomts are wrthm c,,(At) at any tune t have 
their representative pomrs wrthm cellj at trme t+At. 
The regrons c,, (A t) depend upon the interval At 
chosen but not upon the absolute trme t; they are 
most easrly determined by calculating trajectones of 
duration At beguming at a number of points wlthm 
cell I and seemg which of them end m cell] If the con- 
stant energy hypersurfaces of the full phase space f” 
are Infinite, the regons of IT” whxh have not been 
drvrded mto cells are also mcluded m the mdexmg 
scheme We deslgnate by c,-* (At) the region of cell i 
from which density flows out of the subspace I? durmg 
the Interval At. 

We can now wrote an expressron for AP,(t, At), 

AP,(t.At) = - c F,,(t,At) - D,(t,At) 
J*‘r 

+=-Jt.At)+E,(t,At), (2) 
/+I 

where 

and 

D,,,(t,AO= s P(r,t) ,cl a@,(r)) dr- 1 WI cm *@I) 
The first sum on the r h s of eq. (2) is the probabrhty 
flowmg out of cell I and into other cells, while the sec- 
ond term IS the probabrlny flowrng from cell I mto 
that part of phase space which is not drvrded mto ceils 
(a -‘smk”). The thud term is the probabrhty flowing 
mto cell I from other cells m the regon r, while the 
final term on the r.h s. of eq. (2) IS the probabihty 
flowmg into cell I from that portron of phase space 

which is not drvrded into cells (a “source”)_ if the con- 
stant energy hypersurfaces of roar, firute, then all of 
r” is drvided into cells and the QI and _“I are all zerc. 

We obtam an expression for Pi(t) = dPi(t)fdr by 
approxrmatmg it by AP,(t, At)/At, 

~~(t)=-_Ftl(t,At,)lAt, - D,(t,Ati)/Ati 

+CF (t,At,)/At, +(t). 
J*Z ‘I 

0 

The source term k;(t) is not written as a ratlo of finite 
drfferences as It can usually be explicitly specified. We 
have labeled the At’s by the index of the cell from 
which the probability is flowing to indicate that a dif- 
ferent time interval may be used for calculating the 
probabrlity fiowmg from each cell. The use of differ- 
ent At’s can unprove the efficrency and accuracy of 
the calculatron smce the velocities of representative 
points can vary widely from one region of r to an- 
other, and a At whrch would be surtable m one region 
mrght not be suitable in another. 

We wish to obtam the Pl (t) and from these coarse- 
gramed probabihties determine the dynamical behavior 
of the system. In what follows we make the assump- 
tion that within each cell the phase density is indepen- 
dent of location wrthm the cell. Thus 

P 090 = pt (O/A 17 6.5) 

where A, IS the portron of the hypervolume of the ith 
cell satisfymg the constraints on the problem and is 
given by 

This assumptron is not the only one which could be 
made, rnstead we could assume, for example, that 
~(7, t) were given by a polynomial fit to the phase 
density at the center of cell i and the centers of a lim- 
rted number of neighboring cells. In the present work, 
however, we stick wrth the assumption that p(r, t) is 
independent of location within each cell. Using this as- 
sumption, eq. (4) may be rewritten as 

Jj (0 = c G, p, (t) l i; (t), 
I 

where 

(7) 
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I 
and 

G,I=-L CB,, c I A,At, ,*, 

@aI 

Eq (7) represents a set of coupled first-order linear 
differential equations (a “master equarlon”) for the 
P,(t) The vector elements A, and A, m eqs (Sa) and 
(8b) are given by eq (6). wItlIe the array elements B,, 
are given by a slmhr expression w~rh cr replaced by 
c,,(Jt). the B,, represent the combmed porttons of 
the hypervolumes of cells I and J that are connected 
by phase traJectorres of duration At from cell I to cell 
J The symbol * as before denotes the “smk.. region 

There are two posstble approaches to obtatnmg the 
P,(f) trom eq (7) The first approach IS the tlme-mde- 
pendent case for which we obtam a set of steady-state 
P,_ The second approach Is the tmle-dependent case 
for which \xe obtain the tmie evolution of a “probabll- 
ity packet.. through phase space. 

4. Time-independent solution 

The ttme-independent approach IS suitable for cases 
where the constant energy hypersurfaces of the full 
phase space l-‘” are mfmite. TypIcally, in these cases. 
several species approach each other from mfmtte sep- 
aration and begin interacting non-negltgtbly only when 
they are wlthm a certain dtstance of each other We as- 
sume, then, that there IS a constant probablhty flu\ m- 
to the subspace r from the region of To whtch IS not 
also contamed In r. tinder these condttlons. a ttme-m- 
dependent (I e , steady-state) solutton of (4) ~111 exist 
provided a!! probablhty flowing into r eremually 
leaves r Fmdmg a steady-state solution IS difficult, 
however. if all traJeCtOrleS entering !? do not leave r 
wtthm a reasonable length of time. In cases where 
such long lived complexes eust. the time-dependent 
approach, which will be outhned m the followmg sec- 
tion. would have to be applied. 

If a steady-state solutton euats, it can be obtained 
by setting P,(t) to zero m eq (7), which leads to 

This IS simply a set of simultaneous linear equations 
which IS readily solved usmg an Iterative techmque [S]. 
Once the steady-state P, are obtained, the dynamical 
propertres of the system are easy to calculate. If, for 
example, the probability flowmg out of r ends up m 
two dlstmct regions of r” which correspond to drstm- 
gutshable product states, then the branching ratio for 
t,he reaction IS simply the ratio of the fluxed flowing 
mto the two regions 

5. Time-dependent solution 

We now consider the tlmedependent approach for 
the phase space cell method In contrast to the time- 
independent approach which IS suttable for certatn sys- 
tems only, the t~iedependent approach 1s sultable for 
all systems For the tmledependent solution. the sys- 
tem IS started at time zero with a spectfied phase dts- 
trtbutton. Each particular chotce of mttlal condrtlons 
[I e . each set of P,(O)] evolves differently with time 
The partrcular Pi(O) chosen may consist of the mittal 
probabllty being all within one cell, or it may consist 
of some dtstrtbutton of probabthty among a number 
of cells Unhke In the time-independent case, m the 
tune-dependent case there IS no probability flowing 
into cells from the region of r” wluch is not divided 
mto cells, that IS E,(t) IS zero. Smce E,(r) 1s zero eq 
(7) may be written as 

i: tt) = c G,,P, (t) 
I 

(10) 

Eq. (10) IS a set of homogeneous, first-order hnear drf- 
ferentlal equations with constant coefflclents which 
are readily solved usmg standard techniques. Once the 
P,(t) are known, the dynamlcal properties of the sys- 
tem can be readdy determined_ 

6. Computational procedure 

In order to clarify the computatlonal procedure we 
have suggested, we now present a sequence of steps 
which could be followed to apply the PSCM. This se- 
quence represents only one of many possrble ways m 
wfuch this method could be Implemented. 

(1) Choose coordmates and dlvlde the phase space 
of the system mto cells. 
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(2) Specrfy the constramts on the system and put 
them m terms of a set of delta functrons [the S (c,(r)) 
m eq. (I)] . 

(3) Follow the motion of the center of each cell 
for a specrfied trme or unttl rt moves a specified drs- 
tance Then, assummg that each point wrthin a cell 
moves parallel to the path of matron of the center of 
the cell, determme whrch portrons of each cell move 
to each adJacent cell and thus obtam the c,,(At) and 

c,*(W. 
(1) Calculate the integrals of the type gtven in eq. 

(1) to determme the various A,, B,,, and B,,. If nec- 
essary these rntegrals may be computed numerrcally. 

(5) Use eqs. (8a) and (8b) to obtam the G,. 
(6) Choose whether to find the trme-Independent 

or the trmedependent solutron. 
(7) Specrfy the mitral condrtions. These are the J$ 

for the trme-Independent case and the P, (0) for the 
time-dependent case. 

(8) Solve eq. (9) or (10) to obtam the steady-state 
P, or the tune dependent P,(r). 

(9) Use the PI to obtam the rate mformatron desrred. 

thrs flow to the flow of a physical fluid and consider 
the apphcabthty of some of the methods of fluid dy- 
namics to the phase space cell method. First, we note 
from Lrouvtlle’s theorem that the true phase density is 
incompressrble [9 j. If we were to relax the assump- 
tton of eq. (5) that at each time the phase density is 
independent of location withtn a cell in such a way 

that the denstty is continuous at the cell boundaries, 
then the techmques of flmd mechamcs for ideal in- 
compresstble fluids [IO] could be used directly in 
solving eq. (4). Whtle the dynamics of ideal incompres- 
sable fluids and the coarse-grained probability of the 
phase space cell model are largely equivalent, this 
equtvalence does not exist in the absence of coarse- 
graimng. The matron of a small volume of fluid de- 
pends, m general. upon the motion of neighboring vol- 
umes of fluids; that is, the streamlines of a system are 
a global and not a local property. Simdarly, by coarse- 
grainmg, the matron of a small element of probability 
also depends upon the motion of neighboring elements. 
The evolutron of mdrvrdual phase trajectories, how- 
ever, is Independent of nearby trajectories. 

7. Further comments 8. Summary 

We mentroned prevrously that rn usmg the phase 
space cell method we constder a mtcrocanontcal en- 
semble of systems representmg the physical system of 
Interest and from this ensemble choose a portion of 
the representative systems upon whrch to form our at- 
tentron We now dtscuss m further detarl thus chorce 
of representatrve systems. Choosmg drfferent represen- 
tative systems corresponds to consrdering the Initial 
condrtrons of the physrcal system of interest For the 
trme-independent solution of the problem, the mitral 
conditrons enter through the E,, whrle for the trmede- 
pendent solutron they enter through the Pi(O) 

In this work we have outhned a method in which 
the mottons of a phystcal system are followed simul- 
taneously for appropriate distrrbutions of initial condi- 
tions_ This IS a global rather than a local approach to 
the problem. In addition, the constraints on the sys- 
tem are used exphcttly to reduce the dimensionaiity 

of the calculatton. By provrdmg a global “ptctttre” OF 
a chemical reaction, this method can potentially pro- 
vrde a more tnturttve descrtptton of chemtcal processes 
than can be provided by traditional trajectory methods. 

It IS necessary, of course, for the uutial condrtions 
to satrsfy the constraints Imposed upon the system 
However, the initial condrtions may be restricted be- 
yond what IS required for the constraints on the system. 
Thus, for example. the pseudo-quantrzatron of a par- 
ticular degree of freedom could be included m the mi- 
tral condrtrons of a problem whtle not bemg mcluded 
as an evphcit constramt upon the system. 

The consequences of employing a coarsegrained 
ensemble densty has been discussed by Liboff, Follow- 
mg an outline due to Ctbbs. Lrboff [I l] points out 
that to know a coarsegramed density rrr-(t), equivalent 
in our notatton to P[(f)/A#, IS to know considerably 
less than rt IS to know the dynamical function D (our 
po)_ The trreversrbtlity of macroscopic physics Follows 
from the forming of macroscopic averaged (coarse- 
gramed) varrables. 

Throughout thrs work we have discussed the “flow” 
of probabrhty through phase space, we now compare 

In conclusion it should be noted that we have al- 
ready carned out a numerical study [2,12] of the dy- 
namtcs of the collmear H f Hz exchange reaction em- 
ploying the time-independent method of this paper_ 
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