Volume 69, number 2

CHEMICAL PHYSICS LETTERS

15 January 1980

A GLOBAL FORMALISM INCORPORATING CONSTANTS OF MOTION AND OTHER CONSTRAINES
IN THE CLASSICAL DESCRIPTION OF CHEMICAL RATE PROCESSES

Erk K. GRIMMELMANN ¥ and Lawrence L. LOHR Jr
Department of Chemustry, Umiversity of Miciugan Ann Arbor, Michigan 48109, USA

Received 15 August 1979;1n final form 30 October 1979

A phase space cell method for providing a global description of the motions of a physical system 1s outlined. The key
feature 1s a coarse-graining approsimation to the phase-space probability distribution. Constants of motion and other con-
straints are incorporated to reduce the dimensionality of computations Time-independent and time-dependent methods of

solution are discussed.

1. Introduction

The calculation of average dynamical properties of
chemical systems from the interactions of individual
atoms and molecules 1s often practically very difficult
although conceptually relatively simple Given a poten-
tial energy hypersurface for the atoms comprising a
system, it is easy (although perhaps time consuming)
to integrate the classical equations of motion to ob-
tain representative phase trajectories for the system
[1] To characterize accurately the dynamical proper-
ties of the system, however, may require averaging
over so many nitial degrees of freedom that the num-
ber of trajectories required 1s so large that the calcula-
tion becomes unfeasible. In the present work we out-
line a method 1n which the motions of a system are
followed simultaneously for 4ppropriate distributions
of imitial conditions, rather than for individual 1mitial
conditions as 1s done in traditional trajectory calcula-
tions [2]. Our approach is thus giobal, rather than lo-
cal In addition, our method, which we designate as
the “phase space cell method> (PSCM), explicitly util-
1zes the constraints on a system to reduce the dimen-
sionality of the calculation.

In the present work we focus our attention on on-
ly part of the phase space associated with the system
of interest. In this respect this work is somewhat sim-
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ilar to the approaches of others in which only part of
the complete phase space 1s considered and in which
master equation methods are used [3—6]. The present
work is also somewhat similar 1n spirit to the wave
packet approach of Heller [7].

2. Genera! considerations

We consider a system with 3V degrees of freedom
and describe the motion of its 3N -6 internal degrees
of freedom using the generalized coordinates ¢ and
their conjugate momenta p. We assume that the mo-
tion of the system can be described classically and
that the potential energy V(g) and its partial deriva-
twves 0V (q)/9q, are known. In addition, we restrict
our attention to a fixed value of the total energy £.
The standard approach to characterizing the macro-
scopic dynamic behavior of such a system 1s to con-
sider representative trajectories of the system [I]. One
numerically integrates Hamilton’s equations of motion
for many “initial” conditions chosen from the appro-
priate mucrocanonical ensemble and obtains time de-
pendent distributions of observable quantities. For ex-
ample, different regions of phase space may &z 1denti-
fied with different product states or species so that
transition rates or branching ratios can be calculated.

While examiming “‘representative™ individual tra-
jectories is occasionalily useful in identifying “typical’”
patterns of motion, generally one is more interested in

N2



Volume 69, number 2

average quantities In fact. it 1s often only average quan-
tities which are physically observable Calculating clas-
sical trajectories 1s certainly straightforward. but it also
provides much more mnformation than is generally
needed. Furthermore, constraints upon the system are
rarely utilized in integrating the equations of motion.
These constraints may be inherent 1n the mechanics,
such as the conservation of energy and momentum. or
they may be constraints which are imposed upon a
system This second type of constraint includes, for
example, the restriction that the atoms comprising a
system be collinear or coplanar. It also includes the re-
striction that the initial energy 1n a particular vibra-
tional or rotational mode be fixed at 1ts corresponding
quantuim mechantcal value, as 1s done 1n quasiclassical
trajectory calculations

We next present a method 1n which the constraints
on a system are used to reduce the dimensionality of
the calculation and in which the motions of a system
are followed simultaneously for appropr.ate distrnibu-
tions of 1nitial conditions. rather than separately for
indmvidual imual conditions

3. General method

We now consider the general features of the phase
space cell method and, in the subsequent sections,
present two alternate forms in which it may be used
[2]- We first seek to choose a “good™ set of general-
1zed coordinates g, ones which conveniently describe
the system of interest We choose these coordinates
with several criteria in mind. First, they should natural-
ly portray the motion of the system (e g as natural
collision coordinates do for reactive scattering sys-
tems). Second, they should separate the internal de-
grees of freedom from the uninteresting translation of
and rotation about the center of mass And third, they
should lend themselves to the explicit inclusion in the
calculation of the other constraints upon the system
Of course, no coordinates will be 1deal 1n all three of
these respects, so some compromises will be necessary
in choosing the best coordinates for a particular sys-
tem. The phase space of the system, which we desig-
nate as 0 , consists of the coordinates g and their con-
jugate momenta p. The constant energy hypersurfaces
of T'® may be either finite or infimte, depending on
the nature of the system. They are finite for bound
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systems and infimte if the system can separate 1nto at
least two parts which can recede infinitely far from
each other 1n configuration space. If the constant ener-
gy hypersurfaces of I'0 are finite. we consider all of
9, wlule 1f they are infinite, we consider only that part
of IO for which all particles or groups of particles are
non-negligibly interacting with the rest of the system.
We designate as I" that portion of ro upon which we
focus attention.

We now consider a microcanonical ensemble of sys-
tems representing the physical system of interest. In
application to a reaction A + BC = AB + C, say, a “’sys-
tem™ will cénsist of a single molecular umt ABC, so
that the dimensionahty of I'0 15 twice the number of
position coordinates used to describe ABC From this
ensemble we choose a portion of the representative
systems on which to focus our attention. We postpone
for the moment a full discussion of which representa-
tive systems we choose. The phase density pg(g.p.¢)
1s then the probability density at the phase point (g.p)
at time 7. such that pgdr = pg dg dp 1s the fraction of
system points to be found in the volume d7 about the
point (g.p) at tme ¢ Of course, p( can be non-zero
only on the hypersurface(s) of I which satisfy the con-
straints on the system For convenience of notation,
let p(q,p, ) be a function whose value 1s equal to the
value of pg(q,p. r) for all poinis (g,p) on the hyper-
surface(s) of I" which satisfies the constraints on the
system and whose value 1s arbitrary elsewhere

We now consider the phase space I' and divide 1t 1n-
to “cells” These cells need not be all the same size or
shape; the only requirement on them i1s that each
phase point 1n I" be in one and only one cell We label
the cells by the index i, letting ¢, designate the region
comprising the tth cell Further, we designate the
probability that a representative system be within cell
1 at tume 7 by P,(t), which 1s given by

P = [ o(r,1) [ﬂ] 5,0 ar. )

Here 7 = (q,p) and the product is over the various con-
straints on the system Each of the » constraints is
represented by a Dirac deita function For example,
the constraint that the total energy is fixed 1s repre-
sented by 6 (£ — E(7)). where E is the total energy of
the system and E(7) 1s the total energy at the point 7
in phase space The quantity P,(¢) 1s just the coarse-
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grained probability at time ¢ If the division of phase
space 1nto cells is fine enough, this course-grained
probability can be used to descrnibe adequately the dy-
namical behavior of the system.

Choosing a time interval At, we have AP,(z,Af) =
P, (t+Ar) —P, (1) A system whose representative point
1s within cell ¢ at time ¢ may have 1ts representative
pomnt within a different cell, say cell j, at time z+ A¢.
We designate as c,, (Af) the portion of cell i whose
points are connected by phase trajectories of duration
At to points 1n cell j. Thus, all systems whose represen-
tative points are within cy (At) at any time ¢ have
their representative points within cell j at time £+ At
The regions ¢, (Ar) depend upon the interval Az
chosen but not upon the absolute time £; they are
most easily determined by calculating trajectornes of
duration A¢ beginning at a number of points within
celt z and seeing which of them end in celly If the con-
stant energy hypersurfaces of the full phase space ro
are mnfinite, the regions of % which have not been
divided 1nto cells are also included 1n the indexing
scheme We designate by ¢;, (Ar) the region of cell i
from which density flows out of the subspace I' during
the interval Ar.

We can now write an expression for AP, (z, A?),

AP,(t.Af) = — 23 F, (s, A) — D, (£, Af)
]+

+I§ F (2. AD) + E,(c, AD), )
where

Fon(t, A1) = f p(7,0) [ l-Il 8(c ('r))] dr (3a)
!=

Cmn (A0
and
D, (a0= [ p(‘r,t)[ I1 5((:](1'))] dr.  (3b)
Cme(AD =1

The first sum on ther hs of eq. (2) is the probability
flowing out of cell 7 and into other cells, while the sec-
ond term is the probability flowing from cell ; into
that part of phase space which is not divided into cells
(a “‘sink™). The thud term is the probabihity flowing
mto cell 7 from other cells in the region I', while the
final term on the r.h s. of eq. (2) 1s the probability
flowing into cell z from that portion of phase space
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which is not divided into celis (a “source™). If the con-
stant energy hypersurfaces of %are finute, then all of
10 is divided into celis and the D, and £, are all zerc.

We obtain an expression for P () = dP :(0)/de by
approximating it by AP, (z, At)/At

P,(t)=—23F; (s, At)/At, — D, (2, M)/ At
J¥1
+E1~" (L)AL + E(1). @

The source term E,(t) is not written as a ratio of finite
differences as 1t can usually be explicitly specified. We
have labeled the A¢’s by the index of the cell from
which the probability is flowing to indicate that a dif-
ferent time interval may be used for calculating the
probability flowing from each cell. The use of differ-
ent Az’s can improve the efficiency and accuracy of
the calculation since the velocities of representative
points can vary widely from one region of I" to an-
other, and a Az which would be suitable 1n one region
might not be suitable in another.

We wish to obtain the P,(¢) and from these coarse-
grained probabilities determine the dynamical behavior
of the system. In what follows we make the assump-
tion that within each cell the phase density is indepen-
dent of location within the cell. Thus

p(7, D) =P ()4, 5)

where A, 1s the portion of the hypervolume of the ith
cell satisfying the constraints on the problem and is
given by

Af[

This assumption is not the only one which could be
made, instead we could assume, for example, that
p(7,r) were given by a polynomial fit to the phase
density at the center of cell i and the centers of a lim-
ited number of neighboring cells. In the present work,
however, we stick with the assumption that p(7,£) is
independent of location within each ceil. Using this as-
sumption, eq. (4) may be rewritten as

(o ar- ©

B(1)= 22 G, P,(t) + E,(2), @
7

where
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G, = A At []?B +B, ] (8a)
and
Cu=g, Ar EB ] @0

Eq (7) represents a set of coupled first-order Iinear
differential equations (a “master equation™) for the
P,(r) The vector elements 4, and 4, 1n eqs (82) and
(8b) are given by eq {(6). wlule the array elements B,
are given by a similar expression with ¢, replaced by
¢, (Ar). the B,, represent the combined portions of
the hypervolumes of cells 7 and 7 that are connected
by phase trajectories of duration Ar from cell z to cell
7 The symbol * as before denotes the “sink™ region

There are two possible approaches to obtaining the
P, (1) trom eq (7) The first approach is the time-inde-
pendent case for which we obtain a set of steady-state
P,. The second approach 1s the time-dependent case
for which we obtain the time evolution of a *“probabil-
1ty packet™ through phase space.

4. Time-independent solution

The time-independent approach 1s suitable for cases
where the constant energy hypersurfaces of the full
phase space I'? are infinite. Typically, in these cases.
several species approach each other from infinite sep-
aration and begin interacting non-neghgibly only when
they are within a certain distance of each other We as-
sume, then, that there 1s a constant probability flux 1n-
to the subspace I' from the region of I'® which 1s not
also contained 1n [". Under these conditions. a time-in-
dependent (1 e , steady-state) solution of (4) will exist
provided all probability flowing into I" eventually
leaves I’ Finding a steady-state solution 1s difficult,
however. if all trajectories entering I’ do not leave T"
within a reasonable length of time. In cases where
such long lived complexes exist, the time-dependent
approach, which will be outlined in the following sec-
tion, would have to be applied.

If a steady-state solution exusts, 1t can be obtained
by setting P, (¢) to zero 1in eq (7), which leads to

LGP +£,=0 ©
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This 1s simply a set of stmultaneous linear equations
which 1s readily solved using an iterative technmique [8].
Once the steady-state P, are obtained, the dynamical
properties of the system are easy to calculate. If, for
example, the probability flowmg out of I ends up in
two distinct regions of % which correspond to distin-
guishable product states, then the branching ratio for
the reaction 1s simply the ratio of the fluxed flowing
mnto the two regions

5. Time-dependent solution

We now consider the time-dependent approach for
the phase space cell method In contrast to the time-
independent approach which is surtable for certain sys-
tems only, the time-dependent approach 1s suitable for
all systems For the time-dependent solution, the sys-
tem 1s started at time zero with a specified phase dis-
tribution. Each particular choice of initial conditions
[1 e . each set of P,(0)] evolves differently with time
The particular £,(0) chosen may consist of the initial
probabihty being all within one cell, or it may consist
of some distribution of probability among a number
of cells Unlike 1n the time-independent case, in the
time-dependent case there 1s no probability flowing
into cells from the region of ro which is not divided
mnto cells, that 1s £, (£) 1s zero. Since E,(7) 1s zero eq
(7) may be written as

B()= 213 G,P@® (10)

Eq. (10) s a set of homogeneous, first-order linear dif-
ferential equations with constant coefficients which
are readily solved using standard techniques. Once the
£, (1) are known, the dynamical properties of the sys-
tem can be readily determined.

6. Computational procedure

In order to clarify the computational procedure we
have suggested, we now present a sequence of steps
which could be followed to apply the PSCM. Thus se-
quence represents only one of many possible ways 1n
which this method could be implemented.

(1) Choose coordinates and divide the phase space
of the system into cells.
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(2) Specify the constraints on the system and put
them 1n terms of a set of delta functions [the §(c;(7))
meq.(1)].

(3) Follow the motion of the center of each cell
for a specified time or until it moves a specified dis-
tance Then, assuming that each point within a cell
moves parallel to the path of motion of the center of
the cell, determine which portions of each cell move
to each adjacent cell and thus obtain the ¢,,(Ar) and
(AL,

() Calculate the integrals of the type given in eq.
(1) to determune the various 4,, B,,, and B, . If nec-
essary these integrals may be computed numencally.

(5) Use egs. (8a) and (8b) to obtain the G,,.

(6) Choose whether to find the time-independent
or the ime-dependent solution. .

(7) Specify the imitial conditions. These are the E,
for the time-independent case and the £, (0) for the
time-dependent case.

(8) Solve eq. (9) or (10) to obtain the steady-state
P, or the time dependent P,(z).

(9) Use the P, to obtain the rate information desired.

7. Further comments

We mentioned previously that in using the phase
space cell method we consider a microcanonical en-
semble of systems representing the physical system of
mterest and from this ensemble choose a portion of
the representative systems upon which to form our at-
tention We now discuss in further detail this choice
of representative systems. Choosing different represen-
tative systems corresponds to considering the 1nitial
conditions of the physical system of interest For the
time-independent solution of the problem, the nitial
conditions enter through the E,, while for the time-de-
pendent solution they enter through the P,(0)

It 1s necessary, of course, for the imitial conditions
to satisfy the constraints imposed upon the system
However, the initial conditions may be restricted be-
yond what is required for the constraints on the system.
Thus, for example, the pseudo-quantization of a par-
ticular degree of freedom could be included in the 1ni-
t1al conditions of a problem while not being included
as an explicit constraint upon the system.

Throughout this work we have discussed the “flow™
of probability through phase space, we now compare
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this flow to the flow of a physical fluid and consider
the applicability of some of the methods of fluid dy-
namics to the phase space cell method. First, we note
from Liouville’s theorem that the true phase density is
incompressible [9]. If we were to relax the assump-
tion of eq. (5) that at each time the phase density is
independent of location within a cell in such a2 way
that the density is continuous at the cell boundaries,
then the techniques of flurd mechanics for ideal in-
compressible fluids [10] could be used directly in
solving eq. (4). While the dynamics of ideal incompres-
sible fluids and the coarse-grained probability of the
phase space cell model are largely equivalent, this
equivalence does not exist in the absence of coarse-
graining. The motion of a small volume of fluid de-
pends, in general, upon the motion of neighboring vol-
umes of fluids; that is, the streamlines of a svstem are
a global and not a local property. Similarly, by coarse-
graining, the motion of a small element of probability
also depends upon the motion of neighboring elements.
The evolution of individual phase trajectories, how-
ever, is iIndependent of nearby trajectones.

8. Summary

In this work we have outlined a method in which
the motions of a physical system are followed simul-
taneously for appropriate distributions of initial condi-
tions. This 1s a global rather than a local approach to
the problem. In addition, the constraints on the sys-
tem are used explicitly to reduce the dimensionality
of the calculation. By providing a global “picture™ of
a chemical reaction, this method can potentially pro-
vide a more intuitive description of chemical processes
than can be provided by traditional trajectory methods.

The consequences of employing a coarse-grained
ensemble density has been discussed by Liboff, follow-
ing an outline due to Gibbs. Liboff [11] points out
that to know a coarse-grained density m;(¢), equivalent
in our notation to P,(£)/A,, 1s to know considerably
less than 1t 1s to know the dynamical function D (our
£g)- The wrreversibility of macroscopic physics follows
from the forming of macroscopic averaged (coarse-
grained) vanables.

In conclusion it should be noted that we have al-
ready carried out a numerical study [2,12] of the dy-
namucs of the collinear H + H, exchange reaction em-
ploying the time-independent method of this paper.
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