
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 73, 134-137 (1980)

Dynamic Programming Is Optimal for Certain

Sequential Decision Processes

ARNON ROSENTHAL *

Department of Computer and Communication Sciences, University of Michigan,
Ann Arbor, Michigan 48104

Submitted by L. A. Zadeh

A lower bound on the work to find a minimum-cost path in a monotone

loop-free sequential decision process is proved. We show that dynamic pro-
gramming always performs the smallest possible number of function evaluations.
This is no more than the number required simply to prove that the chosen path
is of minimum cost.

1. A loop-free monotone sequential decision process, considered in [I],
can be defined as an acyclic directed graph, G = (V, E), where each edge e has
an associated nondecreasing function h,: R --f R. It will be convenient to assume
that G has only a single vertex (denoted s) with no entering edges, and only a
single vertex (denoted t) with no edges leaving. Parallel edges with different
functions may exist between the same pair of vertices.

The functions h, can be extended to give path costs by the rule:

0 if P is the path containing no edges
‘Ost(‘) = /h,(cost(P’)) if P consists of P’ followed by e ’

This is a generalization of the usual shortest path problem, in which cost(P) =
cost(P’) + length(e).

The above definition is equivalent to the definition in [I], and the minimum-
cost path problem is to find a minimum cost path from s to t. (This is identical
to the optimal policy problem of [I]). Th p e ro bl em can be solved by an algorithm
essentially the same as the familiar algorithm for solving ordinary shortest path
problems on acyclic graphs [2, Section 61. (For brevity, the algorithm will not be
presented here.)

* This work was partially supported by a grant from Horace Rackham Graduate
School, and by NSF Grant MCS77-01753.

134
0022-247X/80/01 0134-04$02.00/0
Copyright 0 1980 by Academic Press, Inc.
All rights of reproduction in any form reserved.

OPTIMALITY OF DYNAMIC PROGRAMMING 135

2. COMPUTATIONAL EFFORT

The most appropriate measure of the work done by the algorithm is the
number of evaluations of functions h, . This measure is especially appropriate
if h, represents a complicated formula as is found in queueing or fluid flow
applications. The dynamic programming algorithm is known to require 1 E /
such function evaluations, regardless of the values obtained for the cost functions.
Clearly, we would not expect to do very much better than this. Our purpose in
this note is to study the sense in which this dynamic programming algorithm
is indeed optimal.

An edge e = (u, V) is called interesting if

(i) there is a path from s to t which includes e; and

(ii) there is a path from s to t which does not include e.

(If (i) is violated, e may be ignored. If () ii is violated, then e must be on the
optimal path, and the problem splits into the independent subproblems of
determining optimal paths from s to u, and from v to t.) We are concerned only
with interesting edges - uninteresting edges can be handled without regard to
cost functions.

There are several senses in which a given algorithm can be said to use an
“optimal” number of operations. [1, Theorem 3.3j states essentially: Given any
n = desired number of vertices, and p = desired degree for vertices, there exists
agraph(V,E)with/ VI = 11, each vertex except having P outward edges, such
that the algorithm will require / E j evaluations. Thus, dynamic programming,
which requires) E / evaluations is optimal on these graphs.

3. RESULTS

Dynamic programming is optimal in a much stronger sense than the above.

THEOREM. Consider any graph all of whose edges are “interesting”. Then every

valid algorithm for every collection of edge-functions, will require as many evalua-
tions as dynamic programming.

Proof. To determine that a path P* is of minimum cost, an algorithm must
perform enough edge-function evaluations h,l(yi), h,l(ya),.. to eliminate the
possibility that some other path has lower cost. The algorithm has knwoledge
only of edge-functions at evaluated points, and the fact that all edge-functions
are nondecreasing. We formally express the requirements for a proof:

Proof criterion. A set of function evaluations h,I(yI), h,Jy,),... is sufficient
to prove that P* has minimum cost if and only if P* has minimum cost for every

136 ARNON ROSENTHAL

collection of nondecreasing edge-functions {/z,(.) j e E E) such that I;,.(y,) =

he,(YA, kl(Y,) = h,2(YzL
Now any valid algorithm must perform enough evaluations to prove that the

chosen path P” is of minimum cost. Thus, the lemma below wiII imply the
theorem:

LEMMA. Given a loop-free monotone sequential decision process with a graph
G = (V, E), such that E contains only “interesting” edges. Then any proof that a
given path is minimum-cost contains at least (E (evaluations.

Proof oflemma. Assume to the contrary, that for some edge B E E, there is no
number y such that hz(y) has been evaluated. Let ikf be some positive number far
larger than any number in the problem.

Case 1. z is on P*. Consider edge-functions {$ 1 e G E) identical to the
given ones except I&(y) = M (f or all y). For the new cost functions, P cannot
be on the optimal path, so P* is not optimal. Therefore, the proof was invalid,
according to the proof criterion.

Case 2. 2 is not on P*. Define a new edge-function {I& / e E E} identical to
the given one, except &-(y) = -M. Now, E must be on the optimal path.
Therefore, the proof was insufficient Q.E.D.

Tt is interesting to note that the argument for the second case fails if h, is
required to be nonnegative. This failure is irreparable, because for some cost
functions, there exist proofs which do not need 1 E 1 evaluations, but instead
exploit the knowledge that all h, are nonnegative.

4. DISCUSSION

Moravek [4] used a dimensionality argument to obtain a bound on the number
of comparisons needed to prove optimality in any ordinary shortest path problem
on an acyclic diagraph. The extension of his result to all loop-free monotone
sequential decision processes does not seem straight-forward.

Computational complexity theorists have extensively studied procedures which
somehow “guess” the solution to a problem and then “guess” a shortest proof
that the solution is correct. Such procedures are known as nondeterministic
algorithms [3], and are the foundation for the famous “P # NP” conjecture.
The lemma implies that no algorithm, even a nondeterministic algorithm, will
be superior for any input to dynamic programming, because dynamic program-
ming always produces a shortest proof.

In 151 we show that nonserial dynamic programming is “optimal” for a more
difficult optimization problem. That result establishes an exponential lower

OPTIMALITY OF DYNAMIC PROGRAMMING 137

bound which is valid for a large class of algorithms. There too, a nonadaptive
deterministic algorithm is as good as even nondeterministic algorithms.

REFERENCES

1. T. IBARAICI, On the optimality of algorithms for finite state sequential decision processes,
J. Math. Anal. Appl. 53 (1976), 618-643.

2. T. IBARAKI, Solvable classes of discrete dynamic programming, J. Math. Anal. Appl. 43
(1973), 642-693.

3. A. AHO, J. HOPCRAFT, AND J. ULLMAN, “The Design and Analysis of Computer
Algorithms,” Addison-Wesley, Reading, Mass., 1974.

4. J. MORAVEK, A note upon the minimal path problem, J. Math. Anal. Appl. 30 (1970),
702-717.

5. A. ROSENTHAL, Dynamic programming is optimal for nonserial optimization problems,
submitted for publication.

