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1. INTRODUCTION 

IN THE present paper we intend to present lower closure theorems in their generality and to discuss 
their relevant hypotheses, particularly the role of upper semicontinuity properties of the relevant 
sets, in the light of recent work of the authors, and of Goodman, Olech, Ioffe and Rockafellar. 

The uppersemicontinuity property (Q) for closed convex set valued functions y - Q(y) c B 
(Gesari [ 1,2]) is usually expressed in terms of union, intersections and closures on subsets Q(y) of a 
Banach space B depending on an index y ranging on a subset A of a metric space (I: d): 

Q(Y,) = nd,o cl co u t-Q(y), 4~9 Y,) d 61. 

The analogous upper semicontinuity property (K)for closed set valued functions, or Kuratowski’s 
condition, is then expressed by the requirement 

Q(Y,) = nd>o cl u [Q(Y), 4y> ~0) G 61. 
In Section 2 we present lower closure theorems in Banach spaces including some which we are 

using elsewhere for Pareto problems in Banach space situations where the relevant functional 
has values in such a space with ordering defined by convex cones. 

In Section 3 we show that whenever the sets Q are in a finite dimensional space, lesser require- 
ments are needed in the lower closure theorems. Indeed, in such situations we had already shown 
in 1968 [2] that suitable growth properties imply property (Q). This remark can now be used to 
prove property (Q) for certain auxiliary sets which can be made to play a role in the proofs of the 
lower closure theorems. Actually property (Q) in one form or another is indeed used in the proofs 
of lower closure theorems, implicitly or explicitly. 

In Section 4 we summarize recent relevant results of Goodman [3] which prove that the same 
property (Q) can be expressed in terms of duality operations of convex analysis, and thus showing 
the equivalence of property (Q) with properties used by Ioffe [4], Olech [5,6] and Rockafellar [7] 
in their lower closure theorems. Thus, our lower closure theorems (Section 2), covering Banach 
space situations, with ordering delined by convex cones, appear to be more general than those 
of the aforementioned authors. We are indeed using them in Pareto problems [S, 91 at such level 
of generality. 

In Section 5, again in Banach space situation, we show that property (Q) can be expressed in 
terms of seminormality conditions, in the lines, that is, of Tonelli’s early normality condition and 
as later used by McShane. (See [l&12] for an analogous discussion in finite dimensional spaces.) 
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In Section 7 we show that, even in Banach space situations, natural blendings of weak Lipschitz 
and other hypotheses imply property (Q), and this leads to the formulation of a series of simple 
criteria of wide applicability, particularly in Banach space situations where growth conditions 
alone may not suffice. We state in Section 7 an analytic condition, or property (D) (cf [14]) 
which includes the above mentioned criteria, which implies a weak form of property (Qband 
this in turn implies lower closure even in Banach space situations. 

Thus, for instance, a weak Lipschitz assumption as 

together with the boundedness assumption 

s 

r2 
F(t, u(t)) dt d M 

tf 

imply property (Q). This remark, which had been made already in [9,13,14], seems to have been 
missed by both R. Berkovitz and G. R. Bates in their recent presentations (see Section 7 and 
[19,2(q). 

2. STATEMENT OF LOWER CLOSURE THEOREMS 

Part (a): Orientor held formulation. 

Here (G, ~1, p) will denote a finite complete measure space of elements t with a finite measure ,U 
and a o-algebra LX of p-measurable subsets. Also, (G, p) is a metric space with a distance function p. 
Besides (I: d) is a metric space of elements y with the distance function d. Let 2 and B be Banach 
spaces over the reals R, and let us assume that a nonempty convex closed cone A is assigned in 2. 

Let Z* and B* denote the duals of the spaces Z and B and let (q*, q), ([, 5) denote the linear 
operations yl* E Z*, [ E B* applied to the elements v] E Z, t E B. Let A* denote the polar of the 
cone A, that is, the set of all ‘I* E Z* such that (q*, q) < 0 for all 4 E A. We shall assume that A 
has the angle property, that is, there is a number E E R, 0 < E d 1, and an element [ E - A*, 
5 # 0, such that A c [q E 2, (<, 9) 3 s\J < I/ 1) q \I]. Let A denote a given subset of G x Y and 

let A(t) be the set A(t) = [y E Y[(t, y) E A], that is, the section of A. We shall assume that A(t) # @ 
for all t E G. 

First we state lower closure theorems for problems of optimal control (including Pareto 
problems) when the control parameters are eliminated and the problems are expressed in terms 
of orientor fields. 

(2.i) (A lower closure theorem in Banach spaces in terms of orientor fields). 
Let (G, p), (Y d) be metric spaces of which G is also a finite complete measure space (G, CL, p). 

Let Z, B be Banach spaces over the reals R, and let us assume that Z is reflexive and that in Z 
a convex closed cone A has been assigned with the angle property. Let A be any subset of G x Y 
such that the sections A(t), t E G, are all nonempty, and also closed in (I: d) for p-almost all t E G. 

Let &, v), Y E A(t), t E G, be given nonempty subsets of Z x B. Let 5(t), y(t), rl,Jt), 4&), y,(t), M), 
te G, k = 1, 2,. . ., be given p-measurable functions with [, 5, E L,(G, B) and qk, 9 E L,(G, Z). 

Let us assume that 
(2.1) for p-almost all t E G, the sets &(t, y), y E A(t), are closed, convex and satisfy property (Q) 

with respect to y along the trajectory y(t), that is, for y = y(t). 
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(2.2) y(t), y,(t) E -W, (~l,Jt), t,(t)) E &t, v&)X t E Gb-a.e.), k = L2, . . . f 

(2.3) - co < i = lim infk_m 

angle property, i‘ 
(c, q,(t)) dp < + W, where { E Z* is the element mentioned in the 

G 

(2.4) & -+ 4 weakly in L,(G, B), yk(t) + y(t) in measure in G as k -+ co, 

(2.5) u,Jt) - b(t) E A, t E G, &-a.e.). 

Then there is a function q(t), t E G, q E L,(G, Z), such that 

(v(t), 5(t)) E Q”(t, y(t)), (e.e.), and s (~7, v](t)) dp d i. 
G 

Remark 1. Note that in (2.1) we require that for every t E G we have 

Q@, y(f)) = nd ,. cl co u [Q”O, y), 4y, YJ < 61, f E G. 

Actually, all that is needed here is that for a suitable sequence ks we have 

~(t, y,(t)) I> n;! I ~1 CO [u,“=,, &(f, y,,(f))l~ f E G(v.e.). 

This is a form of property (Q) with respect to y only, with respect to a given sequence, and only 
at the points (t, y(t)), that is, along the trajectory. 

Remark 2. Note that, instead of (2.5) we could require only that (2.5)’ there are real valued func- 
tions;l(t),I,(t),tEG,~,~kELI(G,R),k=1,2 ,..., such that (i,?,(t)> 3 A,(t), t E G, k = 1,2,. . . , 
and I, -+ i weakly in L,(G.R). 

(2.ii) As in (2.i) with Z = R’, B = R” and property (K) replacing property (Q) in (2.1). Then the 
same conclusion as in (2.i) holds. 

(2.iii) As in (2.i) with Z and B Banach spaces, with tk -+ 5 strongly in L,(G, B) and property (K) 
replacing property (Q) in (2.1). Then the same conclusion as in (2.i) holds. 

For B and Z general Banach spaces the following also holds: 

(2.iv) As in (2.i) with Z and B Banach spaces as stated, with (2.1) replaced by (2.1)‘: for almost all 
t E G, the set Q(t, y(t)) is closed and convex. Moreover, we consider here functions; t(t), y(t), q,(t), 

&(t), 5,(t), r&t), y,(t), 4(t), t E G = 1, 2,. . . all p-measurable in G, such that 5, &, fk E L,(G, B), 
qk, ik, qi E L,(G, 2) satisfy (2.3) and also 

(2.2)’ : y(t). y,(t) E 4th (r,#), &(t)) E & y,(t)), @,Ct>, &@I) E Qk y(t)), t E G (w=L k = L2, . . 

(2.4)‘: 5, -+ 5 weakly in L,(G, B) as k + 00 and Property (D): 

s;(t) = Vj#) - ij#) + 0, d,(r) = <k(r) - &(r) + 0 

in measure in G as k -+ co. Then, the same conclusion as in (2.i) holds. 

Theorems (2.i-iv) were essentially proved in various stages, by Cesari [12, 151, Cesari and 
Suryanarayana [8, 9, 141 and Kaiser and Suryanarayana [16]. Thus, we see from (2.ii) that 
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property (Q) can be disregarded if property (K) holds and spaces Z and B are finite dimensional; 
we see from (2.iv) that both property (Q) and property (K) can be disregarded if the analytic 
property (D) holds for Banach spaces Z and B as stated. However, as already mentioned, the 
hypotheses of Theorem (2.ii), particularly the weak convergence 5, + 4, imply that certain auxiliary 
sets Q*(t, y), essential in the proofs, have property (Q) with respect to y. Concerning Theorem 
(2.iv), property (D) itself implies a certain weak form of property (Q) for the relevant sets, which 
is strong enough for the entire argument based on this property to hold (see Section 7 of this 

paper). 

Part (b): Optimal control formulation. 

We now present statements, analogous to the previous ones, when we consider problems of 
optimal control in their usual form involving controls: 

Let (G, p), (G, IX, p), (X d), Z, B be spaces as in (a) and let U be a further Banach space over the 
reals. Let A and A(t), t E G, as in (2.i) and for every (t, y) E A let U(t, y) be a given subset of U. 

Let A4 denote the set {(t, y, u)l(t, y) EA, UE U(t, y)> and let f,(t, y, u), f(t, y, u) be functions 
defined on M with values in Z and B respectively, for which we assume the following condition 
replacing measurability hypotheses : 

Property (C). For each E > 0, there is a compact subset K of G with p(G - K) < E such that the 
sets A, = {(t, y) E A 1 t E K} and M, = {(t, y, u) E M 1 t E K} are closed and the restrictions to M, 
off and f, are continuous. 

An alternate condition, instead of(C), is as follows. 

Property (C’). The spaces G, I: Z, B, U as above are separable, A = G x A,, A, c I: LJ(4 Y) 
=u, c u, A,, U, fixed sets, A, closed in X the functions f,(t, y, u), f(t, y, u) defined in 
G x A, x U, are p-measurable in t for every (y, U) E A, x U, and continuous in (y, U) for 
p-almost all t E G. 

For every (t, y) E A let us denote by Q”(t, y) the set 

at, Y) = {h 5) I r E f$, Y, 4 + A, 5 = fk y, 4, u E Uk y)} = z x B. 

(2.~) (A lower closure theorem in Banach spaces in terms of control parameters). 
Let us assume that (Hl) for p-almost all t E G the sets &t, y), y E A(t), satisfy property (Q) 

with respect toy only, at y = y(t) in A(t). Let c(t), y(t), &(t), q,(t), y,(t), u,(t), d(t), t E G, k = 1, 2, . . , 
be /L-measurable functions, 5, tk E L,(G, B), qk, 4 E L,(G, Z), such that 

(2.6) y(t), yk(t) E A(t) = I: uk(t) E u(t, y&l) = u, q&l - 4(t) E 12, t E G, 

qk(t) E .I$, yk(t), t+(t)) + A, &(t) = f(4 y,(t), Uk(tN, t E G we.y 

(2.7) -co < i = lim inf, 
s 

(i, q,(t)) dp < + cc for a [ E Z* as in (2.3), 
G 

(2.8) 5, + 5 weakly in L,(G.B), y&t) + y(t) in measure in G as k -+ CO. 
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Then, there are functions q(t), t E G, q E L,(G, Z) and u(t), t E G, p-measurable in G, such that 

q(r) of&, y(t), u(t)) + A, 5(t) = f(r, y(t), u(t)), a(t) E W, y(0) = u, r E G @-a-e.) 

and 

- cc < 
s 

(i, q(t)) dp d i. 
(i 

A remark similar to Remark 2 after (2.i) holds also here. 

(2.vi) As in (2.~) with 2 = R”, B = R” and property (K) replacing property (Q) in (2.~). Then the 
same conclusion as in (2.~) holds. 

(2.vii) As in (2.~) with 2 and B Banach spaces as stated, with 5, --f 5 strongly in L,(G, B) and 
property (K) replacing property (Q) in (2.~). Then the same conclusion as in (2.~) holds. 

(2.viii) As in (2.~) with 2 and B Banach spaces as stated, with U(t) c U depending on t only, and 
(Hl) replaced by (Hl)‘: for p-almost all t E G, the set Q(t, y(t)) is closed and convex. Moreover, 
we assume that functions c(t), y(t), q,Jt), q&t), &(t), t&t), y,Jt), uk(t), 4(t), t E G, k = 1, 2,. . , are 
assigned 5, tk, 4, E L,(G, B), qk, qk, q5 E L,(G, Z), satisfying (2.7) and also, 

(2.6)’ y,(t) E 4th v,(t) E fok y&h U,JtN + 4 

5kO) = f(4 y,(t), u,(t))> %Jt) E w, 
ZkW = _I”@> Y(t)> %W), fk(d E fo(4 y(t), %(O) + 4 

(2.8)’ 5, + 5 weakly in L,(G, B), yk(t) + y(t) in measure in G as k + co, and 

W) = f(t, Yk@L U&N - fk Y(t), %(O) + 02 
CD) 

in measure in G as k -+ co. Then, the same conclusion as in (2.~) holds. 

The above versions of the lower closure theorems are essentially given in the same papers 
[8, 9, 12, 14-161 mentioned above. Also, in [14], great many simple easily verifiable explicit 
conditions are given which guarantee that condition (D) holds, some of which are reported in 
Section 7 below in the Banach space situation. 

For the classical integrals of the calculus of variations 

I[YI = bf& y(t), y’(O) dt, 
s 

- co<a<b<+m? 
LI 

f,(t, y, z) continuous in [a, b] x R2, y(t) absolutely continuous in [a, b], the convexity of f,(t, y, z) 
with respect to z is a necessary and sufficient condition for the lower semicontinuity of Zb] with 
respect to the usual weak topology yk -+ y uniformly, y; + y’ weakly in L,([a, b], R) (Cesari [21]). 

For the general situation depicted under (2.ii) and (2.vi) and variants (see, e.g., Remark 2) 
and corresponding necessary and sufficient conditions, we refer to Ioffe [4] and Cesari [17]. 
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3. GROWTH PROPERTIES AND UPPER SEMICONTINUITY PROPERTY (Q) OF SET VALUED 
FUNCTIONS 

Part (a): Orientor field formulation. 

Let B and Z denote Banach spaces over the reals, and (T: d) be a metric space. Let R” denote 
the n-dimensional Euclidean space. Let A be any subset of Y and for each y E A let Q(y) be a given 
nonempty subset of Z x B. The following three uppersemicontinuity properties are relevant to us. 

We say that Q(y), y E A, is uppersemicontinuous by set inclusion at y, E A provided, given 
E > 0, there is 6 > 0 such that d(y, yO) < 6 implies Q(y) c [Q(y,)], where Q(y,), denotes the 
s-neighborhood of Q(y,) in Z x B, and N,(y,) denotes the &neighborhood of y, in A. 

(3.1) QOt,) = na>o cl u {QbLdb,~,,) < S> 

where cl denotes weak closure in B. 
We say, as in [l, 21 and in Section 1, that Q(y), y E A, satisfies the uppersemicontinuity 

property (Q) at y0 E A provided 

(3.2) Q&J = n,+,, ~1~0 u {QWJb, Y,) < 61. 

Here cl operates on convex sets and thus weak and strong closures coincide. 
We may say that Q(y) has any of these properties in A if the same property holds at every y, E A. 

Obviously, if Q(y) has property (K) at y, then Q(y,) is closed; if Q(y) has property (Q) at y, then 
Q(y,) is closed a n d convex. Moreover, property (Q) implies property (K). 

If A is closed in Y then the sets Q(y), y E A, have property (K) in A if and only if the graph of 

Q(Y), or [(Y, 5)/y E 4 5 E Q(Y)] is closed in y x (Z x B) [I]. 
Moreover, if the set valued function Q(y) is uppersemicontinuous at y, E A by set inclusion, 

and Q(y,) is closed, then Q(y) has property (K) at y,; if Q(y,) is also convex and closed, then Q(y) 
has property (Q) at y,. In [16] an “intermediate” property (Q’) was introduced (intermediate 

between (K) and (Q) properties), and these statements were extended there to property (Q’). 
Also, in [2] Cesari proved that property (K) for certain convex sets which are “bounded below” 

guarantees property (Q) for certain associated auxiliary sets Q*(y), which are relevant in proving 
lower closure theorems. We state here a few definitions, we restate for clarity a few theorems 
which had been proved in earlier papers, and we state a more general theorem which includes them, 
as well as some which have been encountered by Ioffe. 

Let A be a closed convex cone in Z and let Q(y) denote Q(y) + A for y E A. We say that the sets 
Q(y) are A-convex if Q(y) = Q(y). 

Note that for Z = K and A = [r/r 3 01, A-convexity is the same as the ‘upper set property” 
used in [16], that is, (q, z) E Q(y) and ?j 2 q implies (q, z) E Q(y). 

Unless otherwise specified, whenever Z is a finite dimensional space RP, we shall correspondingly 
take A to be the positive octant 

[q/Y/ = (Y/l,. ..,Y/qqi 3 0, i = l,.. .,p]. 

By a Nagumo function we mean a real-valued function 4(t) defined for 0 d 5 < + co, which 
is bounded below, and satisfies 4(5)/c + + cc as 5 -+ + co. 

(3.i) Let Z = R and B = R”. For y E A c Y let Q(y) be a nonempty subset of R”+ ’ with the upper 
set property. For some y, E A let Nd(yO) be a neighborhood of y, in A, and let us assume that there 
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is a Nagumo function 4 such that (q, 5) E Q(y), y E N&y,) implies rl > $#I). If the sets Q(y) have 
property (K) at y0 and the set Q”(yJ is convex, then the sets Q(y) have property (Q) at y,. 

(3.ii) Let Z = R and B = R”. For each y E A c Y let QJy) be a nonempty subset of R”. Let 
T(y, 5) be a real valued lower semicontinuous function on the set S, = [(y, l)ly E A, 5 E Q,(y)]. 

For some y, E A and neighborhood N6(y0) of y, in A let us assume that T(y, 5) 2 (b( 15 1) for all 
y E N&y& 5 E Q,,(y), and some Nagumo function 4. If the sets Q,(y) have property (K) at y,, 
and the set Q(y,) is convex, then the sets Q(y) have property (Q) at y,. 

Remark 1. The following example shows that the sets Q(y) = [(q, 5)lq 3 T(y. 0, 5 E QJy)] may 

not have property (Q) without the growth condition expressed in Theorem (3.ii), and that this may 
occur even if T is continuous, and convex in 5 for every y E A, and the sets QJy) have property(Q). 
Indeed, take 

Then, 

A = [yl - 1 d y < I], Q,(Y) = [(I - 00 < 5 < + 001, UY, 5) = ~5. 

Q(0) = [(vl,O)lrl 2 01, Q(O, 6) = u C&y), [Y( < 61 = C(r, #I a - IS/t, 5 E RI, 

and nd cl co Q(O,6) = R2 # e(O) (cf [l, p. 3781). However, it was shown [l, p. 3791 that property 
(Q) of (z(y) at y, is guaranteed if, in addition, either the sets Q,,(y), y E A, are all contained in a 
fixed ball in R”, or the function T(y, 5) in convex and seminormal in 5 at every y E A and 5 E QJy) 
(cf Section 5 in this paper). This property of seminormality is certainly satisfied if T(y, t)/t + + cc 
as 151 --f + co uniformly in y E N&y,). 

(3.iii) Let Z = R’ +p and B = R”. For y E A c Y let Q(y) be a nonempty subset of points (q”, 9, 
5) = (q”, $, . . . , qp, (I,. . . , 5”) E R1+p+n and let us assume Q(y) to be A-convex with respect to 
A = [(q”, q)lq” 2 0, vi 2 0, i = 1,. . . , p]. For some y, E A let Nao(yo) be a neighborhood of y, 
in A and let us assume that (q”, q, 5) E Q(y), y E AJao(yo) implies q” 2 & 15 I), I]~ > L, i = 1, . . . , p, 
for some Nagumo function 4 and real constant L. Then, if the sets Q(y) have property(K) at y, and 
the set Q”(y,) is convex, then the sets Q(y) have property (Q) at y,. 

(3.iv) Let Z = R’+p and B = R”. For each y E A c Y let Q,(y) be a nonempty subset of R”. Let 
q(y, 5), i = 0, 1,. . . , p, be real-valued lower semicontinuous functions on the set So = 

[(Y, 01~ E 4 5 E Q,(Y)], an d f or any y E A let Q(y)denote the set of points (q”, q, 5) defined by [q” 2 

T,(y, 0, VI 2 T(Y, 0, i = 1,. . . , p, t E Qo(y)]. For some y, E A and neighborhood N,,(y,) of y, 
in A let us assume that T,(y, 5) 3 4(1<1), ZJy, 5) B L for all y E N,,(yo), 5 E Qo(y), and for some 
Nagumo function 4 and real constant L. If the sets Q(y) have property (K) at y, and the set Q”(y,) 
is convex, then the sets Q”(y) have property (Q) at y,. 

Theorems 3.i-iv can be proved by the same arguments used by Cesari in [2]. (For versions of the 
same theorems when y is in a finite dimensional space see [ 171, (8.5). The proofs are essentially the 
same). 

Part (b): Optimal Control formulation. 

Here we present a theorem similar to those in part (a), but now in terms of control parameters. 
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(3.~) Let A c Y be nonempty. For each y E A, let U(y) be a given nonempty subset of a reflexive 
Banach space (U, 1) 1)) equipped with the weak topology. Let S = {(y, u)ly E A, u E U(y)) be given 
the product topology so that it has metric topology on y and weak topology on u. Let G(y, u), 

gi,..., gJi”...’ f, be given real valued functions defined on A. Let G and gi, . . . , g, be non- 
negative and lower semicontinuous on S with respect to (metric x weak) topology. Let f,, . . . , f, 
be continuous on S. Let f,, . . . , f, and 1 be of slower growth than G as 11 u/I + co, uniformly in A 
(see remark below). Let the sets U(y) satisfy property (K) (with respect to weak topology on U) at 

y = j in A. If the set 

&(Y) = {(a 0111” 2 G(y, u); yli 3 gi(y, u), i = 1,. . . , p, 5’ = fi(y, u), i = 1,. . . , r; u E U(y)} 

is convex at y = j, then the sets &(y) satisfy property (Q) at y = j. 

Remark 2. A functionf is said to be of slower growth than G as 11 u II + cc uniformly in A provided 
(a) given E > 0 there is an N = N(E) > 0 such that 11 u/j 3 N, u E U(y) implies 1 f(y, u)l ,< sG(y, u), 
for ally E A and (b)f(y, u) remains bounded for y E A and /j u Ij bounded. Due to the local character 
of the conclusion, it would be enough to require the slow growth to be uniform only in a neigh- 
borhood of y in A. 

Remark 3. 
(i) Theorem (3.~) was essentially proved directly in [a]. 
(ii) Theorem (3.i) implies Theorem (3.~). First let us prove that the sets &(y) have property (K) 

at y, that is, that n6 cl &(j, 6) = Q,(y). For +j = (r”, q) = (r”, q’,. . , f), it is enough to prove 

that, if (y”, q, r) E n+l Q, (7, d), then 7j”, q, <) E Q,(j). Indeed, (y1’, 7, e) E cl (2, (j? 6) for all 6 > 0, 
and there is a sequence ($, ylk, 5,J E QG(yk) with y, E A, yk + y, VI,” + y1”, rk -+ Y, & + Z as 
k -+ co. Thus, there are also points uk such that 

Here q,” + f” hence [n,“] is a bounded sequence, and by the growth property on G we derive that 
[u,] is also a bounded sequence of elements [u,] of the reflexive Banach space (u, 11 (I). Hence, 

there is a subsequence, say still [k], such that uk + U E U weakly in the Banach space U. In other 
words, u E ns cl, U(J, 6) where cl,,, means weak closure. Since by hypothesis, the sets U(y) have 
property (K) with respect to the weak topology in U, we conclude that U E U(F). Hence, (y, U) E S, 
and then q” 2 G@, u), vi 3 gi@, a)), 5’ = f,@, a), or (y’, ye, <) E Q&). We have proved that the sets 
&(y) have property (K) at j. Let us prove that there is a function 4(t) with 4(5)/c + + cc as 

5 -+ + co, with G(y, u) 2 d(lf(y, 41) for all y E 4 u E U(y). Indeed in the opposite case, there 

would be a constant C > 0 and a sequence (y,, uJ with 

yk E A, uk E U(Y,), 4, = f(yk, u,J, v,” = G(Y,, uJ, ~1: G CL tk -+ + ~0 as k + ~0. 

Thus, Iiuk/i + + co, while G(y,, uk) < Cf&, a&, a contradiction. Now Theorem (3.i) applies. 

(iii) Theorem (3.~) implies Theorem (3.i). Indeed, if we take 

f;.(y, u) = ui = <‘, i = 1,. . . , r, u = R’, 
then we have 

Q~(Y, U) = [V” 3 G(y, U), vi 2 gi(y, U), ti = ai] 

= [v’ 2 G(Y, 51, vi B Si(Y, 51, 5 E U(Y)] 
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and we have Theorem (3.i) but for the notations. We see that Theorem (3.i) and Theorem (3.v), 
the latter essentially proved in [2], are equivalent. 

Remark 4. If the Banach space U in Theorem (3.~) is finite dimensional then weak and strong 
topologies coincide so that Theorem (3.~) reduces to Theorem (2.2.ii) of [2] in the particular case 
Y = R’ +n. The proof on pp. 521-524 of [2] needs no major changes, even in the general situation 

stated above. 
In [4] Ioffe used the basic argument found in the proof of [2] cited above, in order to prove a 

lower semicontinuity theorem. In [8] the present authors also used the same argument to prove 
the more general lower closure theorems (3.~) by explicit requirement of mere property (K). 
Property (Q) for suitable auxiliary sets then follows as shown by the theorems above (3.iv), and 
many variants (cf [8], Remark (3.6), p. 229, and [17]). 

4. DUALITY AND A CHARACTERIZATION OF PROPERTY (Q, 

We report here, for clarity, the main points of the duality operation in convex analysis, and a 
characterization of property (Q) in terms of duality operations recently proved by Goodman [3] 
and reported in [17]. 

Let B be a Banach space over the reals, let B* be the dual of B, and let (i, 5) denote the linear 
operation [ E B* applied to the element 5 E B. 

In this and the next section we shall consider extended real valued functions T on B, that is, 
thoseforwhichthevalues + cc and - cc areallowed. Let Qdenote thesubset ofB where Tt # + co. 
We denote by epigraph of T, or Q = epi T the subset of R x B defined by & = epi T = [(q, 5)1 
q 2 T(t), 5: E B, q E R]. Then we have also T< = InqqI(q, 0 E Q], < E B, with the understanding 
that[q 3 T(t), <EB, PER] = 4istheemptysetiftEB - Q,andthat[q 3 T(t), <EB, PER] = 
R if 5 E Q, T(c) = - co. The concept of convexity of such a function T on B applies as usual. 

(4.i) The set Q = epi T is convex if and only if T is convex; the set Q = epi T is closed if and only 
if T is lower semicontinuous on B. 

We denote now by {h(t)} the class of all shine functions on B, that is, h(5) = p + (i, <), where 

p E R and [ E B*. We say that h E {h(t)} is a supporting plane for T if h(5) d Tt for all 5 E B. By the 
symbol h d T we mean that h(t) d T< for all 5 E B. It is easy to prove that 

(4.ii) If T is convex, and lower semicontinuous in B with T< $ + “;, Tt # - cc, for all <, then 

T5 = Sup[h(<)lh d T]. 
In other words, T can be recovered from its supporting planes. In other words, if {S+} is the 

collection of all half spaces containing Q = epi T, or S+ = [(q, t)l~I 2 h(t), 5 E B] for all h E {h} 
with h d T, then Q = nS’. 

For extended real functions T& 5 E B, we shall need below the closure operation, or cl T, which 
is defined by means of the relation epi(c1 T) = cl(epi T). 

Given an extended real function T& t E B, we now define as the dual T* of T the extended real 
function T*[, [ E B*, by taking 

T*[ = Sup[([, 5) - Tt15 E B], i E B*. 

It can be easily proved that 
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(4.iii) If T& r E B, is an extended real function, convex and lower semicontinuous in B, with 
E f + co, Tt # - co for all 5, then T*i, [ E B* is also an extended real function, convex and 
lower semicontinuous in B* with T*c + + co, T*i f - cc for all i, and 

Q” = epi T = nsEB*C(yI, 5)lr 3 - T*i + <i, 0, 5 E Bl. 
Moreover, if T is as in (Ciii), then we can define (T*)* or T** and it can be easily proved that 

(4.iv) If T is an extended function, convex and lower semicontinuous on B, with T5 f + co, 

E # -co for all 5, then T** = T. 

If I = T(B) denotes the class of all extended real function T<, 5 E B, convex and lower semi- 
continuous in B, then we see from the above that the operation T + T* is one-one, and maps 
T(B) into F(B*). If [T&, 5 E B], i E I, is a family of functions q E T(B) depending on an index i 
ranging over an index set I, then we denote by A and I/ the lattice operations 

(yq)t = “Pi q<, 

(AiTJr = Sup[h(<)lh d q for all i E Z]. 

For sets, that is, for the corresponding epigraphs Qi = epi q, i E I, we may use analogous symbols 

qQi = cl co uiQi, 

A,Q, = niQi. 

With these notations, and functions q E I we have 

&(epi YZJ = epi KT, ((epi TJ = epi A,q 

and furthermore it is easy to prove that 

(4.~) If q EI for all ill and (Fq) 5 $ + co, then Y~;EI. If (AiT) r # -CC for all t, then 
Ai17;: E r. 

(4.vi) If q E I for all i E I, then 

(AiT)* = VT*, (<q)* = AiT*. 

We consider now with Goodman the case where Z is an ordered set, that is, Z is ordered by an 

order relation, with a “least” element CO, such that (1) i < j, j < k implies i < k; (2) given i, j E I, 
i, j # co, there is k E I, k # co, such that k < i, k < j. Then, instead of the operation “Sup” we 
may consider the operation corresponding to “lim sup” in the present terms. Thus, instead 
of taking, say, V,Q, = cl co uiQi, we may take 

‘A+w’i<AQi = n ClCO tJ Qi 
i. f co i-Cl 

and instead of, say Ai?;., we may take 

‘A+mAi<lT(<) = SUP [h(C)lh < q, i < Al. 
I#0 

In these conditions, we note that 

T’c$ = (y<AZJ < = Sup[q& i < A, 5 E B], 
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is a convex lower semicontinuous function of 5 which depends monotonically on 1. The follow- 
ing lemma, where use is made of the closure operation defined above, is relevant. 

(Cvii) (Goodman [3]). If the index set I is ordered then 

cl inf, TA< = A,TA7;5. 

We consider now the case where we have a family of sets 

Q(x) = epi 7% 5) = [(r, 5)1~ 2 T(x, 0, 5 E Bl 

indexed by x E A, a subset of a metric space X with distance function d(x, x0) from a fixed point 
x0 E A. That is, we say that x < y if x, y E A and d(x, x,,) < d(y, x,,). With this understanding the 
“lim sup” operation mentioned above becomes 

A,, o+ cOcx), d(x, xO) < 61 = n cl co u [Qcx), d(x, xO) < 61. 
a>0 

Thus, property (Q) at x0 reduces to the requirement that 

&,) = ii,, o%2(x), d(x, x0) < 61) 

or equivalently 

or 

epi T(x,, 5) = A,, oq[epi T(x, 0, d(x, x0) < 61, 

We have the final result 

%$l5) = V,,,NT(x, 5), 6 XIJ) < 61. 

(4.viii) THEOREM (Goodman [3]). If T(x, 5) > -CO for all (x, <) E A x B, then the sets o(x) = 

epi T(x, 5) have property (Q) at x0 if and only if 

or equivalently 

T*(x,, r) = AJ[T*(x), d(x, x0) < 61, 

T*(x,, 5) = cl[lim sup T*(x, r)], 
x+x0 

or equivalently 

T(x,, 5) = [lim sup T*(x,, ()I*. 
x-+x0 

Detailed proofs of the statements in this section have been given in a slightly less general 
context in [17, (8.11)]. The proofs hold in the present context without changes. 

Remark. In this section we have considered extended real valued functions and their epigraphs. 
Dually, one could start with subsets 0 c R x B with the property that (r], 5) E 0, q’ 2 q, implies 
that (v’, 5) E Q”, and correspondingly define T: B + R u { + co} as Tt = inf(q)(q, 5) E Q} with the 
understanding that T5 = + co if there is no q with (q, 0 E 0 and T5 = - co if (q, <) E 0 for all 
q E R. If Q” is closed, then 0 = epi T. This process will be pursued further in the next section. 
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We shall now make two observations of interest in this connection. First, if (2* denotes epi T* 
then clearly, 

Q* = n{(O, :)I (t”, 5) d T5: + 8, 5 E B}. 

Also, if T5 = -co then Q”* is empty. Finally, Q = Q** = n{(q, ()I(;, 5) d v + T*<, ; E B*}; 

(Goodman [3], Suryanarayana [22], Denkowski [23]). 
For the second observation, let us assume that the sets Q depend on t E G, so that T(t, 5) = 

inf(qI(r], 5) E Q”(t)} and Q** = Q reads as follows: 

Q(t) = n{(r, 01 - rl + <i, 0 d 0; (0, l) E gr (T*(t, .))I, 

where gr( T*(t, .)) = { (T*(t, [), c) : c E B*} is the graph of T*(t, [) as a function of [ alone. It is easy to 
see that we get the same result if we take the intersection of the above sets with (0, <) now ranging 
over the epigraph of T*(t, .), namely, epi T*(t) = ((8, <)I0 >, T*(t, 0, <E B*}. Using Castaing’s 
representation [ 181, for measurable multivalued mappings defined over a separable Banach space 
B, one obtains: Let B be separable and let there exist [,, E L,(G) and 0, E L,(G) such that T*(t, 

i,(t)) d O,(t). Then 

Ott) = fi {(yl? 511 - YI + (iitt)9 5) d ‘itt)} 
i=l 

for some sequence (ii, ei) E Lm(G, R*) x L,(G, B) with e,(r) 3 T*(r, [i(t)). 

5. SEMIhORMALITY AND ANOTHER CHARACTERIZATION OF PROPERTY(Q) 

We report here the concept of seminormality [ 1, lo-121 for convex functions, and a correspond- 
ing characterization of property (Q) recently proved by Cesari [lo]. A stronger form of semi- 
normality had been used by Tonelli and later by McShane. Again, let B be a Banach space over the 
reals R, let B* be the dual of B and let (,‘, 5) denote the linear operation c E B* applied to the 

elements r E B. For every y E A c Y let (z(y) denote a given subset of R x B and let Q(y) denote 
the projection of&y) on B. Moreover we assume that Qb) = epi Tfy, .) where Tis as in the Remark 
of Section 4; in other words, for every y E A, TCy, {), as a function of 5 in B, is an extended real 
function on B, and we explicitly assume that T(_v, 5) # - cc for all y and 5, that for every y E A 
the sets Q”(y) and Q(y) are not empty, hence T(y, <) f + co for any y E A, and T(y, 5) = + co 

for all 5 E B - Q(y), y E A. Property (Q) at any point y, E A for the sets Q(y) is defined by re- 
quiring 

O(y,) = ,? cl co u[Q(~), d(y, y,) < 61 = n ~1~0 Q(y,t 8. 
6 

Thus, if (qO, 5,) E n cl co Q”(y,, 6), then necessarily (r],, 5,) E Q(y,J and hence to E Q(y,). For a 
6>0 

given y, E A we denote by (a) the requirement 

(~9 ff(?,, tO)~ I? cl co&(~,,d) then 5,eQ(yo). 
6>0 

Thus, (CZ) is a necessary condition for property (Q) at y,. On the other hand, (tl) is identically 
satisfied whenever Q(y) = B for all y E A. This situation occurs in the classical problems of the 
calculus of variations with Q(y) = B = R”. We shall now introduce the following condition (X) 
at y,EA: 
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(X) Given E > 0 and any co E Q(y,), there is a 6 > 0 and an affine map h(t), 4 E B, such that 

(X,) T(y, i;) > h(r) for all t: E B and all y E A with d(y, y,) < 6; 

(X2) T(y,, 5,) < h(L) + 6. 

We shall say that T(y, 5) is seminormal at the point y, E A if conditions (a) and (X) hold. 
A slightly stronger condition is as follows : 
(X’) given E > 0 and any 5, E Q(y,), there are numbers 6 > 0, v > 0, and an affine map 

h(c), 5 E B, such that 

(Xi) T(Y, 5) 2 h(5) + V/Y - Y,l f or all 4 E B and all y E A with d(y - y,,) < 6; 
(Xi) the same as (X,). 

We shall say that T(y, 5) is normal at the point y0 E A if conditions (c() and (X’) hold. 

(5.i) If conditions (a) and (X) hold at the point y, E A, then the set Q”(y,) is closed and convex, and 
the sets Q”(y) have property (Q) at y,. 

Prod If ho, 5,) E n,,, cl co Q”(y,, 6), then, by (a), 5, E Q(y,), and corresponding to this 5, 
and arbitrary E > 0 then, by (X,), there are a number 6 > 0 and an afhne function h(5), s’ E B, 
such that 

Q(Y,, 6) = d%Y), 4Y, Y,) < 61 = kL 5)lur 3 403 t E Bl. 
Since the right hand side is necessarily closed and convex in R x B we obtain 

(no, 4,) E nd>o cl co &Y,, 4 = [(rl, t) 1 u a h(5), 5 E Bl, 

that is, ylo 2 h(tO). Using (X,) we have q,, 2 T(y,, 5,) - E, and since E is arbitrary we also have 

ylo >, T(y,, to), and then (qo, 5,) E &,). This proves (5.i). 

Remark 1. The above theorem can be generalized to the case where q E Rp instead ot R’. 

Remark 2. Theorem (5.i) also holds with the following modifications. First let us consider sets 
of the form 

c!(Y) = {(yl, 5) I I YI 3 T(Y> U)> 5 = f(Y? 4, u E WY)) 

and let us assume that 

(a”) If (vlO? lo) E “a>0 cl co Q”(y,, 6) then to = f(y,, uo) for some u. E U(y,) (X”). Given E > 0 
and u. as in (cI”), there are numbers 6 > 0, r and a vector [ E B* such that 

(X’i’) T(y, u) 2 r + (i, f(y, u)) for all u E U(y) and all y with d(y, y,) d 6; 

(XG) T(Y,, uo) d r + (i,f(y,, uo)) + E. 

Now theorem (5.i) holds in modified form as follows (cf [lo]): 

(5.i)” If conditions (a”) and (X”) hold at the point y, E A, then the set Q”(y,) is closed and convex 
and the sets Q(y) satisfy property (Q) at y,. 

Remark 3. Theorem (5.i) is a generalization of theorem 4.i of [lo] where the spaces were taken to 
be Euclidean and Caratheodory convexity theorem was used. While the above theorem shows 
that we do not need finite dimensionality in l, we do use finite dimensionality to prove the 
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converse statement (namely, by requiring the compactness of the unit ball) and this is theorem 

(9.i) of [lo]: 

(5.ii) (Cesari [lo] (9.i)) If for a given y, E A we have T(y,, 0 > - co for all 5 E Q(y,) c R”, then 
the sets Q”(y) have property (Q) at y, if and only if properties (CI) and (X) hold at y,,. 

Thus, for B = R”, property (Q) is equivalent to the seminormality conditions (a) and (X). For 
extensions of this theorem to locally convex spaces cf Denkowski [23]. For further work on 
property (Q) see Cesari [12,15], Cesari and Suryanarayana [S, 9,141, Kaiser and Suryanarayana 
[16], Goodman [3], Olech [6], and for connections with lattice theory in topology see Sury- 

anarayana [22]. 

6. A CRITERION FOR PROPERTY (Q) IN TERMS OF ASYMPTOTIC CONES 

In Sections 3,4,5 we have already stated various criteria for property (Q) in terms of growth 
or seminormality conditions. Others will be stated in Section 7 in terms of analytic conditions. 
Here is a criterion due to Olech [S] in terms of asymptotic cones, related to earlier work of 
Cesari [lo] (cf also [17]). 

If T(y, 5) is a continuous function on A x R”, A an open subset of R’, and T(y, 5) is a convex 
function of < in R” for all y E A, then it is known that T(y, [) is normal at y,, that is, both conditions 
(cz) and (X’) hold at y,, if and only if the graph of T(yo, 0, or [(q, 5) 1 q 3 T(y,, t),t E R”, v] E R] 
contains no straight line. This was proved by Tonelli under smoothness hypotheses, and recently 
proved by Turner under the hypotheses of continuity (see, e.g., a proof in [lo] (5.ix)). 

In general, for functions T which may take the value + co, that is, for sets Q(y) in R x R 
whose projection Q(y) on R” may not be all of R”, the statement above needs further conditions. 
Again we assume T(y, 5) continuous on M, = [(y, <)[y E A, 5 E Q(y)] and that, for every y E A, 
T(y, 5) is convex in 5 in the set Q(y). 

Let us consider again subsets Q”(y), y E A, of R”+ i. For any y E A, let C(y) denote the set 

C(y) = [ZI E R”+’ 12 + ;iZ; E (z(y) for all i, >, 0 and Z E Q”(y)]. 

Obviously, C(y) is a cone of vertex z = 0 in R”+ ‘. The set C(y) is said to be the asymptotic cone of 
the set Q”(y). It is easy to see that, if Q”(y) is convex, so is C(y); if o(y) is closed, so is C(y). Let I 
denote the particular cone in R”+’ made up of the only positive half axis z” b 0, or I = [a = 
(z’, z) 1 z” 3 0, z = 01. Then I c C(y) for all y E A. We shall denote by Co(y), or polar cone of 
C(y)theset C”(y) = [d”~R”+‘la.- c < 0 for all Z: E C(y)]. If C(y) = I, then obviously 

Co = l-O = [d = (d”,d)~R”+‘ldo < O,deR”]. 

(6.i) (Olech [S]) If the sets o(y) satisfy property (K) in A (thus, they are closed and their graph is 
closed), if they are convex and do not contain any straight line, if the asymptotic cone is constant, 
or C(y) = C = const, and for each number r > 0 and point d” E int Co, Co the polar cone, we have 

sup Sup(d.3< fco, 
YEA ~~Q(Y) 

then the sets Q”(y) satisfy property (Q) in A. 
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7. THE CONDITION (D) IN BANACH SPACES 

(a) A necessary and sufficient condition for property (D). 
For the sake of simplicity we use the same notations as in Section 2(b), and particularly state- 

ment (2.viii). Thus, U(t) depends only on t, 

u&t) E U(t) = u, y,(t) E A(t) C-Z I: J” = (“60, f), 

y,(t) --f y(t) in measure in G as k -+ co, and s,(t) = (Si, 6,) is defined by 

J,(t) = f(4 y,(t), qt)) - S(t9 Y(t)? u,(t)), 

(7.i) 6,(t) + 0 strongly in L,(G, Y x B) if and only if the same functions &(t) are equiabsolutely 
integrable in G. 

This statement was proved in [14] (3.1) in a slightly more elementary situation, but the proof 
is the same. 

(7.ii) &(t) + 0 implies the following weak form of property (Q) namely, there is a subsequence 
[/c,] such that 

(7.1) Q(t, y(t)) = n?= 1 cl co [ i._JsEh fk y,$L U&)1, t E G WN. 

This statement was proved in [13] (1.7.i), and used in [9] and [14] in various settings. The 
proofs in the present situation are the same. To understand that this is a weak form of property 
(Q), namely with respect to y only, and with respect to a given sequence yk(t), z+(t), k = 1,2,. . ., 
we may consider the intermediate definition obtained by replacing the bracketed expression in 
(7.1) by u sm,h&(t, y,(t)). Besides, we are referring here to a property (Q) at only the points y(t) 
of the trajectory as m Section 2, that is, along the trajectory). The characterizations of Sections 
3-5 can be expressed in a weaker form in terms of sequences, and still sufficient to guarantee 
this weak form of property (Q). 

(b) Lipschitz-type criteria 
Here are several specific criteria for property (D). This property implies the weak form of 

property (Q) stated in (7.1). We have mentioned these criteria in [15] and [9, 13, 141. They are 
repeated here in the present context, since they hold not only in Euclidean spaces but also in 
Banach space situations (cf [14], pp. 446447, properties (F,) and (F,)). 

(Lg) Lipschitz type conditions, geometric viewpoint (FJ, 1 d p < 00. Here B and Y are Banach 
spaces, U a metric space. If 1 d p d 00, let us assume that there are constants c, ;‘. to, p’, c 3 0, 

e, 2 0, O<<Yp, p’=p(p-y)-‘ifO<y<p, p’ = co if y = p, and functions F(t) 3 0, 
t E G, FE LP,(G, R), h(i), 0 d [ < co, h monotone nondecreasing, h(O+) = 0, h(l) 
d cl</’ for i 3 Co, such that for all (t, y,, u), (t, y,, u) E S, t E G - T,, meas To = 0, we have 

(7.2) lI?(t,~,>n) - _?(t,~,,u)Il.~ F(t)h(Il~, - Y&J 

Let t(t), y(t), q(t), rj,Jt), $(t), &(t), y,(t), t+(t), 4(t), t E G, k = 1, 2, . . , be as in (2.viii); assume that 
for /I-a.a. t E G the set Q(t, y(t)) is closed and convex, and that 11 y, - yIIP -+ 0 as k -+ co. Then 
property (Q) holds as in (7.ii) for ii-a.a. t E G, and the lower closure property holds as in (2.viii). 

Analogously, we have (F,): Let J3, Y U as above. Let us assume that there are functions 
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F(t) 3 0, t E G, F E L,(G, RI, such that (7.2) holds. Let t(t), y(t), ?,(t), YlkW, tk(t), Zk@L y,(t), ~~(4, 
4(t), t E G, k = 1, 2,. . . , be as in (2.viii); assume that for IL-a.a. t E G the set Q”(t, y(r)) is closed and 

convex, and that /I y, - y 11 ocI -+ 0 as k + co. Then property (Q) holds as in (7.ii) for p-a.a. t E G, 
and the lower closure property holds as in (2.viii). 

(Lf) Lipschitz type conditions, functional viewpoint: (Fb), 1 d p < co. Let {u(r)} be a family of 
control functions, and let us assume that for every control function u = u(t) of the class there is a 
function F,,(t) with the following properties. First let p, c, y, co, p’, h as in (F,), and let F,(t) 3 0, 

t E G, F, E L,.(G, R), I/ Fullps d M, and 

(7.3) I/ f(t, Y 1’ u(t)) - I% Y,, u(t)) lie d F,(t)h( 11~1 - Y, /I y). 

Let 5(t), y(t), r&t), %(t), &Jt), &(t), y,(t), uk(t), 4(t), t E G, k = 42, . . . , be as in (2.viii) with uk E {u(t)} 
for all k, assume that for /I-a.a. t E G the set Q(t, y(t)) is closed and convex, and that llyk - yllP + 0 
as k -+ 00. Then property (Q) holds as in (7.ii), and the lower closure property holds as in (2.viii). 

In particular, F may be simply a function of (t, u), say F = F(t, u), or F,(t) = F(t, u(t)), and in this 
case we need require that s, 11 F(t, u(t)) 11~’ dt d M. 

Analogously, we have (F’,): Let B, Y, U as above. Let us assume that there is a function h(c), 

0 d [ < + 03, h monotone nondecreasing, h(O+) = 0, and for every u E (u(t)} a function 

F,(t) 2 0, Fi E ‘,(G, ‘), I/F, // 1 < M, such that (7.3) holds for all u E {u(t)]. Let t(t), y(t), n,(t), 

&(t), 5,‘(t)> <k(t), yk(t), U,‘(t), 4(t), t E G, k = 172, . . ., be as in (%.viii) with uk E {u(t)) for all k, assume 
that for if-a.a. t E G the set Q(t, y(t)) is closed and convex, and that I/y, - yll m -+ 0 as k -+ 00. Then 
property (Q) holds as in (7.ii), and the lower closure property holds as in (2.viii). 

In particular, F may be simply a function of (t, u), say F = F(t, u), or F,(t) = F(t, u,t)), and in this 
case we need require that s, F(t, u(t)) dt d M. 

Remark. L. Berkovitz [19] and G. R. Bates [20] state that in their lower closure theorems property 
(Q) does not hold. They assume a Lipschitz condition If(t, y,, u) - f(t, y,, u)l d F(t, u)w(ly, - y2/) 
as above and the further assumption s:: F(t, u(t)) dt < A. From the above it is apparent that 
property (Q) does hold in their situation. Both Berkovitz and Bates seem not to have realized this 
in their statements. Their proofs are not much different from ours in the analogous context. 

(c) Tempered growth type conditions. Both state and control variables in L, spaces [14]. 
(Gg) (Tempered growth type conditions). (G,,): Here B, Y, U are Banach spaces, the control 

space U(t) c U depends on t only, 1 < p, q < 00, there exist a continuous function 4(u), or 

4: U + U, with j/$(u)11 + + co as llulir, + + co, constants L,, L 3 0, c, c’ 3 0, and CC, j?, 

O<adp, 0 < ,!J d qyand a scalar function G(t) 3 0, t E G, $ E L,(G, R), such that 

II .I=(4 Y, > u) - f(4 Y,> 4 II B G tm) + 4llYl Ilp-n + IIY211p-z) + c'll&(~w. 

Let t(t), y(t), q&h I?,#), t,(t), t&), y#), u,#), b(t), t E G k = 1, 2, . . . . be as in @viii) with Y, yk E 

$(G, YL", measurable, (b 0 uk E L&G, U), ( lyllp, IJY,(lp G L,, I(4(uk)lIq 6 L, yk(t) --f y(t) in measure 
in G as k + co. Then, property (Q) holds as in (7.ii) for p-a.a. t E G, and the lower closure property 
holds as in (2.viii). 

The conditions (G,,), (G,,), (G,,) can be expressed analogously. 
For instance (G&:1 < q < co, there exist a continuous function 4(u), or 4: U -+ U, with 

II~(~)llu + +a as lI4” -+ + co, constants L,, L 3 0, c’ 3 0, p, 0 < p < q, a scalar function 
$(t) > 0, t E G, rc/ E L,(G, R), and a monotone nondecreasing function c(i) > 0,O d < < + ~0, 
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Note that we do not assume o(O+) = 0. The conditions (G,,), (G,,) are only growth conditions. 
We leave it to the reader to state the conditions (G,,) and (G,,) analogous to the ones above. 

(Gf) (Tempered growth type conditions, functional viewpoint). Let {u(t)} be a family of control 
functions, and let us assume that for every control function u = u(t) of the class there are functions 
W(t), V(t), t E G, which may depend on u(t) (we may denote them as w,(t), V&t)), and constants 
c, c’, CL, p as above, such that the functions WE L,(G, R) are equiabsolutely integrable on G, 

I/E L&G, U) with // 1/l/, , < M for some constant M, and 

IIf@, Y,, u(t)) - .I-@, Y,, u(O)II B d W(t) + c(~lY,IIp-" + ljY211p-") + I/wll;p. 

Let 5(t), y(t), all, y,(t), &W, <k(t), y,(t), u,(t), qW), t E G, k = LT. . ., be as in (2.W with Y, yk~ 

L,(G, Y), uk measurable, V.,(t) E L&G, U), I/y lip, (I Y, II p G Lo, (I V,* II4 G L, Y&I -+ Y(L) in measure in 
G as k + co. Then the same conclusions hold as above. 

It is enough to know that for each k there are functions Wk(t), K(t), t E G, as before. 
We leave it to the reader to state the analogous conditions (G,,), (GpJ, G,, ,). 

(4 Tempered growth type conditions. Only the control variables in L4 [14]. 

(Hg) (tempered growth type conditions H, geometric view point). For 1 d 4 -C co, y, y, measur- 
able, yk(t) + y(t) in measure in G as k + + 00, uk E L&G, U), /I uk )I4 d L, a constant, and there are 
other constants c’, ,6’, 0 < /3 d q, and a scalar function $(t) 3 0, t E G, $ E L,(G, R), such that 

Il.04 Yl, 4 - fk Y,, U)llB < $0) + c’JI~q-pII 

For q = 00, the condition above becomes (H,): y, y, are measurable, yr(t) + y(t) in measure 
in G as k -+ co, uk E L,(G, U), and there are a function Ii/(t), t E G, $ E L,(G, R), and a monotone 
nondecreasing function o(l) 3 0,O d ; < + co, such that 

II.04 Yl, u) - fk Y,, 43 G wb(ll~l/“). 
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