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The paper considers the separation between two contacting solids caused by an incident elastic wave. The wave is assumed to 
be plane, but may have an arbitrary form. The unilateral interface between the solids is taken as frictionless and incapable of 
transmitting tension. If the disturbance propagates along the interface with a speed that is supersonic with respect to both solids, 
the problem can be solved in closed form, and simple results for the extent of the separation zones and the respective gaps are 
obtained. Several specific examples are included. 

1. Introduction 

The reflection and refraction of elastic waves is 

customarily discussed on the basis of a bonded or a 

bilateral interface: all field quantities entering the 

boundary conditions are taken as continuous at the 

interface, and the resulting relations are in the 

form of equalities. In contrast, a unilateral inter- 

face allows certain discontinuities, and the boun- 

dary conditions also involve inequalities. 

Consider, for instance, two solids that are in 

contact, and assume that they are not bonded to 

each other. If an incident wave strikes such an 

interface, localized separation and slip can take 

place resulting in displacement discontinuities. 

Moreover, inequalities must be incorporated in 

the boundary conditions to ensure that the normal 

tractions are not tensile, and that there is no over- 

lapping of material. 

We treated recently several aspects of plane 

harmonic waves interacting with a frictionless 

interface that permits separation [l, 21. Such 

steadily maintained harmonic waves lead to a 

periodic array of separation and contact zones, and 

the problem could be solved by taking advantage 

of the periodicity. The present paper considers a 

plane wave of an arbitrary form that may result in 

an irregular array of separation and contact zones 

running along the interface. 

Suppose that an elastic wave, such as a stress 

pulse with a plane front and phase velocity CO 

strikes the interface under the angle 80 (angle 

between the normal to the interface and the direc- 

tion of propagation of the incident pulse). Then the 

point of intersection of the wave front and the 

interface propagates with the velocity 

v = co/sin 19~ (1) 

The mathematical nature of the problem depends 

drastically on the range of the trace velocity v. If v 

is above the largest velocity of longitudinal waves 

in the two solids, a bilureral interface reflects and 

refracts a wave of the P- and SV-type in the same 

manner as harmonic waves. In particular, the 

reflected and refracted waves are simply pro- 

portional to the incident wave. If v falls below the 

largest velocity of longitudinal waves, however, 
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the problem becomes considerably more compli- 

cated [3]. The situation is also quite similar with 

the unilateral interface that separates: For u in the 

purely supersonic range, the problem can be 

solved in closed form. In other cases, the formula- 

tion leads to singular integral equations. The 

present investigation is restricted to the supersonic 

case, and the purpose of this paper is to show how 

to correct the bilateral solution by cancelling the 

tensile tractions and how to find the resulting gaps 

between the solids. 

2. Formulation 

We consider two elastic solids that are held 

together by the applied pressure pa. An incident 

plane P- or SV-wave of arbitrary form strikes the 

frictionless interface under the angle &, and is 

reflected and refracted as indicated in Fig. 1. The 

indices n(=O, 1,2,3,4) are used to distinguish 
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Fig. 1. Incident (n = 0), reflected (n = 1.2) and refracted (n = 
3,4) waves. 

between the various waves. Bars will be used to 

refer to the material constants and other quantities 

pertaining to the upper solid. 

The displacement of the incident wave is taken 

as 

U(O) = Cod’o’F(yo) (2) 

where 

yo = ko[x * p(O) - cot] (3) 

Furthermore, d(O) and p”’ are unit vectors defining 

the directions of motion and propagation [4], and 

Co is taken as real. Suppose at first that the fric- 

tionless interface is bilateral, viz. tensile tractions 

are permitted and the normal displacements are 

continuous. The reflected and refracted waves are 

then of the same form as (2), except that the vector 

d and the argument y of the function F must be 

appropriately modified. The amplitudes of the 

reflected and refracted waves are determined by 

the reflection and transmission coefficients for a 

frictionless interface given in [l]. Of interest for 

our purposes are only the normal tractions trans- 

mitted by the interface [l]: 

S(n)=[& +& f&&O 

= [&? + &&*=o 

= &of(q) (4) 

where 

n = ko[xlp:0’ -cot] (3 

is a coordinate moving with the velocity co/sin eo, 

and 

x2=0 
(6) 

With abbreviations given below, 

& = Cokzp(f2ry-‘q cos 13,) (7) 

for an incident P-wave (0, = I$,), and 

do = Coklp tan 2&(LU+-1Q cos 0,) (8) 

for an incident SV-wave (6Q = 0,). The contrac- 

tions used are 

K = CL/CT, I? = &,/CT; 

Y =El_IcL, T=CLICL; (9) 
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q = sin 28, sin 2e2 + ~~ cos2 2e2; 

4 = sin 2& sin 2e4 + i2 cos2 2e4; 

(10) 

(11) 
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BL, Br, BL, ET associated with the longitudinal 

and transverse waves in the lower and upper solids, 

respectively, so that 

R= 
2K COS 282 

q cos e3 + ry’q cos e1 
(12) 

where cL and cr denote the phase velocities of 

longitudinal and transverse waves. Furthermore, 

koc,, = k,cf = k2cT = k& = k&; (13) 

sin e. sin e1 sin e2 sin e3 sin e4 -= -= -=-=- . (14) 
co CL CT EL CT 

It is readily seen from (7) and (8) that do is of the 

same sign as Co. 

We assume that the interface tractions in the 

bilateral problem given by (4) contain some 

tension zones. The next step then is to correct the 

bilateral solution by cancelling the tensile trac- 

tions, while allowing localized separation at the 

interface. This problem could conceivably be 

approached in a variety of ways. We prefer to view 

the situation in terms of moving dislocations. A 

separation zone propagating along the interface is 

in fact nothing else but an array of distributed edge 

dislocations that move by climb: the Burgers 

vectors of the dislocations are perpendicular to the 

interface and their extra sheets lie in the interface. 

If g(n) denotes the gap (separation distance 

measured normal to the interface), the density of 

the distributed dislocations is [7] 

B(,-,)= -y. (1% 

Distributed edge dislocations that move along a 

bonded interface have been treated by Berg et al. 

[S]. We need, however, the corresponding results 

for a frictionless interface that is free to slip. 

An array of edge dislocations propagating along 

the interface with a speed that falls in the super- 

sonic range with respect to both materials emits P- 

and SV-waves in both solids [6,7]. Moreover, each 

of the four waves can be considered separately and 

related to a displacement discontinuity at the 

interface. Thus we consider the total dislocation 

distribution B(q) as consisting of the four parts 

B(v)=BL(v)+BT(v)+BL(v)+BT(~). (16) 

The interface tractions produced by each of the 

distributions are given by Berg et al. [5]. Thus 

rXv(n, O)=C*[~BL(~)-(~~-~)BT(~)I, (17) 

ry,(n, 0) = -CL ]&’ (& - ~)BL(v )+ ~~TBT(V )I 

(18) 

in the lower solid, and 

7~y(r/, o)=fi [-2BL(77)+(& - l)BT(v)], 

(19) 

fy,(?', o)=- &:'(&-1)BL(~) 

+2fTfiT(v)] (20) 

in the upper solid. In these equations, 

lL= ($ 1)1’2, [r= ($- 1)1’2 (21) 

with analogous expressions being valid for fL and 

LT. 

The four distributions are computed in terms if 

B(T) from the boundary conditions at the inter- 

face. We require that the normal tractions be 

continuous and the shearing tractions vanish. 

Thus, three equations in addition to (16) are 

available. Solving the system simultaneously yields 

BL(v)=%&-~)BT(v), 

~Lh)=%%@Th), (22) 

'&?LR 
BT(d=- A B(v) (23) 

where 

R = (& + 1)’ + 45Lfi, 

a =(&++)2+4tL.$T, 

A = rlL(& + l)a + &fi + l)R. 

(24) 

(25) 
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The normal tractions at the interface induced by 

the distribution of dislocations moving with the 

velocity u are from (18) or (20) 

- - 

~t77)=~YYt77,o)=~yYt77,0)= -$%q) 
(26) 

Using (g-14), this expression can also be put in the 

form 

T(v)= -&dB(v) 

where 

(27) 

2~7~ sin 8, cos 2& 
>o. (33) 

The total normal tractions transmitted by the 

interface are 

N(n)= S(n)-poo+ T(V). (29) 

The first two terms in this expression are the 

interface tractions in the bilateral problem with 

precompression; the last term may be viewed as a 

correction which accounts for the separation 

between the solids. 

The conditions the unilateral solution must 

satisfy are 

N(q)= 0, g(n)20 (30731) 

in the separation zones, and 

g(n)=O, N(V)< 0 (32933) 

in the contact zones. Denoting a typical separation 

interval by ((u, p), and substituting (4) and (27) into 

(30) we obtain 

B(q)=% &d [,,,,-$J (a<n<P). (34) 

The unknowns (Y and p must be determined so as 

to satisfy the inequalities (31) and (33). Moreover, 

if the gap is to close, we must also have 

J 
B B(q) dq = 0. (35) 

LI 

3. Solution 

The remaining task is to find the endpoints of the 

separation zones and to determine the resulting 

gaps. We observe toward this end the following: 

(i) As seen from (34), the local value of the 

dislocation density B(q) is determined solely by 

the local value of the interface tractions in the 

bilateral problem. It follows from (27) and (29) 

that, conversely, the contribution of the dis- 

location distribution to the interface tractions is 

purely local. This is a consequence of the fact that 

the dislocations move with a supersonic velocity. 

(ii) The dislocation density B(q) and therefore 

also the corrective tractions T(n) from (27) vanish 

in the contact zones. Consequently the interface 

tractions in the contact zones are the same as in the 

bilateral problem. In other words, the dislocations 

erase the interface tractions in the separation 

zones, but leave them unaffected elsewhere. 

(iii) As seen from (15), (27) and (28) dg(n)/dn 

and T(n) are of the same algebraic sign. 

It is clear that for 0 < &, < $rr, the tension zones 

in the bilateral problem and thus the separation 

intervals propagate to the right. Considering again 

a typical separation interval (a, 6) in the moving 

coordinate v, the leading edge of the separation 

zone is 17 = p and the trailing edge n = (Y ((Y < p). 

We can reason now that the leading edge of a 

separation zone coincides with the leading edge of 

a tension zone in the bilateral problem with pre- 

compression. Let us take the leading edge of the 

tension zone at n = p*. Suppose first that p < p* 

so that a contact zone extends inside the tension 

zone. Then by (ii), T(n)= 0 and consequently 

N(q)> 0 in the interval /3 < 77 < /3* which violates 

(33). Suppose next that p > /3*, so that the leading 

edge of the separation interval falls inside a 

compression region of the bilateral problem. Then 

T(n)> 0 in the interval fi* < 77 <p. Since g(p) = 0, 

we have 

(36) 

According to (iii), dg(q)/dn > 0 and (36) will yield 
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g(q)<0 in @*<n <fl because the integration 
proceeds in the negative direction. Thus (31) is 
violated. Consequently p = /3*, and it follows that 
p is determined from 

S(P)-P” = ~0BP)-p”= 0 (37) 

with the understanding that the root corresponds 
to the leading edge of the tension zone. 

It may be noted that the trailing edge 77 = (r of 
the separation interval cannot be found by using 
similar arguments. On basis of (ii) we can claim 
that it is impossible for LY to fall inside a tension 
zone. However, no contradiction is reached 
considering the sign of dg(v)/dn when a falls in a 
compression zone. 

Substituting (15) and (34) into (36) we get the 

gap 

The trailing edge of the separation interval is fixed 
by the requirement that g(a) = 0. Therefore (Y is 
determined by the condition 

$(@-a)= j-‘f(Odt 
which is also equitalent to (35). 

(39) 

Once one of the separation intervals has been 
established, it is possible to treat by the same 
means the next zone on the left. The only remain- 
ing question might be how to get the process 
started because a single separation zone can 
conceivably cover several tension zones. There is 
no difficulty, however, if the incident wave has a 
well defined front, and we shall not discuss this 
question. We also refrain from constructing the 
full elastic fields in the solids. Since the dislocation 
density B(q) is known from (34), this can be done 
quite simply as explained by Weertman in his study 
of supersonic edge dislocations [6]. 

4. Examples 

In order to illustrate the general results and to 
gain some additional insight we consider a few 
simple examples. 

4.1. Parabolic tension pulse 

We take 

(40) 

The incident wave is thus assumed to induce a 
single tension zone of a particularly simple form. 
From (37), the leading edge of the separation zone 
is specified by 

p = (1 -pao/&&)1’2, p*/.& S 1. (41) 

In applying (38) and (39), however, we must 
distinguish between two cases depending on the 
level of the applied pressure pa. At higher levels of 
the applied pressure, the separation zone is short 
anda>-l.Insuchacase 

g(n)=$ @-77)*(2P+7?) (-1~~477~P) 
d 

(42) 

and 

cY=-2p 

These results are valid for 

(43) 

PC0 &---s 1 
&O 

(44) 

If the applied pressure is less than specified by 
(44), the separation zone penetrates on the left 
into a region that would be totally unaffected by 
the finite pulse in the bilateral problem. Thus for 

0+; 
0 

we get 

f 
(P-n)*(2P+n) 

and 

(46) 

where /3 is still given by (41). 
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The coordinates (Y and p determining the extent 

of the separation zone are given in terms of pm/d0 

in Fig. 2. It is seen that the separation zone at 

relatively low levels of the applied pressure pm 

aI I 

I 
(P ? 

-3 -2 -I 0 I 

Fig. 2. Extent of separation for the parabolic tension pulse 
considered. 

may be very long in comparison to the incoming 

disturbance. In fact, the gap does not close at all on 

the left if pm = 0. 

4.2. Square tension pulse 

Consider the incident square pulse 

f(s)= { 
1; (Id)< I), 
0; (Id> 1). 

(47) 

By repeating the previous procedure we obtain 

gh)=$O 
d 

provided 

(l-n) (-lSr/Sl), 

(48) 

(acns-1) 

It is seen that the gap has a triangular shape. The 

dependence of the length of the separation zone on 

pm/d0 is shown in Fig. 3. 
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Fig. 3. Extent of separation for a square tension pulse. 

4.3. Other tension pulses 

It is clear from the previous examples as well as 

the general formulas that the procedure for finding 

the extents of separation and the resulting gaps is 

quite simple. Indeed, the relation 

d&v) 
-= -2 [S(77)-Prnl 

d?, 
(50) 

Fig. 4. Gaps resulting from various shapes of triangular and 

square tension pulses in the precompressed solids. The upper 
lines depict schematically S(v)-pm, the lower g(o). 
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allows one to construct the gap by starting at its 

leading edge, proceeding to the left and simply 

accounting for the accumulated area under the 

curve S(n)-poo (tractions in the bilateral problem 

with precompression). We do not think it neces- 

sary, however, to elaborate on this point. The gaps 

resulting from various shapes of triangular pulses 

are shown schematically in Fig. 4. Included in this 

figure are also two square pulses that interact 

leading to a long gap with a broken profile. 
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separation will be considered in later publications. 

Acknowledgment 

One of the authors (M.C.) gratefully acknow- 

ledges the support through the National Science 

Foundation grant (ENG-77-25032) during the 

course of this research. 

References 

5. Conclusion 

An interesting feature of the results is that the 

gaps do not generally close smoothly at their trail- 

ing ends. Consequently the interface tractions are 

discontinuous at these points. This is due to the 

fact that the solids impact as they come back into 

contact [ 11. In contrast, the gaps open smoothly at 

their leading edges, unless the incident wave 

involves a jump discontinuity, such as was 

encountered for the square tension pulse. 

As the problem considered involves mixed 

boundary conditions and inequality constraints, it 

might be surprising that the solution assumed an 

elementary form. This is entirely due to the fact, 

however, that we restricted the investigation to the 

case when the gaps propagate along the interface 

with a supersonic speed. If the angle of incidence is 

such that the speed falls in the transonic or even 

subsonic ranges and total reflection is encoun- 

tered, the situation becomes considerably more 

complicated. These aspects of the interface 

[l] M. Comninou arid J. Dundurs, “Reflection and refraction 

of elastic waves in presence of separation”, Proceedings of 
the Royal Society of London A356 (1977) 509-528. 

(21 M. Comninou and J. Dundurs, “Singular reflection and 

refraction of elastic waves due to separation”, Journal of 
Applied Mechanics, to appear. 

[3] F.G. Friedlander, “On the total reflection of plane waves”, 

The Quarterly Journal of Mechanics and Applied Mathe- 
matics 1 (1948) 376-384. 

[4] J.D. Achenbach, Wave Propagation in Elastic Solids, 
North-Holland Publishing Company, Amsterdam (1973). 

[5] H.M. Berg, J.E. Bloom, H. Ishii, R.H. Marion, D.E. Pease, 

D.T. Spreng, J.B. VanderSande and J. Weertman, 

“Subsonic, supersonic, and transonic dislocations moving 

on an interface separating two media of differing elastic 

properties”, in: Fundamental Aspects of Dislocation 
Theory, edited by J. A. Simmons, R. de Wit and R. 

Bullough, National Bureau of Standards Special Pub- 

lication 317 2 (1970) 71-82. 

[6] J. Weertman, “Uniformly moving transonic and supersonic 

dislocations”, Journal of Applied Physics 38 (1967) 5293- 
5301. 

[7] J. Weertman, “Dislocations in uniform motion on slip or 

climb planes having periodic force laws”, in Mathematical 
Theory of Dislocations, edited by T. Mura, The American 

Society of Mechanical Engineers, New York (1969) 178- 

202. 


