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VARIABLE RANGE CLUSTER MODEL OF EXCITON MIGRATION:
DIMENSIONALITY AND CRITICAL EXPONENTS FOR
NAPHTHALENE*

R. KOPELMAN, EM. MONBERGT*, J.S. NEWHOUSE
and F'W. OCHS#
Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109, USA

Relative luminescence intensities for randomly substituted ternary systems with two major
components and a minor one (sensor), for four triplet and one singlet exciton systems, identify
the maximal effective exciton interaction distance for each system. The critical exponents 8
and y show an effective 2-dimensional exciton topology and are consistent with dynamic
exciton percolation.

Crystal luminescence is an excellent tool for studying non-radiative processes
such as excitonic energy transfer. Of these processes, the nature of exciton
hopping or tunneling, especially in regard to guest-guest (‘“‘impurity”-‘‘im-
purity”) transport [1-3] is of much interest. Some relevant parameters ac-
cessible by this technique are the exciton interactions, the exciton-phonon
coupling, the locally heterogeneous structure of the medium and the excitation
lifetime. To avoid the oversimplifications and pitfalls involved in one-dimen-
sional cases as well as the complexities of three-dimensional ones we study the
quasi-two-dimensional system of naphthalene. The latter is anisotropic enough
to give essentially two-dimensional exciton migration for both the first triplet and
the first singlet excitations [4~9]. We compare our experimental results to a
theoretical exciton cluster model, based on variable range connectivity and
percolation [10]. We assume the extended exciton interactions to exhibit a sharp
cut-off at some range due to either the kinetics of exciton transfer and/or phonon
activation (‘“‘dynamic percolation” [11]) or due to the nature of the lattice
eigenstates (localized vs. extended, as in *‘static percolation” [9] or “Anderson
localization™ [12)).

We first establish the ‘“‘universal” nature of the relevant cluster distribution
functions in two-dimensional systems. Fig. 1 shows the ‘“percolation probability’’
(the probability of a guest site to be part of a macroscopically extended cluster)
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Fig. 1. The probability of the largest cluster P,,, (giving, above C/C. = 1, the percolation probability
P,) vs. the scaled guest concentration C/C, for a square lattice with a cluster defining bond varying
from n = 2 (any combination of two nearest neighbor spacings) to n =7 (any combination of seven
nearest neighbor spacings). These are derived from a Monte Carlo simulation on a 500 X 500 random
binary lattice. Here C = G/250.000. This illustration is based on a single configuration (‘‘seed”). For
C. values, see ref. 10.

for a reduced concentration scale (i.e., normalized by the critical concentration
for the given interaction topology). We see that the ‘“‘universality’’ is valid over a
wide range of interactions. Fig. 2 demonstrates the same for the mean finite
cluster size (i.e., the average size of a microscopic guest cluster, normalized by
the total number of guest sites).

Fig. 3 shows some of the experimental energy transfer results. Specifically we
plot the luminescence-monitored probability of a guest exciton reaching a
sensor, as a function of guest concentration. We note that the guest (CoHs)
differs from the host (C,;Dg) only by isotopic substitution and, likewise, the
sensor site differs only by minor chemical or isotopic substitution. Thus, we had
no major problem in accounting for relative quantum yields, trapping efficiencies
and Franck-Condon factors and also could rely on perfectly random site
substitution with no major lattice distortions.
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Fig. 2. The mean finite cluster size I,y vs. the scaled guest concentration C/C.. (I'yy is the same as
I.v (eq. 3), except that the largest cluster contribution is omitted from the summation.) The
derivation is based on the same Monte Carlo simulations described in the previous figure caption. We
do not give I,y above C/C.=1, because there it becomes ‘‘infinite”, but the finite quantity Iy.
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Fig. 3. Calculated and experimental exciton percolation for the system C¢Hg/C (Ds. The triplet data
(circles) are at 1.8 K while the singlet data (squares) are at 8 K to ensure dynamic percolation [13].
The sensor is beta-methylnaphthalene, at a concentration of about 10~* throughout [13). We use the
expression P(C) = I/I,,, where I, is the sensor luminescence and I, is the normalized [13] total
emission (sensor plus C;oHg). The theoretical P(C) is plotted according to eq. 1, based on cluster
distributions derived from Monte Carlo simulations explained in the caption of fig. 1.
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In a binary lattice with a random distribution of G exciton carrier sites
(concentration C), a small fraction S (of G) acts as sensor sites. The probability
of exciton registration by sensors is {11]

P(C,S)=1-G'Y immA™,  A=(1-m/G)>, (1

where m is the cluster size and i, its frequency*. For finite clusters in a
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Fig. 4. Scaled calculated and experimental two-dimensional variable-range exciton percolation. The
calculated points are derived from a Monte Carlo simulation on a 500 x 500 square lattice with a
cluster defining bond varying from n = 2 (any combination of two nearest neighbor spacings) to n =7
(any combination of seven nearest neighbor spacings) [8, 10} i.e., with effective coordination numbers
[10] from 12 to 112. The resulting cluster distributions i, (C) are used in eq. 1 with SG = 125, to give
P(C) for each n. The critical concentrations are 0.29, 0.16, 0.10, 0.07, 0.0475, 0.037, for n =2 to 7.
respectively. The experimental points are given for four triplet exciton systems [8, 11] (see also fig. 3),
CoHg/C D5 (solid circles), BD;C ,H,/C oDy (triangles), aD;C,,H,/C (D5 (squares), aD,CoHe/CioHg
(open circles) and for the singlet exciton system (fig. 3), C,oHg/C\ Dy (inverted triangles). The
respective experimental [11] n values are 4.3, 4.4, 5.6, 5.8 and 2.0 and the corresponding C. values
are 0.091, 0.088, 0.0565, 0.052 and 0.29 (see fig. 3). We note that the triplet values come from 1.8 K
measurements, while those of the singlet come [13] from a temperature of 8 K, to assure phonon
assisted tunneling [11]. The dashed line separates the region below C. (bottom) from that above C.
(top). The large error bars for the experimental values stem mainly from the experimental variation
in the sensor concentration [8, 9] from the nominal value of 5x 107 for S used for the calculated
points. The spread with n, for the calculated points, is due to the use of a constant SG(= 125), rather
than a constant S. This choice was influenced by the experimental constraints.

* Alternatively one can define A =1-S.
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S

macroscopic crystal A = e, giving the general result

lim P(C, S) = P.(C), (2)
§-0

where P.(C) is the site percolation probability (fig. 1). Also, below the critical
percolation concentration C,,

P(C,8)=SI,(C), Iw=G"'Y i,m? (3)

where I,y is the mean cluster size (fig. 2). Thus, one expects the exciton
percolation function P(C, S) to exhibit the critical exponent B8 above C. and y
somewhat below C.. Monte Carlo simulations (figs. 3, 4) of eq. (1) for a square
lattice confirm the expected behavior over a range of nearest neighbor
bondlengths (n =2 to n =7) giving 8 =0.14 and y =2.3. Experimental data on
four distinct naphthalene triplet systems and one singlet system (figs. 3, 4) are
consistent with the cluster model of exciton percolation. While they exclude an
isotropic 3-dim. exciton migration topology, they strongly support a 2-dim. one,
in agreement with spectroscopic and ESR data on the exciton interactions [4-7].

The excellent agreement between theory and experiment (without the use of
any ‘“‘fudge factors™) supports our percolation (cluster) model. It does not,
however, prove or disprove Anderson localization [12] or the dynamic (kinetic)
nature of the interaction cut-off [11]. It is only on the basis of independent
information [11] that we get a picture of dynamic percolation controlled by
phonon-assisted hopping. Specifically, time evolution experiments show a
definite rise-time in the phosphorescence of the sensor just below the critical
guest concentration. This, however, is absent in samples including only host and
sensor (but no guest) molecules, as well as in samples with very low guest
concentrations [14].
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Note added in proof: Based on new data (H. Port, private communication) the
homogeneous linewidth of triplet naphthalene is I'=0.01 cm', while the in-
homogeneous linewidth is smaller. Thus the local inhomogeneity w has to be less
than I', rendering an Anderson localization unlikely. Also w < kT, leading one to
expect a redelocalization of any Anderson localized exciton. On the other hand,
having I'> J(C.), where J is the long-range superexchange interaction for the
triplet excitons (at n = 4), indicates a simple hopping model. With a hopping time of
tw = hI'lJ? one satisfies, for all triplet systems, the dynamic percolation criterion,
ti(C.) = 7S, where 1 is the lifetime.



