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Abstract--ln this paper we present two new methods to analyze the statistical properties of nonlinear 
outputs of a point reactor to stochastic non-white reactivity inputs. They are Bourret's approximation 
and logarithmic linearization. The results have been compared with the exact results, previously 
obtained in the case of Gaussian white reactivity input. It was found that when the reactivity noise 
has short correlation time, Bourret's approximation should be recommended because it yields results 
superior to those yielded by logarithmic linearization. When the correlation time is long, Bourret's 
approximation is not valid, but in that case, if one can assume the reactivity noise to be Gaussian, 
one may use the logarithmic linearization. 

I N T R O D U C T I O N  

The importance of understanding fluctuations in 
power reactors is generally agreed upon nowadays. 
Saito (1974) and Williams (1974) emphasized this im- 
portance and their works contain a sufficiently com- 
plete list of related references. Noise in reactors can 
be described by conventional Point Reactor Kinetic 
Equations (PRKE) with fluctuation introduced in 
some of the parameters. Such equations may be 
referred to as Stochastic PRKE. Power reactor noise 
analysis may be viewed as study of a reactor's re- 
sponse to a stochastic reactivity or source input. The 
difficulty of solving Stochastic P R K E  arises from the 
fact that they are nonlinear, i.e. the noise is 'para- 
metric' or 'multiplicative' (in contrast to 'additive'). 

If the input noise is Gaussian white, the Fokker 
Planck theory is useful to find the moments (Ariarat- 
nam and Graefe, 1964, 1965) and has been applied 
by Williams (1969, 1971), Karmeshu and Bansal 
(1975), Akcasu and Karasulu (1976), Dutr6 and 
Debosscher (1977), and Karmeshu (1978). Although 
the fundamental (microscopic) processes like neu- 
tronic noise, vibration of control and fuel rods, ther- 
mal-hydraulic noise etc., which are the cause of the 
reactivity noise, themselves may possibly be white, the 
macroscopic reactivity noise itself is not white 
because of various time constants involved in the 
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reactor system. Also, the fundamental noises may be 
conjectured to be Gaussian but they are connected 
to reactivity in a nonlinear fashion and so the reac- 
tivity noise is non-Gaussian. This necessitates the 

extension of power reactor noise analysis to non- 
white reactivity noise input. Gotoh  (1975), and Kar- 
meshu and Bansal (1975) discussed non-white reac- 
tivity noise to some extent. 

The solution of stochastic differential equations 
with non-Gaussian non-white parametric noise, in 
general, is not possible without some approximations; 
and such approximations are a current topic of stat- 
istical mechanics. Van Kampen (1976) reviewed the 
methods of solving stochastic differential equations 
and here we use one of those reviewed, viz. Bourret's 
approximation. 

In Section 2, we present another alternative method 
based on logarithmic linearization. In Section 3, we 
describe the Bourret's approximation technique with 
some extension of Van Kampen's  review, and then 
apply it to the Stochastic PRKE. A comparative 
study of the results obtained by these two methods 
and other previous works will be made in Section 4. 

1. S T O C H A S T I C  P O I N T  R E A C T O R  

KINETIC E Q U A T I O N S  

The Stochastic PRKE, with one group of delayed 
neutron, can be written as 

dP(t) 
d t -  [Ko + k(t) - 1]P(t) + 2C(t)  + So (la) 

dC(t) 
dt  - P(t) - 2C(t),  (lb) 
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where P(t) and C(t) are the reactor power and delayed 
neutron precursor density, respectively; So is the 
external source; 2 is the decay constant of delayed 
neutron; and Ko and k(t) are, respectively, the sure 
and fluctuating part of the reactivity in dollars. The 
unit of time chosen here is the ratio of neutron life- 
time to delayed neutron fraction, i.e. E//L This equa- 
tion is the same as the conventional PRKE with con- 
stant reactivity, K0, except for the added fluctuating 
part k(t) whose following statistics we suppose to be 
known. 

( k ( t ) )  = 0; (k(t)k(t  + r)) = ~bk(r). (2) 

Besides the stationarity of k(t) assumed above, other 
properties or restrictions, or special forms of ~bk(r ) will 
be assumed later. 

Now it is our purpose to determine the statistical 
properties such as moments, autocorrelation function 
and power spectral density of reactor power in terms 
of the statistical properties of k(t). Although our 
analysis can be carried out with more than one 
delayed neutron group, we do not do so for the sake 
of simplicity. Only one group of delayed neutron 
keeps the results simple, enabfing us to make trans- 
parent comparisons. 

An integro-differential form of PRKE, which will 
be used in the logarithmic linearization method is 
given below. 

where 

dP(t) 
- [ K o  + k(t )  - 1 ] P ( t )  

dt 

+ du D(u)P(t - u) + So, (3) 

D(u) = 2e-ZU; duD(u) = 1. (4) 

2. ANALYSIS BY LOGARITHMIC 

LINEARIZATION 

and 

We introduce 

PoKo + So = 0 (5) 

y(t) = In [P(t)/Po]. (6) 

Now eliminating So by PoKo and using the following 
approximations 

l y ( t  - u) - y(t)l ,~ 1 and ly(t)t ~ 1, (7) 

one may reduce (3) to 

dy(t) f l  d~-4- (1 - Ko)y(t) - du D(u)y(t - u) 

= k(t); t > 0. (8) 

Since ly(t - u) - y(t)l = Iln P(t - u)/P(t)[, the first 
approximation implies that the logarithm of relative 
power change over time intervals in which D(u) is 
appreciable, is small; hence the name logarithmic 
linearization. This logarithmic linearization was suc- 
cessfully used before to find the response of a point 
reactor to deterministic inputs in the absence of an 
external source (Akcasu et al., 1971). To linearize the 
term associated with the source term, lY(t)l is assumed 
to be small compared to unity and this is a relatively 
weak assumption when the source is small. 

One can take the Laplace transform of (8), solve 
for IT(s) and take the inverse Laplace transform (using 
the convolution theorem) to get 

f2 y(t) = du q(u)k(t - u), (9) 

where q(u) is the unit impulse response of the reactor 
which is obtained as the inverse Laplace transform 
of Q(s) given by 

Q(s) = (s + ,b/(s - ~ , ) ( s  - 75); 
q(t) = Cle  "~'t + C2e ~2', (10) 

where Yl and 72 are the solutions of the inhour 
equation, 

s z +(1  + 2 - K 0 ) s - 2 K 0 = 0 .  (11) 
Near criticality, 

C 2 = (i -~- 2 ) -  1 ; C1 = / ] . C  2 ; 

~'t = - I K 0 1 ;  ~2  = - (1  + 2). (12) 

Now we make an assumption--k(t) is a Gaussian 
process. This allows us the use of the following 
relation 

<e ¢~° > = exp {<~(t)) + ½Var [~(t)] }. (13) 

Inserting (6) in (9) and using (13) we obtain the 
moments of P(t) as follows: 

< P"(t)> = P"do exp{ <my(t)> + ½ Var[my(t)] } 

= P~exp{m~-~ f l  du f£ dOq(u,q(O) 

x (k(t  - u)k(t - ,9)> t 

fm 2 t.+~ 
= P ~ ' e x p ~ n  | d~oGk(og) 

f2 x d u q ( u ) e - i ~  ' (14) 

where G~(o)) is the Fourier transform of q~(r), i.e. the 
power spectral density of reactivity. In the stationary 
state (as t---, oc) we find 

fm 2 r + ~ ) 
<P"> = P~'exp~J_.. dcoG,(eo)lQ(ieg)12~. ( 1 5 )  
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Similarly we obtain the autocorrelation function of 
P(t) in the stationary state by using 

lim (P(t)P(t + ~)) = lim Pgexp{(y(t) + y(t + z)) 
l ~  t ~ o c  

+ ½ Var[y(t) + y(t + r)] l 

a s  

~p('r) = Po2exp ~ dogGk(og)lQ(iog)[2(1 + e i'~') . 
oc 

(16) 

The normalized autocovariance function can be found 
a s  

Cp(z)_  exp[Cr(z)] - 1 (17) 
Cp(0) exp[Cy(0)] - 1' 

where Cr(~ ) is defined as the autocovariance of y(t) 
given by 

f f Cr(t,t + z) = du dOq(u)q(O)~)k(U -- 8 + z). (18) 

We evaluate (17) for white reactivity noise, i.e. 
C~k(Z) = Gkf(Z) or Gk(e) ) = G k. We substitute (10) in 
(17), approximate e x p ( -  I K o It) by 1 - I Kol t and then 
let K o  ~ 0. 

C p ( 0 ) - e x p  - r ( 1 + 2 )  3 

x ( 1 -  e-'~ +a'~)l}' (19) 

This was first obtained by Dutr6 (1964), starting from 
an initially critical reactor (without source) and with 
Gaussian white reactivity insertion. Thus, the results 
(15) and (16) are the generalized forms of the previous 
results, because there is no restriction that the reac- 
tivity noise be white. For example, suppose the reac- 
tivity inserted is a narrow-band noise centered about 
a frequency co o, whose power spectral density is given 
by 

Gk(eO) = r~a~ [a(~o + ~o) + 6(o9 - ~o)], (20) 

where ag is the variance. Substituting (20) in (15) and 
(16) one gets 

m 2 

(pro>= P~'exp{ ~ -  ak2lQ(iego)l 2} (21) 

and 

ckv(T) = P~exp{a2lQ(iwo)12(l + e~'°°')l, (22) 

where I Q(io0)[ 2 can be found explicitly from (10). 
In the case where there is no external neutron 

source, it is impossible to obtain the stationary 
moments and autocorrelation of P(t) directly from 

(15) and (16). If there is no external source the starting 
equation (9) has to be replaced by 

f2 y(t) = du z(u)K(t - u), (23) 

where z(u) is equal to q(u) given by (10) and (I1), 
with Ko = 0. The moments of P(t) in the stationary 
state reduce to 

(Pro(t)) = limP~'exp mKo duz(u) 
t ~ 9c 

m 2 f ;  .x + ~ de) ak(og) 

x du z(u) e i,~u (24a) 

(24b) 

where 

z~ = ,V(1 + ,l); A~ = (1/l + ,~)2; 
(24c) 

f2 lim duz(u) = z~ t  + A.~. 

Here we have used the following asymptotic relation: 

f;;do~Gk(~o) fl z(u)e_io,u 2 1 }ira du = ~ Gk(O)z 2 t. 

It is seen that ( P ' ( t ) )  remains bounded as t - - ,  3c, 
if the mean of the reactivity Ko is related to its power 
spectral density at t~ = 0 by 

m 
Ko + ~Gk(O)z ,_ = 0. (25) 

Otherwise, all the moments either increase or decay 
exponentially for large values of time. If Gk(0 ) = 0 
all the moments attain finite values when Ko = 0, 
otherwise we always need to have K0 ¢ 0 for sta- 
tionarity, contrary to the case with an external source. 
When Gk(O) = Ko = 0, (25) is satisfied for all values 
of m and all the moments attain finite values as 
t ~ oc. For example, suppose the power spectral den- 
sity of reactivity is again given by (20). One can insert 
it in (24) and obtain the stationary moments as 

_ f 2 ~ z ~  . 0)t, ( /~( t ) )  - PT/exp~m ~ - o  IZ0~o)l sin(mot + (26) 
3 

where P~ is defined as 

m 2 

P~"= P '~exp{~a2ElZ( io )o) ,2+ (Z,x,/(DO)2]} 

and ~b is the argument of Z(koo). 
When Ko = 0 and if (25) is satisfied with m = l, 
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the mean of P(t) approaches a stationary value as 
t-- ,  ~ ,  but its mean square diverges, i.e. 

~ ( P(t) = Po eX°~'~. 
l im [(pE(t))__, ~ j ,  Ko + ½Gk(O)z~ = 0. (27) 

On the other hand, if (25) is satisfied with m = 2, the 
mean square attains a stationary value as t--,  ~ but 
the mean decays exponentially, i.e. 

. ( (p2( t ) )  = p2e2X°zA~Q 
lm~ ?; Ko + Gk(O)z~ = O. (28) 

~:o ( (P( t )>- - ,  0 ) 

This somewhat pathological situation is a conse- 
quence of the fact that the reactor is considered to 
be critical prior to t = 0.-One may point out that 
this difficulty does not arise if there were an external 
neutron source present. 

The autocorrelation function of the power to a 
Gaussian non-white reactivity can be obtained as fol- 
lows: 

t + z) = p2 exp{Ko[2Z~,t + z~r + A(t) + A(t + r)] ¢.(t, 

4 n L J _ ~  d°9 Gi(~°) 

x{flduz(u)e-"~2+fi+'duz(u)e-"2 
f? }]} + du dO z(u)z(,9) e-  i~.-  s + ~) . 

(29) 

This result is valid for any finite t and for any Gaus- 
sian reactivity insertion. If we consider its behavior 
as t---~ oo for a fixed z, we again face the question 
of convergence of the mean-square value of P(t). Since 
[(P(t)P(t + r)>[ < I(p2(t))  (p2(t  + z))[ ½, the auto- 
correlation remains finite as t---, o~ for a fixed r if 
(eZ(t)> does so, i.e. if Ko + Gk(O)z® = 0 [cf. (27)]. 
Since (P( t ) )  ~ 0, when this condition is satisfied, the 
autocorrelation and autocovariance of P(t) are identi- 
cal in the limit of t---* ~ ,  i.e. 

{ l im(%( t , t+z )= ,  t~limCv(t't+z)} ; o ~  

Ko + G k ( O ) z ~  = O. 

Therefore, the stationary normalized autocovariance 
function of P(t) can be obtained from (28) and (24) 
as 

Cp(z) (P(t)P(t + r)> 
- lim Cv(O ) to~ [-(p2(t))(P2(t + T))] 1/2 

= lim exp du d~9 z(u)z(~9)¢k(U -- ~9 + z) 
t~oo 

1 t t t + t  t+l: 

This result is again a generalized form of that 
obtained previously by Dutr6 (1964) which is given 
in (19). Indeed, if one substitutes q~(z) = Gk3(z) and 
z(t) = z~ + [(z~/2]/exp[-(1 + 2)t] in (29), one gets 
(19) which was obtained before, by making the 
assumptions e x p ( - l K o l t )  -~ 1 - Igolt  and then 
Ko---, 0 in the case with a source. 

3 .  A N A L Y S I S  B Y  B O U R R E T ' S  

A P P R O X I M A T I O N  

Bourret's approximation was developed by Redfield 
(1965), Howe (1971) and Bourret (1962), and reviewed 
by Van Kampen (1976). Here we follow Van 
Kampen's review essentially and make some exten- 
sion to accommodate inhomogenous differential 
equations, in general. We start with the following 
differential equation 

dX(t) 
- F(t)X(t) + S(t) (31a) 

dt 

or 

dX(t) 
- {Fo(t) + EFt(t)}X(t) + S(t). (31b) 

dt 

Here Fo(t) and Fl(t) are the sure and fluctuating part 
of F(t), respectively. We treat the fluctuating part of 
F(t) as a perturbation of the sure part of the same. 
The parameter ~ determines the size of the fluctua- 
tions. We assume that E is small and the mean of 
the fluctuating part is zero, i.e. 

( F l ( t ) )  = O. (32) 

The inhomogenous part of S(t) will be referred to as 
the source term. 

Let the solution of the unperturbed homogenous 
equation be Y(tlt'), defined by 

dY(tlt') 
- Fo(t)Y(tlt'); Y(t ' l t ' )= 1. (33) 

dt 

A more explicit expression for the 'evolution matrix', 
Y(t), can be obtained by solving (33). The repeated 
iterations of the integration of the first and the use 
of the second yields 

fl ;olo Y(tl0) = 1 + dtx Fo(q) + dtl dt2 

x Fo(tl)Fo(t2) + . . .  ; t, < t ,_ t .  (34) 
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One can extend the integrations making all of them 
from ti = 0 to q = t ( i --  1,2 . . . . .  n). To compensate 
for the larger integration domain a factor of 1/n! is 
required 

~ 1 r t I~dt2""  t fl 
x [Fo(tx)Fo(t2)... Fo(t.)] 

= [exp{ f~ dt'Fo(t')}]. (35) 

The 'time ordering symbol', [ . . . ] ,  used above, 
denotes that the operators be so rearranged that they 
appear in the decreasing order of their time argu- 
ments (after expanding the exponential in the second 
case). Now we introduce the interaction represen- 
tations, 

X(t) = Y(t IO)*(t); 
Fa(t) = Y(tlO)V(t)Y(Olt) (36) 

which transforms (31b)into 

~'(tl0)v(t) + Y(tl0)~(t) 

= [F0(t) + eFx(t)]Y(tlO)v(t) + S(t). 

Here, the first terms on both sides cancel due to (33). 
Multiplying by Y(0lt) from the left one gets 

~(t) = EY(Olt)Fl(t)Y(tlO)v(t ) + Y(0[t)S(t). 

Eliminating Fx(t) by (36) yields 

~(t) = EV(t)v(t) + Y(0[t)S(t). (37) 

Integrating (37) and iterating once, one gets 

v(t) = v(0) + ~ dt'V(t') 

{ f: f: } x v(O) + E dt" V(t")v(t") + dt" Y(Olt")S(t") 

+ dt' Y(Of)S(t'). 

One can average it and set (V(t)) = 0 [cf. (32) and 
(36)]. 

£ £  (v(t)) = v(0) + ~2 dt' dt"{V(t')V(t")v(t")) 

+ ,  ~ dt' ~'dt" (V(t')Y(Olt")S(t")) 

+ ~dt'Y(Olt')(S(t')). (38) 

Now we make the following assumption which may 
be called 'Bourret's Approximation'. 

(V(t')V(t")v(t")) ~- (V(t')V(t"))(v(t")). 09)  

Inserting (39) in (38) and then differentiating one gets, 

~ (v(t)) = E 2 df(V(t)V(t')) (v(t')) 

f2 + E dt'(V(t)Y(Of)S{t')) + Y(01t)(S(t)). 

(4O) 

In the original variables X and F~, the above equa- 
tion reads as 

d {Fo+E2;oodt,(Fl(t)Y(tlt,)Fl(t,))}(X(t) ) ~t(X(t)) = 

P t 

Jodt'(F~(t)Y(tlt')S(t')) + (S(t)). (41) +E 

Following Van Kampen we call the above equation 
'Bourret's integral equation'. 

Before proceeding further we try to justify 'Bour- 
ret's approximation', where an average of product has 
been replaced by a product of averages. We note that 
there are three time scales involved in (38). The scale 
on which v varies is the first one. If we take the order 
of V as unity, this time scale is measured by 1/E. The 
scale on which V varies is the next one but is not 
important for this discussion. The last one is the cor- 
relation time zc of V. If this correlation time is very 
short, ~z, is very small. Then one is able to divide 
the time axis in intervals At satisfying 

Ere ~ cAt ~ 1. (42) 

During such a time interval At, V forgets its past 
but v varies very little however. Thus in the first inter- 
val of the first integral of (38) v(t") can be approxi- 
mated as 

fo f; v(t") = v(0) + e dr' V(t')v(t') + dt" V(01 t")S(t") 

_ v(0) - (v(t")) (43) 

where we have neglected the higher power of cAt and 
assumed the effect of source term in the integral 
would be negligible. Since the first integral of (38) 
is already of the order of (EAt) 2, we are, in effect, 
neglecting terms of the order of (EAt) 3. Of course the 
neglected source term is of the order of (EAt) 2 and 
the assumption of a weak correlation between S(t) 
and V(t)V(t') is necessary. 

Thus integrating over the first interval we express 
v(t + At) in terms of v(t) and integrating over the 
second interval we can express v(t + 2At) in terms 
of v(t + At) and so on. The all important point is 
that the values of V(t') during the two successive time 
intervals are practically uncorrelated. Thus in all in- 
tervals, one can use the same unbiased averages of 

A.N.E. 6/3--B 
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V(t'), instead of the averages conditioned by the 
knowledge of the evolution of v in the previous inter- 
val. So the Ansatz (39) is justified. 

To obtain a differential equation instead of the inte- 
gral equation (41), we substitute t' = t - r in (40). 

£ dt<v(t)) = dz<V(t)V(t - z)>(v(t - r)> E 2 

£ + E dz(V(t)Y(OIt - r)S(t - z)) 

+ Y(01t)(S(t)>. 

Since we have already assumed that V(t) and V(t - z) 
are uncorrelated when r > re, we have <V(t)V(t - r)> 
= <V(t)> (V(t - r)> = 0; r > r c [-cf. (32) and (36)]. 
Therefore whenever t is greater than rc, the first inte- 
gral above vanishes and hence no error is made by 
extending the integral from t to ~ .  Assuming a weak 
correlation between V and S we can extend the 
second integral too. Therefore we get 

fo ~ ( v ( t ) )  ~_ E 2 dz<V(t)V(t - r)) <v(t)) 

+ E dr(V(t)Y(0[t - r)S(t - r)) 

+ Y(01t)<S(t)). (44) 

Here, besides extending the integral, we have also re- 
placed ( v ( t -  r)> by <v(t)). Since the first integral 
is almost solely contributed by the time (0, zc), the 
relative error due to this replacement is of the order 
of r c ( i ) /<v ) .  Because we have assumed V(t) is of the 
order of unity, by (44) itself <~) ~ E2r~<v> where we 
have neglected the effect of the source again. The rela- 
tive error is (Er~) 2 and we have already neglected 
terms of relative order Ere. So the error due to the 
replacement can be ignored. (44) can be easily trans- 
formed to the original representations of X, Fo and 
F~. Since in all our applications Fo will be indepen- 
dent of time, we write the transformed equation 
specifically for a constant F0, i.e. Y( t l0 )=  exp(Fot). 

d = {Fo + E 2 ~ f  dr<Ft(t) eV°Wl(t z)>e -v°~} ~<X(t )>  Jo - 

E x <X(t)> + e dz<Fl(t)eF°'S(t - r)) 

+ <s(t)>. (45) 

We can apply (45) not only to determine the mean 
but also the variance and power spectral density of X, 
by manipulating the original equation as follows: 

dX 
- - =  FX + S. (31a) 
dt 

Taking transpose, we get 

dX T 
- XrF  r + S r. (46) 

dt 

Multiplying (31a) by X r from the right and (46) from 
the left and adding the resulting equations we get 

d 
dt (xx r )  = F(XX r) + ( x x r ) F  r + (SX r + xs r ) .  

The components of the square matrix XX 1 can he 
rearranged in a column matrix so that an equation 
of the form (31a) is obtained. We show the results 
for a two-component X. 

d 

dt L j 2f21 2s u L x: j 
F .,x, ] 

+ Is, x,  + s xq. t4 ) 
L 2S,X2 J 

One can apply (45) to equation (47) to get the 
differential equations for (X~) ,  ( X 1 X 2 )  etc. from 
which variance can be easily obtained. Similarly, to 
obtain the correlation matrix (and then power spec- 
tral density), we simply multiply (31a) by Xr(to) to get 

dt[x(t)Xr(to)] = F[X(t)Xr(to)] + S(t)Xr(to); to < t 

which may be split into two equations as 

Fx,i,)x, ,ol I _- x,(,o)l • + Fs,i,  X,.o) l 
dtLX2(t) X,(to)_l LX2(t) x,(to)J LS2(t) x,(to)J 
and 

x i,oll = , C , ( ' I  x.l,oll l 
dtL X~(t) X~(toLI LX2(t) x2(to)] + LS2(t) x2(to)J" 
One may again apply (45) to the above two equations 
and combine them to get the equation for correlation 
matrix of X as follows: 

d r 
~<X(t)X (to)> 

={Fo+E2f;dz<F,(t)er°W,(t-z))e -v°,} 
f; x (X(t)Xr(to)> + E dz 

x <Fl(t) eF°'S(t - z)xr(to)> + <S(t)xr(to)>. (48) 

It may be noted here that in such manipulation 
of the original equation (31a), the largest value of the 
correlation time z c for which (45) remains valid may 
change. 

Now we apply these results on the PRKE to obtain 
the following statistical properties of reactor power 
and delayed neutron precursor density. 
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Fig. I. Normalized mean power (P ) /Po ,  as a function of inverse correlation time, ~. 

3.1. The behavior of the mean 

We shall discuss two cases--neglecting and consi- 
dering the delayed neutrons. 

(i) Neglectin9 the delayed neutrons. The PRKE in 
this case is given by 

dP(t) 
dt = {Ko + k(t)}P(t) + So (49) 

and the application of (45) is straightforward. One 
obtains, 

~tt ( P(t)) = Ko + dr 

x (k(t) er°'k(t - r)) e-r°' t (P(t)) + So 

{ fo } = Ko + dr d~k(r ) (P(t)) + So. (50) 

The second integral of (45) vanishes because of 
(k(t)S(t - r)) = (k(t))So = 0. As an example we con- 
sider a non-white reactivity noise whose autocorrela- 
tion function is given by 

d?k(r) = ½G~ e-=l'l. (51) 

Inserting (51) in (50) we get 

d 
~ ( P ( t ) )  = (Ko + ½G~)(P(t)) + So, 

w h e r e  we have assumed that [~t[ > Ko. At stationary 
state, 

(P)=-So/ (Ko+½Gk);  Ko+½Gk<O. (52) 

This is the same as the results obtained using the 
Fokker-Planck theory as well as averaging directly, 
by Akcasu and Karasulu (1976). 

(ii) Considering the delayed neutrons. In this case 
the PRKE can be written as 

dX 
d~- = {M + =(t)}X(t) + So, (53) 

where 

 =El O -, so=ESo ] 
and 

Comparing (53) with (31b) and using (45), one obtains 

d = t M  ~ ~ ( X ( t ) )  , + fo dz(=(t)e~'=(t- r))e-M~} 

f: x (X(t)) + dr(=(t)eM'So) + (So).  

~551 
As in case (i), the second integral is zero due to 
(~(t)) -- 0. The integrand of the first integral may be 
written as (k(t)k(t-  r ) ) A e x p ( M r ) A e x p ( - M r ) .  We 
note that the eigenvalues of M are given by 71 and 72 
[cf. (10) and (11)]. The eigenvectors are c0112+71 1] 
and c0112+72 1], and the diagonalizing matrices are 

I ' 

R_x = ( 7 , -  72)_, [ _ 1 1 - ( 2 + 7 2 ) ]  (56) 
2 + 7 1  J" 
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Using the results 

R-le:FM,,R = [ 0  :~r'' e :~01,  

(55) reduces to 

dr<,a 
~L<C>j = 

L<C)J 
where 

(57) 

(58) 

Wll = a] - ala2(e a°' + e -a°') + a~ (59a) 

W12 = axa21-ale °°" + a2 e-a°" -- (al + a2)] (59b) 

W21 = W22 = 0 (59c) 

and 

ao = ~1 - -  Y2; ax = 2 "~ "~1; a2 = y], + Y2. 
(59d) 

We again consider the same non-white reactivity, 
whose autoeorrelation function is given by (51) as an 
example. Inserting (51) in (58) we get 

dr<P>l = {M +1 r,, :,Lo 'o]} 
xr<, a+[to] 

L<C>j ' 

1 2 2 2 2 2 
11 = ~o 2 {al + a 2 -  2ala2~ /(ot - ao)} 

where 

(61a) 

12 = a l a ~ { _ ( a l  + a 2 ) + a : t / ( ~ - a o ) + a 2 ~ / ( ~ + a o ) } .  
a 6  

(61b) 

In the above it was assumed that 

> laol = 1-(2 - Ko + 1) 2 + 42K0] ½. (62) 

When this condition is not satisfied, the integrals 
above diverge. ~ is, in fact, the inverse of correlation 
time. While deriving Bourret 's integral equation (38), 
short correlation time was assumed, i.e. 1/~ is small 
compared to the time scale on which the deterministic 
equation evolves. In this case that time scale is unity 
(://3). Since 2 < 1, near criticality, [aol ~ 2 - g o  
+ 1 ~ 1 and thus we see that Bourret 's approxima- 
tion breaks down when the correlation time is about 
unity or greater. 

At stationary state we find the mean values as 

( P )  = - So/(Ko + ~Gkfl) (63a) 

( C ) = ( P )/2, (63b) 

where 

/3 = 11 + 12/2. (63c) 

A physically realizable power exists only when 
Ko + ½Gd3 < 0. The effect of the correlation time on 
the reactor power can be seen graphically in Fig. 1. 
We observe that noise increases mean power and does 
it more when the correlation time is shorter. Mean 
power is maximum when the correlation time is zero, 
i.e. when the noise is white. As ~---} @ the reactivity 
noise becomes white and I1 and 12 reduce to 1 and 
0, respectively, and 13 becomes 1. Using these values 
of /3 in (63a) we obtain results identical to those 
obtained by Akcasu and Karasulu (1976) using the 
Fokker -P lanck  theory. 

3.2. The variance o f  the reactor power 

Applying (47) on (53) we get 

d 
~ Y ( t )  = {Ao + k(t)A1}Y(t)  + S r, (64a) 

where 

and 

Y = c o l [ P  2 P C  C 2] (64b) 

S y = c o l [ 2 S o P  SoC 0] (64c) 

2(K o - 1) 2), ! ] 

Ao = 1 Ko - 1 - 2 ; 

0 2 - 2  

[i° l A1 = 1 . 

0 

Using (48) we obtain 

dy { ~ (  (t))= Ao+ dr 

x (k(t)k(t  - z))A 1 eAo'A1 e -Ao'} (Y(t))  

(64d) 

+ d~A1 eA°'(k(t)Sy(t -- z))  + (Sy). 

(65) 

are not considering any feedback, by 
the correlations ( k(t)P(t - z) ) and 

Since we 
causality, 
(k ( t )C( t  - z ) )  are zero and therefore the second inte- 
gral vanishes. As before, the integrand of the first inte- 
gral can be found by determining the eigenvalues 61, 
62, 63 and the matrix formed by the eigenvectors, 
S, of Ao. 

61 = (Ko -- 1 - 2); 62; 3 = 61 ~2 (62 -~- 42Ko)½ 
(66a) 
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SIj = 22(22 + 6j); S2j = (2), + 6j)(fj - 2Ko + 2) 

S3j = 2 ( 6 j  - -  2Ko + 2). (66b) 

The first integral of (65) reads as 

f0 ~dz ~bk(z) e (~- '") 'Dm., (67a) 
m,n 

where 

D.,. = CmC. (67b) 

and the elements of the matrix C,. are given by 

(Cra)ij = (A1S)imSmj 1. (67c) 

No summation is implied by repeated indices and it 
should be noted that C~, ~ (AxS)S-1. 

Again we use the same reactivity correlation func- 
tion rcf. (51)] as an example, and obtain by what 
goes above, 

d<y( t )>  = (Ao + B)<Y(t)> + <Sy>, (68) 

where 

B~. = ½Gk ~ D.=[-I - -  (6= - -  3.)/~]- ' .  (69) 
m,n 

Here we have considered ~t to be greater than the 
largest of the differences between any two eigenvalues, 
i.e. ( 6 = -  6.)max. Near criticality, i.e. Ko < 1, this 
means 

at > 12[(I + 2 - K 0 )  2 + 42K0]~1 ~ 2. 

The integral (67a) diverges if this condition is not 
satisfied. We note that the value of ct at which Bour- 
ret's approximation breaks down in the computation 
of second moments is double of the same in the com- 
putation of the mean. 

The differential equation for variance can be 
obtained easily from (68) and (60). Especially at the 
stationary state. 

[ c , , ( 0 )  c ,~(o) ccc(0)] r = 

-(Ao + B)-'((B - H)[1 '/2 1 / ) ` 2 ] } ,  (70a) 

where 

I 'GkI Gkl 2 GI 21 
H =  0 ½Gdl ½ I (70b) 

0 0 

and 11 and 12 are given by (61a) and (61b), respect- 
ively. It may be noted that the analytic evaluation 
of the matrix B is laborious but the numerical evalu- 
ation is simple and straightforward. In the case of 
white noise reactivity insertion one lets at ~ oo in (69) 

or can evaluate the first integral of (65) directly as 

f; B = d'r Gk 6('0A t eAo*AI e -A°~ 

F:°il = ½GkA1AI = ½Gk 1 . (71) 

0 

Substituting (k(t)Sy(t - ' z )>  = 0, z > 0 and (71) in (65) 
one gets 

r<P 2) "2(Ko +½Gk- l) 22 j,] 
d i < , c ;  = 1 

a L 0 2 -2  

r<,,:>l 
× I<PC>l + . ( 7 2 )  L<c'>J So[<C>j 

This result exactly corresponds to the result obtained 
by Akcasu and Karasulu (1976) using the Fokker-  
Planck theory. At stationary state (72) yields 

< p 2 > _  1 |--7[ K°+½Gk Ko-Gkl -t 
<p>2 :G~\Ko-~- ½G, - 2 / 

<PC> = <CP> = 2<C2> = <p2>/()` _ Ko - ½G,). (73) 
The dependence of variance to mean-squared ratio of 
reactor power on reactivity correlation time was 
obtained numerically from (70) and is shown here 
graphically in Fig. 2. We observe that the reactivity 
noise with larger magnitude and shorter correlation 
time increases the variance to mean-squared ratio 
more. 

iO-I 

u 
E 

(4) 

1 0 " 2  f 
13) 

(I) 
10"a ~ 

I0 ° Id 

Ko=-O.OI $ 

( I )  Gk=-O.2K o 

(2) Gk=-O.4K o 
(3) Gk=-O.SK o 

(4) Gk=-L6 K o 
[ 

i0 2 iO 3 

G 

Fig. 2. Variance to mean-squared ratio as a function of 
inverse correlation time, ~. 
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3.3. The power spectral density 

In a similar fashion one can obtain two time correla- 
tion function by applying (53) on (48): 

X([c((:))][P'to)C(to)] ) 

,74, 

Here we have used causality again. From (74) and 
(60) one can obtain the equation for covariance 
matrix. For  the correlation function (51) we are using 
as an example (assuming e > 2), the stationary state 
results are given below. 

d 
~-C(z) --- TC(z), z > 0, (75a) 
(1T 

where 

and 

C(z) = [ / C ' ' (z)  Cp~(z)] (75b) 
k co~(0 C.(T)J 

'o] T = M + 7GkL 0 . (75c) 

The values of C(z) for z < 0 is obtained from the 
relation C ( - z )  = cr(z). Taking the Laplace transform 
of (75a) and using the relation G(og) = C(ito) + cr(ito) 
= 2 Re C(ito), we get 

G(to) = 2 Re{(itol - 13- ~C(0)}. (76) 

Especially, the power spectral density of power 

Gp~(to) = G1 l(oJ) is given explicitly as 

Gpp(to) 
Cpp(O) 

. .  ( (ito + 2) + (2 + ½GkI 2)Cp~(O)/Cpp(O) ) 
Z K e . (  - -  1 

((ito + ).)(/to- g o  + 1 ~ k / 2  J; 
(77) 

2X'l(ito + co3)l 2 

= i(ico +tol)12 i(ito+to2)12, (78) 

where the corner frequencies to~ and to2 are given by 

= ½{0- - Ko + 1 - ½Gkll) 

-T- [(2 -- Ko + 1 - ½GkI1) 2 

-- 42(-- Ko - ½Gill - Gfl2/22)] u2 } 

and the corner frequency to3 by 

= Aeq/2 - ) . (Ko + ½G~lt + ~ G k l 2 )  

1 -  I "" C~(0))1/2 

where 

= 1 - ( g  o + ½Gkl,) -- (). + ~d2)C~(O)/C, , (O).  

Numerical evaluation of (77) is simple, once the 
variance is computed. Using similar numerical values 
as in Fig. 2, it was found that the reactivity correla- 
tion time 1/~ has almost no effect on the power spec- 
tral density. The reason follows. Because Bourret's 
approximation fails when ~t < 2, we had to consider 
only those reactivity inputs which have cut-off fre- 
quencies higher than 2; whereas the resonances of 
subcritical reactor transfer function [cf. (10) and (11)] 
fall within about 1. So the reactor 'sees' all such reac- 
tivity inputs essentially as white noise and therefore 
no dependency of power spectral density on correla- 

Table 1. Comparison among the available methods for solving the Stochastic Point Reactor Kinetic Equations 

Source Reactivity characteristic 
Method characteristic Distribution Spectrum Accuracy* 

Conventional No No No Poor; effect of Gk on 
linearization restriction restriction restriction ( P > is lost completely 
Logarithmic Constant Gaussian No Fails to yield 
linearization restriction exact result 
Bourret's Constant; only mean No  Short Yields 
approximation can be determined if restriction correlation exact result 

fluctuating with a time 
short correlation time 

Fokker-Planck Gaussian, white; may Gaussian White Exact 
theory be correlated to k(t) 

reactivity 

* For the comparison of accuracy we have assumed Gk to be large. Reactivity is also assumed to be white because 
only in that case all the methods compared above are applicable. 
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tion time could be observed. Here the assumption 
> 2 was necessary to find the variance. If one wants 

to find the two time correlation only then the assump- 
tion c~ > 1 is enough. In this case too, one may repro- 
duce the exact results (cf. Akcasu and Karasulu, 1976) 
when the reactivity noise is white. 

4. COMPARISON, DISCUSSION AND 
CONCLUSION 

For the purpose of comparison we consider the 
reactivity noise to be Gaussian white, autocorrelation 
being given by dpk(z) = Gkf(r). In this case the exact 
results have been obtained by Akcasu and Karasulu 
(1976) using the Fokker Planck theory; and all the 
results obtained by Bourret's approximation reduce 
to these exact results. It can also be shown in general, 
that in the case of homogenous equation with Gaus- 
sian white noise, Bourret's approximation and the 
Fokker-Planck theory yield identical results. 

However, the logarithmic linearization results do 
not coincide with the exact results. For  example, if 
(15) is satisfied with m = 1, the stationary values of 
mean reactor power are obtained as 

( P ) = P o e x p  "1 + ~ - K o  

whereas the corresponding exact result is 

( P ) = P 0  1 + ~  K00,} " 

The reason for this failure ties in the very assumptions 
(7). The second one, regarding the source term is rela- 
tively weaker. In fact, in the absence of delayed neu- 
trons, the logarithmic linearization yields the exact 
result if the source term is better approximated say 
by iteration (Quabili, 1979). However even with 
source iteration one cannot reproduce the exact 
results when delayed neutrons are present (Quabili, 
1979). Nevertheless, logarithmic linearization offers 
wider applicability because it does not require the 
correlation time to be short or zero and provides one 
with more accurate results than conventional lineari- 
zation. A summary of the comparison among the 
available methods is presented in Table 1. 

We conclude that the two methods described herein 
fill a gap between the unrestricted but poor conven- 
tional linearization and the exact but highly restricted 
Fokker Planck theory. At the one end, the logarith- 
mic linearization improves the conventional lineariza- 
tion results at the cost of an added restriction [Gaus- 
sian k(t)]. At the other end, the stringent requirement 
that the reactivity noise be Gaussian white has been 
eased to some extent by Bourret's approximation. In 
terms of correlation time only, depending on whether 
it is zero, short or long, one may choose the Fokker- 
Planck theory, the Bourret's approximation or logar- 
ithmic linearization, respectively. 
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