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Signed graphs provide models for investigating balance in connection with 
various kinds of social relations. Since empirical social networks always 
involve uncertainty because of errors due to measurement, imperfect obser- 
vation or sampling, it is desirable to incorporate uncertainty into signed 
graph models. We introduce a stochastic signed graph and investigate the 
properties of some indices of balance involving triads. In particular we con- 
sider the balance properties of a graph which is randomly signed and of one 
which has been randomly sampled from a large population graph. 

Introduction 

The notion of balance in social networks was introduced in the classical 
paper by Heider (1946) and in his book (Heider, 1958) and later was the 
subject of various theories and discussions of social behavior and social rela- 
tions, as for example in Cartwright and Harary (1956), Abelson and Rosen- 
berg (1958) and Zajonc (1968). 

A mathematical framework for the investigation of balance was developed 
by Harary (1953) who introduced the concept of a signed graph. Balance in 
signed graphs was further explored in a series of papers by Harary (1955, 
1957, 1959, 1960) and Cartwright and Harary (1968, 1970) which discuss 
various aspects of the measurement of balance, conditions for balance and 
consequences of balance in graph-theoretic terms. 

The deterministic signed graph approach to the modelling of balance im- 
plies that the practical issues of measurement errors and other sources of 
uncertainty in empirical investigations have to be ignored. It is possible to 
include the nondeterministic influence of uncertainty in the models by intro- 
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ducing stochastic signed graphs. Stochastic graphs have been used by Frank 
(1979a, b), Holland and Leinhart (1979) and others as a tool for describing 
social networks which involve uncertainty of different kinds. 

A particular kind of uncertainty appears if the empirical network under 
study has been selected by simple random sampling from a larger unknown 
population network. Frank (1971, 1977a, b, c, 1978a, b) has considered 
various inference problems based on different kinds of available sample 
inforination. 

Another kind of uncertainty which may be due to measurement or obser- 
vational errors can be investigated by using stochastic graphs with simple 
disturbances of the edge occurrences. Such models have been used by Frank 
(197&z, 1979c, d) for analysing clustering and transitivity properties in net- 
works. 

Here WC will apply a simple stochastic signed graph model in order to 
investigate the concept of balance without ignoring the uncertainty which is 
present in empirical networks. Section 2 gives some basic terminology on 
balance and Section 3 introduces a stochastic signed graph model. The pro- 
perties of some convenient indices of balance are investigated in Section 4, 
and expected values and variances are derived for the numbers of positive 
and negative 3-cycles. The results are used in Section 5 to find approximate 
formulae pertaining to two special cases of some general interest, namely the 
case of a graph which has its edges signed at random and the case of a graph 
which has been selected by sampling from a population graph. 

Balance 

A graph G is signed if each edge is given either a positive or negative sign. In 
a signed graph G there can be ten different types of induced subgraphs of 
order 3 as shown in Fig. 1. These induced subgraphs are called the triads of 
G. For eacir triad let r and s be the number of positive and negative edges in 
it. Then we denote the frequencies of the different triads in G by t,,(G) for 
all possible combinations of Y and s. These frequencies are called the triad 
c0u11ts. 

The sign of a cycle in a signed graph G is the product of its edge signs. A 
signed graph G is balanced if all its cycles are positive. 

Figure 1 Sigmd triads with (r ,s)-ZuDcls. 
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The degree of balance in a signed graph G can be measured in various ways, 
and conveniently by examining the triads and particularly the 3-cycles. Let 
c+(G) and c-(G) be the numbers of positive and negative 3-cycles in G, i.e., 

One index of balance is given (Harary, 1959) by the proportion of positive 
(balanced) 3-cycles which is 

B, = c+/(c+ + c-) 

if there are any 3-cycles, and which is defined as 1 otherwise. Another index 
of balance is given by the proportion of balanced triads, i.e., 

B, = 1 - c-/(T), 

where N is the order of the graph G. This proportion is seen to be at least as 
large as the proportion of balanced 3-cycles with equality if and only if c- = 0 
or c+ +c- = ($). Both the proportion of balanced 3-cycles and the proportion 
of balanced triads range between 0 and 1, and they are equal to 1 if and only 
if there are no negative 3-cycles. 

Our object is to investigate balance in terms of triads for stochastic signed 
graphs, and it will then prove advantageous not to use the relative but the 
absolute numbers of balanced 3-cycles and balanced triads, i.e., c+ and (y ) --- 
CF. We will use the expected values and variances of these numbers in order 
to find approximate formulae for the expected values and variances of B, 
and B2. 

A stochastic graph model 

Let G be a graph of order N with node set V = { 1, . . . . N} and adjacency 
indicators 

aij = 
I 

1 if nodes i and j are adjacent, 
0 otherwise. 

We have aii = 0 and aii = a.j for all i and j in I/. We will assume that G is a 
N/. stochastic graph having ( 2) independent Bernouilli (@)-distributed aii for i < j: 

aij = 
I 

1 with probability (Y, 
0 with probability 1 - CY. 

The graph G will further be assumed to be stochastically signed, i.e., there 
are (“1) independent stochastic sign variables 

Sij = 
I 

1 with probability p, 
- 1 with probability q = 1 - p, 

for i < j, which yield the signs of all node pairs. The sign variables SQ are 
stochastically independent of the adjacency indicators aij. Let Sii = 0 and 
Sii = Sii. We now introduce the signed adjacency variables xii = Siiaii for all i 
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and j in V. These variables Xij which indicate the signs of the edges in G are 
independent for i < j and their distribution is given by 

1 with probability /XI, 
Xij = 

i 

- 1 with probability yc~, 
0 with probability 1 ~ CK. 

In order to be able to consider subgraphs of G induced by a node sample 
S C V, we introduce the node selection variables 

.!I[ = 
1 

1 if node i belongs to the sample S, 
0 otherwise. 

The subgraph of G induced by S will be denoted by G(S), and it is deter- 
mined by the signed adjacency variables Zii = ,ViiyiYj. 

If the sample consists of n nodes selected by simple random sampling 
from V, it is well known that the sampling procedure can be approximated 
by a Bernoulli @)-sampling scheme with selection probability p = n/N. Thus, 
for each node we decide independently and with a common probability p > 0 
whether or not the node should be included in the sample; see for instance 
Frank (197 1). We will use this Bernoulli-sampling scheme since it leads to 
simpler formulae which for our purposes are satisfactory approximations for 
the more cumbersome formulae pertaining to simple random sampling. Thus 
we assume that the .vi are independent for i t V and 

)‘i = 
1 

1 with probability p, 
0 with probability 1 - /3. 

Moreover, the .c’i are of course independent of the Uii and Sii. It follows that 
the signed adjacency variables of G(S) satisfy 

( 

1 with probability pafl’ , 
Zij = - 1 with probability qc$‘, 

0 with probability 1 - ap’, 

and they are not independent but have a simple dependence structure given 
by the product formula 

Zij = SijUijyiyj 

involving independent sign, adjacency and selection variables. 

Triads and balance 

In this section we wil; consider the subgraph G(S) induced by a sample S, 
and it is tacitly understood that t,., refers to t,,(G(S)), c+ to c+(G(S)), etc. 

Using the general results on stochastic graph triads given by Holland and 
Leinhardt (1975) and Frank (1979b), we can deduce the expected values 
and the variances and covariances of the triad counts t,,. We will be content 
here with reporting only the expected values given in the following theorem, 
the proof of which is straightforward and omitted. 
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Theorem 1. The graph G(S) has the expected triad counts 

Et,., = (~)(,:,)(‘:s)prq~~rt~ (1 -a)3--r--sB 

for all possible combinations of Y and s according to Figure 1. 
From Theorem 1 we find readily the expected numbers of positive and 

negative 3-cycles. The next theorem gives the expected value and the variance 
of the number of positive 3-cycles. We note that the corresponding result for 
negative 3-cycles 
Theorem 2. For 
petted value is 

EC+ = 
N 

i) 3 
P, 

is obtained by interchangingp and q. - - 
the number of positive 3-cycles in the graph G(S), the ex- 

and the variance is 

Var c+ = 
N 

i 1 N 
12 - 3 P(l -P)+ ( 4 1 (Q-P2)+30 0 ; PZ(l P)/P> 

where 

P = cp” + 3pq2)a3p3, 

Q = @” + 2p3q2 + 4p2q3 +pq4)a5flq. 

Prooj: If we introduce 

1 if > Zijk = 1 ziji?jkZki 0, 
0 otherwise, 

we obtain 

where VC3) is the set of all ordered triples of distinct nodes in V and the sum 
is over (iJ,k) E VC3). According to our stochastic model the Zjjk are indepen- 
dent for triples with no common nodes. They have a common expected value 
EZjjk = P, where P is readily seen to be equal to the expression given in the 
theorem. By examining the eight ways (see Fig. 2) to combine two positive 
3-cycles with exactly two nodes in common, we find that EZijkZjkl = Q with 
Q as given in the theorem. Moreover, by examining the sixteen ways (see 
Fig. 3) to combine two positive 3-cycles with only one node in common we 
find that 

EZijkZkIm = (p” + 6p4q2 + 9pzq4)a6P5 

= (p” + 3pq2)2a”p5 = P2/p. 

According to Frank (1979b, Theorem 3) we then find the values EC’ and 
Var c+ given in the theorem. 
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Figure 3. Combinations oj’two signed triads with one node in cottmm. 

Applications 

We first apply Theorem 2 to find the likely ranges of the indices of 
balance c+, B, and Bz for a randomly signed graph. For this purpose we will 
use the deviation interval given by the expected value plus and minus the 
standard deviation. 

Consider an empirical signed graph G having N nodes and R edges of which 
Rf are positive and R -~ negative. We can consider N,R+ and Rp as fixed num- 
bers and compare the empirical outcome of c+ with its likely range if the 
edges were signed at random. If we use our stochastic model with 

Iv 
p=R+JR,a=Kl 7 ,fl= 1, 

( 1 L 

we find from Theorem 2 that c+ has the rleviation interval 
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where 

P = 0,” + 3pqZ)CY3, 

Q = (p5 + 2p3q2 + 4p2q3 +pq4)& 

If we consider a large graph (N large) and approximate c = c+ + c by its 
expected value cN)~ 3, 

! 
we find that the balance index B, has the approximate 

deviation interva 

p3 + 3pq* f ; 
v 

:@I5 + 2p3q2 + 4p2qJ +pq4) - 2073 + 3pq2)2 

and B2 has the approximate deviation interval 

3C.I 2 
1 -CYJ(3pZq+q3)* N 

-li’ 
;Qf+q + 4pjq* + 2pzq3 + q5) - 2(3p2q + q3y. 

If we consider a complete graph with R = (1); then we can use the model 
specification 

p = 1/2,a = 1,p = 1, 

which yields the deviation interval for cf as 

:i:i + ;@ 

and the approximate deviation intervals for both B, and B2 as 

1 1 3 

5% 2N’ 1;‘I 

Let us now turn to the situation where the empirical graph G(S) is the 
subgraph induced by a simple random sample of n nodes from a large popula- 
tion graph G of known order N. Let r+ and r- denote the numbers of positive 
and negative edges in G(S), and specify the stochastic model by 

n 
p=r+lr,Q=r/ 2 ,P=n/N< 1, 

i 1 

where r = r+ + r-. It follows that the approximate deviation intervals are for c+, 

4r3 
&y + 3pq2) f ;3:@J + 3pq2 

v 
:%f, 

forB,, 

p3 +3py2 f 3(p3 +3pq2 N-n 

XT’ 

and for B,, 

lP 
24r3 

nJ(,s,, ,):,(3P2Y + q”) f nT_l)j(3P2q + q3) 
N-n 
F’ 



162 0. Frank atd F. Harary 

If the population graph is assumed to have the same number of positive and 
negative edges, then we can use the model specification 

which yields for c+ the deviation interval 
-- 

aJp” cu3P3(2 ~ cu”P”) + 12 cK5p4(1 ~~ @2)+30 -P), 

for B, the approximate deviation interval 

1 

2 

and for B, the approximate deviation interval 

4r3 12r3 
1 ~ ______~_ f ~___~.___ 

n3(n ~ 1)” rz~‘(tz ~- 1)” 
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