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Following an introduction discussing some properties of maps Q --t Q and 
Q x Q --f Q, where Q denotes the ring of quaternions, it is shown that many 
equations of mathematical physics can be written in this formalism. A concept 
of FrCchet differentiation is given in this setting, in a manner analogous to the 
usual definition. Variational principles are derived. The physical examples in- 
volve elasticity, motion of rigid bodies, fluid flow and Maxwell’s equations of 
electromagnetic field theory. 

1. AN INTROIXJCTORY DISCUSSION 

By a quaternion we shall understand a form 

q = a,(x)1 + al( + a,(x)i + a,(x)& x E R”, 

where the ui , i = 0, 1, 2, 3, are functions from R* into C, satisfying the usual 
algebraic rules of a quaternion ring (See Appendix 1). In what follows we shall 
consider only the cases where n = 0, 1,2, or 3, i.e., x = {x, , x1 , x2 , x3} at 
most. Suppose thatf : Q + Q, and the ai( x ), i = 0, 1, 2, 3, are functions which 
belong to the Hilbert space L&2), St C Rn. 

We define the Glteaux derivative off(q) (with respect to 4) at the point Q = 4 
in the direction of 41 to be the quantityfil(q)[,a = 4s such that, for any E > 0, 
f(4 * EqJ -f(q) = c(ql X q2), i.e., a “left” linear form in q1 . (See Lemma 1 
for the reason why terms in higher power of E are not even mentioned.) If 
q = q(x), we would define 

hl x Qda = s, (Qo x Ql) dx 

and find q2(x) by the rule 

e s Mx) x q&4 dx * ffdx) + 4x)) --f&N. 
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188 V. KOMKOV 

The symbol s implying that the remainder is of the order o(~*qi(x)) for small C. 
As before, x denotes quaternion multiplication. 

It will become apparent from physical examples that the choice of the 
quaternionic product has to be unique if physical laws are to be represented by 
FrCchet differentiation. 

Gheaux Di$ferentiability 

Let us define the GPteaux derivative off(q), f: Q ---f Q, in the direction of a 
quaternion q1 # o , to be qa such that ~(4s x qj) = f(q + cql) -f(q) for any 
E > 0. 

LEMMA 1. qz is uniquely defined. 

Prbof. This follows immediately from the divisibility property of the ring of 
quaternions. For any fixed x = Z we have a unique quaternion 

such that 
q2 = lco + ic, + ic2 + Kc3 

42 x F7lW =f(s@ + %W) = -fk!W 

Defining q,(E) to be that quaternion for each jz completes the proof of the 
uniqueness of the definition. 

Comment. The choice of the “left” definition af(q)/aq = q2 such that 
4q2 x ql) ==f(q + ql) -f(q) is arbitrary. A different value would have 
resulted if we had defined aj/Zq = q2 such that &i x q2) =f(q $- ~q,) -f(q). 
As long as the definition remains consistent, and “right” or “left” differentiation 
definitions are used consistently, either one can be applied. For bilinear products, 
such as Q = {qO , qi} = sn (qs(x) x qi(x)) dx, the most convenient definition 
mixing the “left” and the “right” definitions results in aQ/Zq,, = q1 , aQ/aq, 

40 . 
This turns out to be the definition which confirms the formal manipulation 

rules of mathematical physics. Of course, we can define the FrCchet derivative 
of any quaternion qo(x) with respect to any other quaternion qi(x) T- CL~, in an 
identical manner. 

Say qi # 0. Thee there exists qs such that q&r) = qs x qi . We form the 
difference in the direction of an arbitrary quaternion q2 

q3 x (41 + 4 - 43 x 91 = cl3 x 42. 

Hence 2qo/aql = q3 by definition. Using the “right” instead of the “left” 
representation qo(ql) = qi x q3, we obtain an identical result 

(91 + cl2) y 93 - !?I x 43 = E42 x 43 - 
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Hence a~,/&, = 4s . Similarly, a(&J@, = A for any linear operator A, 
since A(q,, + ~4~) - Aq, = EAT, and +4 x ~,,)/a~, = A if the “right” defini- 
tion is adopted, while a(A x qO)/8q0 = A* if the “left” definition is used. 

From the above discussion the definition of second derivatives of a bilinear 
functional of the form F(q, , qr) -+ R follows logically. 

By the quaternionic version of the Lax-Milgram theorem, F(q, , ql) must be 
of the form F(q,, , qr) = J(Aq, x q) dx = {Aq,, , qI}, where ,4 is a linear 
operator; i.e., the mapping of PO(x) into Aq,(x) is linear in n. 

It follows from the definition that 

a@?ll 9 41)/% = A*% I 

awkl 7 Ql)/% = 40 * 

We observe that second derivatives do not obey Tonelli’s law, i.e., 

a2qao aq, f avaql aq, . 

LEMMA. Every binary function f: Q x Q -+ Q which linearly depends on a 
given quaternion @ can be written in the form f(q, 4) = 4 x 4(q). 

Proof. The hypothesis implies that f(q, ~4) = cf(q, (j) for any constant c. 
Clearly if 4 = rz~ then f = B. If 4 # a, define $(q) = 4-i x f(q, 4) and 
define +(q) arbitrarily if 4 = ~7. Q.E.D. 

LEMMA 2. If f is a polynomial, then the Gliteaux derivative off is independent 
of the direction, i.e., f is Frtkhet diflerentiable, and the derivative is a scalar. 

Proof. A straightforward computation using only the definition. 

Comment. This statement does not have to be true in general. Consider the 
following counterexample: 

f(d = q+(x) = s+(x) 1 + al+(x) i + %+(x) i + %+(x) K, 

where 

a;+(x) = 0 if ai < 0 

= q(x) if a,(x) >, 0, i=O, 1,2,3. 

Trying to solve for q2 the equation 

f(Q + 4 -f(P) = (4 + %L - !7+ = Ql x 42 

may result in different values of q2 , depending on the choice of qI . 

Defining the product (qO , qJ to be so qO(x) x ql(x) dx we arrive at conclusions 
similar to Lemmas 1 and 2. 
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LEMMA 3. The Frkhet derivative of Q(q) = sn (q x e) dx is defined and is 

equal to e(x). 

The proof is elementary (See Appendix 2 for an outline). 

LEMMA 4 (The Lax-Milgram theorem). Zf Q(qO , ql) is a bilinear quaternion 
form linearly depending on q,,(x), then Q is of the form {Lq,, , ql). 

For the proof, see Appendix 4. 
We are now ready to recognize some well-known equations of physics in the 

framework of differentiation of quaternion products. 

2. QUATERNION REPRESENTATION OF SOME OPERATOR EQUATIONS OF 

PHYSICS IN THE FORM T = A*A 

a. The 3-Dimensional Laplace Operator 

We introduce the operator 

and its formal adjoint 

.a .a a 
A*=l.O--lax-j~-KaZ. 

Then AA* is negative definite and is given by 

If we feel that AA* should be positive definite, rather than negative definite, 
we define accordingly 

A=l.O+-i(-$)+j($&+-K(g) 

Then A* = A and AA* = ---da . Here, as usual, i2 = -1. Fir purposes of 
complex analysis it is more convenient to rewrite the two-dimensional Laplace 
equation in the formalism: 

h=lg+ig+j-“-IK.0, 
ay 

a .a .a 
h=-lz--lax-j,v+K.O, 
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where the operator 

is applied to functions of the form U(X, y) + z%(x, y), the first term being utterly 
superfluous. On the other hand, applying h to a quaternion of the form 

q = lc, + ifi@, Y> + ifi&, Y) + K * 0, 

we obtain 

hq = 1 (+J&, Y) + $f,(~, 3’)) + K &&Y> - $I(~~ Y)) - 

Iffl(G Y) + ifi& Y) is analytic, we have hq = 0, i.e., h acts like the 8 operator. 

b. The Beam Equation 

We define the operator 

A = 1 (i &) + i (CD@, y)Y2 -Y&F) , qx, y) > 0; 

then 

and 

A* = 1 (i +) + i (-$- B(x, y)‘/‘) (bl) 

A*A = l[(-$) -~(D(%Y,-$)]~ @2) 

which is the classical Lagrange operator. It is an easy exercise to check that if 
the boundary conditions are natural then A* is the true adjoint of A, and 
A*A = AA*, even though the operator AA* looks strange at a first glance. 

Note. We have omitted the j, K terms, but clearly we could write 

A = l(ia/at) + i((D(x, ~)~/~)a”/%) + j . 0 + K . 0. 

c. The Klein-Gordon Operator 

We introduce the operator 

A=l(i&)+iL+jg+K& (cl4 

409/71/I-13 
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and its adjoint 

A*=l(i&)-iL--ji-Kg; 

clearly 
AA* = A*A = -ayqct>z + d = q . cc21 

This decomposition also leads to a novel representation of Maxwell’s equations. 

3. SOME GENERAL REMARKS ON APPLICATIONS TO QUANTUM MECHANICS 

It is interesting to observe that the quaternion notation has several advantages. 
From the Hamiltonian decomposition of AA*u = f, we derive separate equa- 
tions of a generalized system 

A*# = 4, A4 = f, 

where, in the quantum mechanical formalism, 

f = m2c2Y. 

A slight modification gives us 

A=%[1 (i-&-) +i$+j$+K$. 

(c3) 

A*=ifi[I(i&)-i$-j$--Kg-, 

and the canonical equations of Hamilton in the form 

with 

A*# = aW/&$, 

A4 - awja*, (4 

(4 

defining the Hamiltonian. e 
The corresponding Lagrangian is given by 

8 = w - {A*#, C}. (4 

So far 4, # are undefined quaternions, which can be easily identified with the 
solutions of the Dirac equation, if another “factor” mc is introduced into the 
operators A and A*. If mc is regarded as a scalar (i.e., mc = l(mc) + i . 0 + 
j * 0 + K * 0), no complications arise with respect to formal adjoints of mc 
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(mC = mc). At this point it natural to regard mass as a general quaternion 
arriving in a natural way at mass plus “spin up” or “spin down” states as 
conjectured by Edmonds [l], i.e., we replace m by m. 

One could form several conjectures regarding quantum mechanical inter- 
pretation of Eqs. (c4)-(~6) with mc defined in the general quaternionic form. 
System (~4) can be rewritten as 

to bring them into a more familiar appearance of Dirac equations. 
We postpone this discussion, preferring to treat the Dirac equation separately 

(Section f). It follows easily from Vainberg’s theorem that systems (~4) or (~7) 
represent a critical point of the Lagrangian, corresponding to dual variational 
principles, allowing one to introduce completely different computational 
techniques, based on Noble’s two sided variational inequalities (See [4]). 

d. Maxwell’s Equations 

Let the electric current and charge density be represented by the quaternion 

Qe = lip + ijz + iA, + Kj,] (dl) 

and the magnetic (monopole) current and magnetic charge density be represented 
by the quaternion 

Qm = 4dJi$) + ijz + ijz + KjJ (d2) 

Now using the properties of the operator A, and applying it to the complex 
vector E + iH, we have 

= ( iYE, aE, 8E, i?E, ------_ 
a(ct) ax ay 

aE +(!%+z$--&L -$$)i+($$+-!$+?$+z)K 

aH aH aH +(a+-$-+-$---$- i+ ) ( 
aH aH aH -$f$--$+-$+-$-)j 

aH aH aH 
+(+t$'-$++K. 

1 I 
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Equating A(E + iH) with (l/c)(Qe + iQn,) we obtain the usual set of Maxwell’s 
equations, after setting all space derivatives of E, and H,, equal to zero. 

However, if we assume that the quadruples (p, jA. , jV , j,), (p, j, , jU , j:) can 
be derived from a potential, the following argument gives another version of 
Maxwell’s equations. We introduce the usual electric and magnetic vectors 

and 

as well as a fourth component E,, , N,, , such that 

aEo - -4 __ - 
a(4 

TPP, 

aE, _ 47r . ~_--- 
ax c 10, 

aE, _ 477 ___--- 
831 

c .I%!, 

t3E, _ 4~ . 
__ - - ,.I2 , a2 

Cd41 

where, as before, p is the charge density, while 

is the electric current. Similarly, we conjecture the possibility that there exists 
an H,, such that 

affll _ -- 
a(4 

-4+, 

W, _ 4~ _ 
~ - - ,-A, ax 

aH, _ 47r _ 
- - - -p 9 

aY 

aH,, _ Ihr _ 
- - - ,3z, ax 

(d5) 

then A(E + iH) = 0 is the set of Maxwell’s equations. 
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It is straightforward computation that 

or 
A*A(E + iH) E 0 

O(E + iH) E 0, 

whether the assumptions concerning the existence of E,, , HO satisfying (d4), 
(d5) are true or false. 

e. Rigid Body Mechanics 

If we adopt the Euler angles 8, 4, # as the generalized coordinates describing 
a motion of a rigid body with a fixed point, the equations of motion are derived 
from Hamilton’s principle of least action 

S 
I 

t1 (T - Y)l’z ds = 0. Cell 
to 

The kinematic metric gij is defined by the quadratic from of the kinetic energy 

T = $(g”‘&j,). (e2) 

For a spinning top this means, unfortunately, that the metric gij is of the form 

gij= k I, co;e), (e3) 

i.e., the path described by a geodesic (el) has a locally nonorthogonal coordinate 
system. This is hardly surprising, since the local map (0, 4, #) --f (x, y, z), 

z = cos e, 
y = -sin 19 cos 4, 

x = sinesin+, 
(4 

satisfies the constraint 

x2+y2+.2= 1, (es) 

i.e. the motion is restricted to the surface of a unit sphere, and we can not 
produce a global orthogonal system restricted to the surface of a unit sphere 
in R3. 

Alternate sets of variables have been proposed by various authors, for example, 
Sansb [S] or Lattman, the general idea being to embed the problem in a four- 
dimensional space, so that the motion of a rigid body takes place in a three- 
dimensional subspace equipped with a global orthogonal system of coordinates. 
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Following Sansb we introduce coordinates q,, , ql, q2, q3 (which may be 
complex valued) such that 

3 

c qi2 = 1. (e6) 
i=O 

We simply postulate that the kinematic metric is Euclidean (and now we get 
away with it), i.e., 

ds2 = c2 i (dq# ) 

( ) 2=0 
(e7) 

where C is a real number which may be chosen later for the sake of physical 
convenience. San& and Evans have discovered that writing the equations of 
the rotation vector in terms of the four quantities qi , we have the following 
representation: 

with 

(e9) 

The constraint (e6) becomes: 

The quantities qI can be regarded as components of the quaternion Q x 

ho - k - jq2 - Kq3 . 
We notice the following facts. The matrix A is orthogonal. However, in the 

corresponding three-dimensional representation, the rotation matrix assumes 
the following form: 

B= 

I 

402 + 412 - 422 + 432 --2k?oq3 - 4241) 2(qo42 - 43%) 
2kzoP3 + q2q1) PO2 - a2 + !h2 - 432 --2(qoq1 - 9243) s 

--2(qoq2 - 4193) 2(Po!h + 4243) Qo2 - 412 - !722 + 432 I 

which is in general nonorthogonal. 
The advantages of quaternionic representation become apparent. 
The required variational representation is an easy consequence of the ortho- 

gonality of A. Since A*A is positive if A is of the form a0 + i(a,i + a2j + u,K) 



QUATERNIONS, FFlhCHET DIFFERENTIATION 197 

where the ai are real, we can adopt a convention that rotations will be represented 
by quaternions of that form. This does not violate any previously made assump- 
tions, and is exactly the representation of San& [5]. Denoting (A*A)li2 by GZ, 
we can rewrite the equations of motion for the rigid body in the form 

where 

or, factoring 6Y out, 

ay = w, 

CY = T*T, 

TY =P, 

T*p = w, 

which is a standard canonical form (See Noble [4] or Arthurs [7]). 
In classical mechanics p does not have an obvious physical interpretation. We 

could refer to it as the $ spin, or simply as the generalized momentum conjugate 
to the generalized coordinate r(t), f o 11 owing the Legendre transformation 

p = U/a(Ty). 

Comment. Evans and Sansb defined their quaternionic coordinates in terms 
of the Euler angles (within a sign change) as follows: 

40 = c4v) co+! + 4/2, 

ql = sin(8/2) cos(+ - #)/2, 

q2 = sin(Oj2) cos(C - #)/2, 

q2 = cos(ej2) sin(+ + #)/2. 

f. Dirac Equation, van der Waerden Equations 

Let 01 be an operator represented by components 
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let /I be the matrix 

Then the equation 

10 0 0 
01 0 0 

B=oo-1 0’ i 1 0 0 0 -l- 

W) 

V3) 

is the original form of Dirac’s equation. It was at first regarded as a relativistic 
version of the Schrodinger equation. 

The original form of Dirac’s equation (f3) can be manipulated into various 
alternative forms. For example, defining matrices 

Y”=o [ 1 0 19 1 0 0% Y= [ I Ui 0 ’ w 

where the ci are the Pauli matrices (i = 1,2, 3), the Dirac equation may be 
written as a pair of equations 

&(i/m) pa/a(d) - V . CT) xL = xR, 

h(i/m)(ia/a(cf) + v . u) XR = xL. 
(f5) 

By eliminating either xL or xR, one obtains the van der Waerden equations 

-w2> q x”(x) = XL, 

-(l/mZ) IJ X”(X) = XR. 
(f6) 

We define the operators 
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This enables us to rewrite the Dirac equations (f5) in the generalized canonical 
form 

AXL = XR = aHjaXR, 

A*XR = XL = aHIaXL 
(f7) 

with the Hamiltonian given by 

H = B[VxL, x”> + lx”, A*xR)I. m 

4. A THEORY OF CRITICAL POINTS OF QUATERNIONIC FUNCTIONALS 

The theory derived here parallels the known results summarized in Vamberg’s 
monograph [6]. The difficulties which arise are of a purely algebraic nature. The 
arguments of purely analytic nature can be reproduced without many changes 
from the well known texts. For an excellent review of some topics in applications 
of FrCchet differentiation we recommend the article by Nashed [9], the original 
reports of Noble [4], and the monograph by Arthurs [7]. 

Notation. q(x) ELLS) denotes that each component of q(x) = c,(x)1 + 
cr(x)i + cz(x)j + c&)K is an L.&I) function. The norm of q(x) is 11 q(x)\1 = 
{&, jl c~(x)\\*}~/~. With th’ IS norm topology we define continuity of a map from 
Lie’(sZ) to the scalar quaternion field by requiring that each component of 
Q(q(x)) is continuous, that is, Q(Q(x)) = a,1 + a,i + a,j + a,K is a continuous 
functional of q(x) if each element of Q(q(x)) continuously depends on q(x). 
This implies that whenever {aZ(x)} --G?‘(o) - q(x) then the corresponding sequences 
of numbers converge: a&,(x)) +Lz(o) ai(4(x)), i = 0, 1, 2, 3. We shall consider 
quite arbitrary functionals generally mapping quaternions or, q2(x),..., qn(x) 
into a constant quaternion Q. 

The simplest case involves a bilinear, or a sequilinear form 

i.e., 

Q = ‘& 7 ~72) ‘fZf j-, M-4 x q2(4) dx, 

Q = BQo + iQ1 + jQ2 + KQ3 

where, for almost each x E s2, la,(x) + ia, + ja,(x) + Ku,(x) = ql(x) x q2(x). 
-general the product { , }n will be defined by the formula {qr , p2} = so (Q&) x 
q2(x)) dx-where as before x denotes quaternionic multiplication and the bar 
denotes conjugation. The sequilinear property of {qr , qZ}n arises naturally. We 
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postulate cQ(qr , 4s) = Q(cq, , 4s) = Q(qr , ~q,) to ensure the usual inner 
product property of (qr , qs} if the i, j, and K components of qr and q2 are equal 
to zero. 

Unfortunately we have to distinguish between right and left FrCchet deriva- 
tives. The rules of differentiation are introduced as follows. 

The identities 

define, respectively, the left and right FrCchet derivatives 4, #, whenever they 
are satisfied. 

If Q has only one nonzero component (assume without any loss of generality 
that i, j, K components are equal to zero), then the sequilinear property of the 
product { , } implies /J = 4. Hence FrCchet differentiation of sequilinear 
complex- or real-valued quaternionic functionals is uniquely defined. So far 
in mathematical physics we have only encountered the case when the functionals 
were either real or complex valued. However, the general theory requires 
considerable discussion, carefully separating the right and left differentiation. 

For this reason we shall denote the right and left factors of sequilinear 
quaternionic products by 1 +J and {qr 1, respectively, in a manner borrowed from 
Dirac’s bra-Ket notation. Then 

implies the correct left or right multiplication in the reconstruction of the 
original functional Q. Moreover we can borrow the physics notation and denote 

This is equal by the definition of A* to {ql, A*cJ,). The “right” or “left” 
definitions are promptly ignoted if the functional is complex or real valued. For 
the scalar case, when the quaternion-valued functional possesses only one 
nonzero component, the entire FrCchet differentiation theory as outlined by 
Vainberg [6] can be reproduced with only minor modifications. For the general 
case this theory needs to be rederived. We shall start this project with a technical 
lemma. 

LEMMA 1. Let Q(q(x)) be a functional p assessing the left Frtkhet deriwative. 
Then it possesses the right Frkhet derivative and the critical points of Q with 
respect to left dz&rentiation are the criticalpoints with respect to the right dzgerentia- 
tion. (A critical point e is the point at which the derivative vanishes.) 
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Proof (a direct computation). In what follows we may consider quaternion 
valued functionals of n-copies of Li4’(Q), which may be considered a product 
space @b(Q) = Lh4’(s2) X Li4’(Q) **. Li*‘(sZ) with an obvious definition of a 
quaternionic n-product q(l) x q(2) = {@ x q\“), &’ x &’ *. * qil’ x &)}, where 
q is the n-tuple q = {nr , q2 ,..., Q~}, q, ELF)(Q), q, EL;)(Q) ,..., etc. Left and 
right FrCchet differentiability is defined in an analogous manner. 

Before proving the basic Theorem 1, we need to introduce some definitions. 

DEFINITION. A curve in L!&(Q) is a continuous mapping from R into 
Li4)(sZ). (Continuity is defined with respect to Li4’(Q) norm.) A line passing 
through a point 4 in the direction of 7 EL::(Q) is the collection of all points of 
the form 4 + tq, --oo<t<+a3, q=q1,q2,...,qn. 

LEMMA 2. Suppose that @(q(x)) is a real-valued functional dejined for all 
q EL;::(Q). Then a necessary and suficient condition for @(q(x)) to attain a local 
minimum (maximum) at q = 4 is that @p(q) attains a local minimum (maximum) 

at 4 on any line passing through q in LL:Jra). 

Proof. This foll ows almost directly from the Bing-Anderson theorem on 
the structure of a separable Hilbert space. 

COROLLARY. @(q(x)) attains a local minimum at q = 4 if it attains a local 
minimum on any curve passing through 4. 

THEOREM 1. Let us consider a real-valued functional G(q), q CL::;(Q), 
possessing Frtkhet derivatives in some neighborhood of ti E L&(Q). A necessary 
condition for a local extremum of G(q) at ij is the vanishing at 4 of the left (OY right) 

gradient of @. 

Proof (almost trivial). Suppose that 0 is a local extremum of @; then 
@(q + + tT) - Q(q) = t{T, &D/aq} + o(t’) and for sufficiently small / t 1 if 
a@jaq # m , we can choose 7 such that (q, i%D/aq)(,, is positive (or is negative) 
denying the fact that q was an extremal point of @. 

Note 1. Clearly this is not a sufficient condition for an extremum of @. 

Note 2. The right or left gradient of @ is not generally real- or complex- 
valued in any region of L$(Q) even if @ is. 

AN EXAMPLE. The Hamiltonian (f7) generates the corresponding Lagrangian 

2’ = H - {AX=, x”}. 

If {AxL, x”} is a scalar we need not distinguish between right and left deriva- 
tives, and the vanishing of the derivative of the Lagrangian is equivalent to the 



202 V. KOMKOV 

existence of a solution of the system of equations (f7). If (AxL, xR] has more 
than one nonvanishing quaternionic component, clearly this simple analysis is 
no longer applicable. 

5. A CLASS OF BOUNDARY VALUE PROBLEMS 

Let T be a quaternion operator of the form 

T = T,J + T1i + TJ + T~K, 

where rO , r1 , ra , ~a are operators mapping a Hilbert space i&, into a Hilbert 
space H*. (Note: H6 may be actually a direct product of Hilbert spaces: 

% = Xi”=, Hb > with ri acting only on H,, , i = 1, 2, 3, 4, but this is an un- 
important technical detail, which will be ignored here.) T* denotes the quater- 
nionic adjoint of Tin the same sense as in Sections 3 and 4, i.e., for any quater- 
nions + E Hd4, 4 E Hb4 (H4 = H @ H @ H 0 H), the following equality holds 

for all + E H6”, t,h E H,“. 
Suppose that Hilbert spaces Hd, , H,,,, are spaces of functions confined to 

regions Q, , Qn, of Rn, Rm, respectively. For the sake of simplicity we shall take 
n=m and Q,=Qn,=Qn, with Hda=H,t=&,=H,,Li,j=1,2,3,4. 
The boundary of &? will be denoted by iiQ, and Q u %Q by Q. 

Again T and TX are quaternionic operators such that the products (T$, #)H#4 , 
(4, T*#)H44 are real valued and are related by the following equality 

where fW, V%D is a number which ordy depends on the behavior of the com- 
ponents of + and I,!I on aQ. 

Moreover we shall postulate that there exists a linear map o such that all 
components of quaternions u$, # restricted to X? are square integrable, and 
the product 

exists and is real valued for all 4 E Hm4, all $ E H44. Then we can define the 
adjoint operator u* by the equality 
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We shall consider a class of boundary value problems. 

(4.2a) 

(4.2b) 

(4.3) 

Assuming that all products are real valued, the existing critical point theory 

can be applied immediately to this class of problems. See [6, 7, 91. The corre- 
sponding Hamiltonian and Langrangian are given, respectively, by 

H = t% t4xJpfn, + (4, .&.r4qn, - (4.4) 

= PA hJP{R) - H + ((4 - CL), #>a, 
= V4, #lH$fnj - H - ff. 

These equations can be written in the following form: 

PA ?4,,4 = 1% 9 41Hti4 in 

+A T*&+a = 1% > +\H+4 in 

u4 - 4, Ilr)aa = 1% 7 $1,, in 

{4,u*1Cl)aa = 196 T/,, in 

The following variational problems can be formulated. 

9 

(4.5) 
sz 

an 

(4.6) 
aa. 

If L is convex in 4 and concave in I/I in a neighborhood of a point z,, = ($a , I/J,,) 
such that 

then the point a, is a min-max point of L. We need to comment that aside from 
conditions 4 E H4, 4 E H*, the functions (5, t/ need to be continuous in some 
neighborhood of the boundary as1, in some sense, otherwise the boundary 
value problems lose all physical meaning. 
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CONCLUDING REMARKS 

In the case of real-valued functionals major parts of known boundary value 
theories may be routinely rederived with changes effected in only the algebraic 
rules. See, for example, [lo] or [I 11. Moreover, as was shown by Gurtin [12] 
the inner products for quaternionic components in the formulation of the 
Li4’(Q) theory can be replaced by convolution products or other bilinear forms 
whenever the operator occurring in the physical problem acquires symmetry 
with respect to the new bilinear form. 

The numerical bounds and estimates similar to [II] are deliberately omitted 
at this stage of research. However, arguments parallel to Arthurs [7, Chap. 31 
with computation of upper and lower bounds of Lagrangian functionals should 
be derived for specific quaternionic formulations of physical problems to 
establish the usefulness of the general theory. 

APPENDIX 1: THE QUATERNION ALGEBRA 

The quaternion units (1, i, j, K} obey the multiplication table: 

1 i j K 

. . 
-K-l * 

The usual (componentwise) addition rules are postulated for quaternions. Ring 
structure is assigned with respect to the operations of addition and multiplica- 
tion. 

Some algebraic properties of quaternions are listed below. 

(a) Multiplication is associative; i.e., 

91 x (93 x q3) = (41 x a) x q3 

(obviously it is not commutative). 

(b) Division is defined, except division by the zero quaternion 

o =I.O+i.O+j.O+K*O. 

In fact, the division formula is easily derived. Given 

A = la, + ia, + jaz + Ku3 (ai E RI 
and 

~3’ # C = lc, + ic, + jcz + Kc3; (ci E R) 
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there exist quaternions p1 and p,. such that 

A = &C = CP, . 

The proof involves the solution of four equations in four unknowns with the 
determinant of the coefficients being equal to 

D = i cz4 + i ci2 
i=O 2=0 

which is nonvanishing, unless c, = c2 = cs = c4 = 0, i.e., unless C = o 
(the zero quaternion). 

The vectors of the coefficients of p1 and p, are given by 

respectively, where 

Pz = Y-l% 

P, = (YT)Y% 

and yT is the transpose of y. 

APPENDIX 2: FRBCHET DERIVATIVE 

We illustrate the definition of a left (right) FrCchet derivative by offering 
easy examples. 

(a) Compute the derivative off(q) in the direction of q2, where 

P = a,(x)1 + dx)i + a2(x)j + a&W, XERn, 
and 

f(Q) = Cl(Q x 4) + C2% 

and q2 is an arbitrary nonzero quaternion. 
We compute 

f(n + l 72) -f(n) = 42Qocl+ c2h72 - 
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Hence, the FrCchet left derivative exists and, as asserted in Lemma 2, it is a 
scalar 2a,c, + cs . 

(b) It takes an elementary computation to show that, for a product 

the FrCchet left derivative with respect to q1 is defined and is equal to q2 . 
Observe that 

Q(ql + 4 - Q(qd = {~qd. 

EXAMPLE 1. Consider the case of the beam equation 

Lw = AA*20 = s(x, t), 

where S(X, t) is the applied load. 
The Legendre transformation takes the form: 

A* W = [i -& + j (5 (D(x, Y))“~ $)] W= P, 

Ap = [i g + j gi (w,Y)Y’~ &] (h + h> 

= I(@, 4, 

A*w = aH/@, AP = awaw, 
where 

H = &{w, AA*w] = +{A*w, A*w} 
T 1 

1 
E2 o Li (4x, t) .4x, 4) dx df = HP,P). o 

As before, ( , > denotes the quaternionic product, while . is the ordinary point- 
wise multiplication of scalars. The apparent negative sign of the energy product 
( , > is retained in the pointwise product 

T I 

t is w(x, t) . s(x, t) dx dt 
0 0 

since s(x, t) is the negative of the force applied to the beam. 
The Lagrangian 9 is given by 

cY=(A*w,p)-Z={w,Ap)-X. 

A solution of these “canonical” equations coincides with the critical point I, ti, 
exactly as in the classical theory. 
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APPENDIX 3: BILINEAR MAPS 

Properties of bilinear maps 

i D qdx) + PZ(X> dx = JM4, Q&N 

(where J belongs to the ring of constant quaternions). 

BASIC LEMMA. A necessary and su..cient condition for the stationary behavior 
of J is q1 = q2 = 0. There are no other critical points. 

Proof. Regard $ as fixed. Suppose that J(d) is a critical point of J(+, 4). 
We perform FrCchet differentiation, i.e., we vary 4 by substituting + = 4 + E[, 
E E R, E controlling the magnitude of E, 

labeling 

etc., we obtain 

Stationary behavior of the quaternionic integral J($, $) implies stationary 
behavior of each component. Hence, dividing by E and letting E approach zero, 
we obtain the required result, namely LIJ+ = 0 implies that for every [, 

jn(4 x$W =Q which is possible only if 4 = 0. 
A similar result is obtained by fixing q1 and varying q2 . 
The converse is trivial. 

COROLLARY. Aq, = 0 is a critical point of 

J(& 9 qt) = I, (4, x qiJ dx 
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and 

4, = a&/aq3 , A*q, = azjaq, 

are critical points of 

&I T 431 - m71 > q32), 

where &‘(ql , qJ is an arbitrary map of quaternion-valued functions ql(x), q2(x) 

into the complex numbers under the symmetric dt$erentiation dejinition. 

Note. &%/aq is uniquely defined if the map SF: (Q(x) @ Q(x)) + Q is one 
dimensional, i.e., it is either real or complex valued, since then the “right” and 
“left” derivatives coincide. 

APPENDIX 4 

THE RIESZ REPRESENTATION THEOREM, LAX-MILGRAM THEOREM. Let 
Q (=a,1 + u,i + a3j + a3K) be a quuternion-valued functional Q = Q(q(x)), 
x E l2, which is linear in q(x) and continuous in the Li4’(J2) topology (i.e., q(x) 
-+Lk”’ 0 implies Q + a), then there exists quaternions $1(x), C&(X), such that 

Q(q) = s, Mx) x q(x) dx = s, q(x) x Mx) dx 

for every q(x) ELi4)(12). M oreover, C& , & are unique in the Li4’(J2) sense. 

Proof. We shall prove only the existence of &(x) since the argument con- 
cerning the existence of +a(x) is identical. Since Li4’(sZ) is a Hilbert space (observe 
that algebraic properties were not used in the definition), the continuous linear 
map q(x) + a%(q(x)) (i = 0, 1,2, 3) satisfies the requirements of the Riesz 
representation theorem. 

We shall simply construct a quaternion 4(x) with the required properties. 
If 4(x> = go(x)1 -!- gdx>i + @dx>j + @3(~)K 

Obviously, Q linearly depends on q(x). Let us select one of the components 
of Q, say a2 = (%?,,~a + c$?,) + (+?aci - Vita). a, does continuously depend 
on q(x) regarded as a four-component vector 
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Hence by the classical version of the Riesz representation theorem there exists 
a vector B such that Q = ssa Cyz, (ciBi) dx. B is identified with 

Repeating this argument for each component of Q, we conclude that there 
exists 4(x) satisfying the left multiplication property. Q.E.D. 

An almost identical argument works in the proof of the Lax-Milgram property, 
which is stated as Lemma 4 in this paper. We shall not repeat the arguments. 
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