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Introduction 

We considered the Green's function for exterior thermoelastic 
contacts in a previous article [i]. Here we give the Green's 
function for the interior contact problem. For interior con- 
tacts, such as in problems of the Hertz type, it is convenient 
to write the governing integral equations on the contact zones 
and to match derivatives of normal displacements rather than the 
displacements themselves. The Green's function again consists 
of two parts: A thermal field corresponding to a combination of 
a heat source and a sink, positioned at the surfaces of the 
bodies, and a mechanical field induced by a pair of concentrated 
forces. The latter is readily obtained from the Flamant solu- 
tion [2] but, for the sake of completeness, we write the fields 
in detail. 

Heat Source and Sink 

Consider the temperature distributions 

T 1 - ~k I logr, T 2 - nk 2 logr (1,2) 

where I is a constant. If I > O, these temperatures represent a 

heat source of strength I acting at the surface of the upper so- 

lid, and a heat sink of the same strength at the surface of the 

lower solid. The components of heat flux derived from (I) and 
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(2) are 

( 1 )  ( 2 )  _ k x ^ ( 1 )  _ q $  _ qx - qx ~ 2' = 2) X y Uy ~ 2 
r r 

(3,4) 

The free expansion displacements corresponding to (i) and (2) 

are 

u(l) _ X~l 
x ~ {x(logr-l)+y(~-@)} (5) 

u (2) = k62{x(logr-l)-y(@-~)} (6) 
x 

u(1) ~61 - { y ( l o g r - 1 ) - x ( ~ - @ ) }  (7 )  
Y 

~ 2 { y ( l o g r - 1 ) + x ( @ - ~ ) }  ( 8 )  u ( 2 )  _ 
y 

Of particular interest toward formulating the interior contact 

problem are the temperature discontinuity across the interface, 

the heat flux transmitted by the interface and the gap developing 

between the solids due to the free expansion displacements. 

Shifting the source-sink configuration to the point (6,0) on the 

interface, the results are 

dT(x) _ d ( ] ( ~ ]  _ ~ kl+k2 1 (9) 
dx d x [ T 2 " x ' 0 " - T 1  " x ' ~ ' '  ~ k l k  2 x - ~  

q(1)(x,O) (2)(x o) = X6(x-~) y = qy  , 

dg(x) ~i) ) 
'dx ' = [u ( x , O ) - u ~  2 ( x , O ) ]  

( lo)  

= k ( 6 1 - ~ 2 ) H ( x - ~ )  ( 1 1 )  

If a source-sink combination with the density h(x) is distributed 

over the interval (a,b) on the interface, 

d%(x)  _ 1 k l + k 2  ~b A(~)d~, 
dx ~ klk2 ] a x-~ 

(12) 

q y ( x , O )  = A(x)  ( 1 3 )  
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~ r  ~ x ,  _ 0 x < a  
d x  

fx 
= (~i-62) A(~)d~, a<x<b 

a 

? = (~i-62) A([)d[, b<x 
a 

(14) 

Concentrated Forces 

Suppose that concentrated normal forces are applied to each of 

the solids. Both forces are of magnitude f and act in a ten- 
Y 

sile direction. Since their directions are opposite, they satis- 

fy Newtonis third law. If the forces are applied at the origin, 
. P 

the induced dlsplacements and stresses in the coordinate system 

shown in Fig. 1 of the previous article [I] are given by the fol- 

lowing expressions: 

f 
Ux(1) _ 2~ulY [15(KI_I) 0 + X~}r (15) 

f 
(2) Y + (16) 

Ux -- 2~2 ~" r 

f 2 
u (I) - Y :{l(<l+l)logr + ~-~} (17) 
Y 2~ 1 

r 

f 2 
Uy (2) _ 27r~ 2y [2~(<2+l)logr + ~-~}r (18) 

2f 2 
o~lJ' ~ = _o~2J' ~ = y x y (19) 
xx xx ~ 4 

r 

2f 2 
o(1) = _o(2) _ y x 
xy xy ~ 2(1 - ~) (20) 

r r 

2f 2 
o (I) = -o (2) = ~f --Y2(I - %) (21) 
YY YY 

r r 
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For the pair of concentrated forces shifted to the point (~,0), 

the quantities of interest are the mismatch in the derivatives 

of normal displacements 

f 
dg(x) d [u(1) (2)(x 0)] = (22) dx - ~-~L y (x, O)-u y. 1 

' 2~M x-~ 

and the normal tractions 

Oyy(X,O) = fy~(X-~) 

If the pair of forces is distributed with the density Fy(X) on 

(a,b), 

dg(x) _ 1 ib Fy(~)d~ 
dx 2~M a x-~ (23) 

qyy(X,O) = Fy(X) (24) 

Conclusion 

A summary of the results is given in Table I, where the limits 

of the integrals are written so that several zones of the types 

encountered in contact problems are automatically accommodated. 
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