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GROUND STATE ENERGY OF SMALL ELECTRON—HOLE DROPS*
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The ground state energy of small electron—hole drops is calculated for
droplets ranging in size from 10 to 10,000 pairs. A new value for the
bending energy of 1.1x10’° erg/cm is derived. We also give a simple
highly accurate formula for the total energy per pair. The surface
energy is extracted from the total energy and found to agree well with a
previous self—consistent calculation. The density at the center of the
drop remains essentially constant over the entire range of N, indicating
that the drop is not dramatically compressed by the surface tension.

I. In the electron—hole liquid electrons shown that there is no substantial compression
and holes are metallic and delocalized. Hence of the droplet density due to the surface ten—
the theory of the electron gas (suitably modified sion as has been suggested.

6 The self—
to account for bandstructure effects) can be used consistent results are mainly used to provide
to determine the energetics of the droplets to a a check on the gradient expansion calculation
high precision in non—polar materials. Electron which forms the core of this paper. In a later
gas theory was first applied to the bulk energy paper we will discuss the self—consistent
of the EHL by several investigators, and good results including the level structure of small
results for the ground state energy and density drops, shell effects, work function and varia—
were obtained;’ other investigators successfully tion in the recombination luminescence lineshape.
applied the theory of the inhomogeneous electron The structure of this paper is as follows. We
gas to the EHL surface.2 One area which has not sketch the density functional theory, and the
been studied is the transition from large drops two forms of this theory which we have used in
(where the number of pairs, N, is >10,000) to this paper. Then we present our results for the
small drops (lO<N<lO,000) to exciton complexes droplet energy, and the variation in density at
(N<lO). In this paper we use the density the center of the drop.
functional theory of the inhomogeneous electron
gas to study small drops. This region is II. The density functional theory for
particularly interesting because it is here that degenerate Fermi systems rests on constructing
quantum size effects begin to appear. Since and minimizing the energy as a functional of
there are no ion cores, the EHL provides a the density.3 ‘~ The energy functional which we
simple system in which to study the appearance minimize here is given by
of these effects.

We present calculations of the ground energy E[n ~ T~n (~)J+T1’[nn(~)]
of small drops in umstrained Ge with N=lO to e e
Nl0,000. Self—consistent solutions of the -~ + + + 3+ 3+

Kohn—Sham3 equations were obtained for N<120, ~ ))d rd r
while solutions for lO<N<l0,000 were obtained + +,

using the gradient expansion for the kinetic r — r
energy.’~ Results of the calculation are a
simple formula for the total energy per pair as I + + 3+

a function of the number of pairs in a drop. We + jtxc(fle( ,n
1(r))d r

were able to use self—consistent results for
N<120 to obtain an estimate of the surface The fourth term gives the exchange and correla—
energy. This value is consistent with an tiom energy contribution to the total energy.
independent and quite different calculation of Here C is a local approximation to the exchange
the surface energy by two of us (JHR and BBS).

5 and co~elation energy per unit volume. The
We report a new and much larger value for the third term on the right is the electrostatic
bending (curvature) energy. Finally it is energy. The first two terms T~[neC~)] and

_________________ are the kinetic energy of non—
* interacting electrons and holes with densities

Supported by the NSF. ne(r) and nh(r) respectively. T5 and Th can be
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determined (for a given model) by solving respect to the problem of the bound multi—
the self—consistent Kohn—Shamequations which exciton complex).
are written below for the electron component. Finally, we have simplified the energy cal—

eulation in several ways from the more complete
V

2 e (~)+Ve ± )~e (r) calculation.5 Hence the results obtained here
2m ~n~m eff e~”h~ nim

e (2) should not be regarded as supplanting the
e e ~ previous results in the limit as N~.

= e~~)~(3~) For N>120 we run into serious numerical

problems. However, above N~lOOthe shell
effects (i.e. the effects of the discreteness

— f(nj
3(~’)_ne(~’))d~r of the energy levels from the solution of Eq. 2)

eff(r)
become much less pronounced and a statistical

V —— Ir’ — rj
(3) approximation provides a good description.

Therefore we replace the self—consistent

+ dn( E (n ~ ) expressions for Te and Th with the gradient
r) xc e h expansion of Reinecke and Ying. ~ For the

density we use the approximation that ne(~) =

and nj~,(r) S n(~) and the following variational form

occ n (1 — 11

3(r—rO)) r<r
n (r) = 8 ~ ~b (r)12 (4) n(~) = o 2 0 (7)

e nm nim 1—~(r—r,,) r>r

02 0
We use a spherical approximation in calculating

the electron and hole dynamics, and hence we can Using Eq. 7 and the Reinecke—Ying expressions
use the quantum numbers n,i,m. The electron for Te and Th we minimize the total energy of a

eigenvalue given above are and the eigen— droplet (Eq. 1) by varying the parameters n

0,~
function are ~nim(~)~ The f~c~orof 8 appears and r0. Since we require that the droplet

contain a fixed number of pairs, N, one of thein Eq. 4 to account for the electron degeneracy -

where we have four equivalent conduction minima variational parameters is constrained and we
have two free parameters.and two spin states per minimum. The mass m5 is

Some care is necessary in the numerical
the density of state mass. The complicated Va— - -

lence band structure is replaced by a single minimization since we are looking at the inter—
spherical band whose mass is chosen to reproduce play of surface and volume effects. Because of

this, large changes in the parameters can
the density of states of the hole bands.

Once Eqs. 2—4 are solved self—consistently correspond to small energy changes, and it is
along with the analogous equations for the holes, necessary that the energy be calculated very
we obtain the kinetic energies Ye and Th from accurately. Since we are examining drops with

up to 10,000 pairs in the gradient expansion,
straight numerical integrations in evaluating

0cc te ± ± ±

Te = 8 ~ Senf,m — j”eff~~” (r)d

3r ~ Eq. 1 would be difficult. To avoid theseproblems we expand the energy for r<r
0 in anim

power Leries in terms of ‘i eB(t~ro). Once this
and expansion is made we can do the integration

occ f 3~ analytically and perform the sums. The
Th = 2 ~ — Iv (r)nh(r)d r (6) requisite accuracy is obtained and the minimiza—

nim j eff
nim tion proceeds straightforwardly.

We should note that the gradient and self—
Thus we determine Eq. 1 and the ground state consistent results are calculated in slightly

energy and density of the droplets. different models; the gradient calculation
Several cautions are now in order. We must contains corrections for the valence band

in principle project out the center of mass coupling and the asphericity of the conduction
motion of the droplet when performing a varia— bands. These small corrections were neglected
tional calculation. The error in the total in the self—consistent calculation.
energy, if we neglect to do this, is inversely III. Both the self—consistent and the

proportional to the mass of the droplet (AE = gradient expansion technique yield estimates for
p

2/2M, P,M are the momentum and mass of the con— the surface and the bending energy. Alter
ter of mass). Hence the error in the energy per performing the summation procedure

pair scales 1/N2. For a single exciton, the of the last section (and minimizing) we find that
error due to the ceoter of mass motion is about the following expression for the total energy of
one quarter of the exciton bending energy. For a a droplet with N pairs:
drop with ten or more pairs, we expect the center
of mass error to be less than .01 mev per pair.

41rR3 N + 4aR2csN+ 8lrReN + const + (e~).
A second caution arises from the fact that EN = ~—~—— eb c

we have replaced the complicated band structure
of Ge by a simple spherical model based on the (8)
density of states masses. Such a model gives
rather good results for the surface energy of Here R = (3N/4lrn

0Y”

3 is the radius of a uniform
large drops (N-~-°’). However, for very small drop of uniform density, n~, out to its boundary.
drops the complicated valence band structure may The expansion coefficients e~, ~ and e~have the
influence both the calculated energies and following interpretation. For a given N there
certain shell effects. An investigation of these are a set of variational coefficients n

0, ~, r0
effects is currently underway (primarily with which minimize the energy. Then is the bulk
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TABLE 1. Values of the density at the center of the drop, n
0,

and the total energy per pair, E/N, are shown along with aN and
e~. All values are shown in effective atomic units with the
effective Hartree = 5.28 mev and the effective Bohr orbit l77L

N n E/N eN
0 C

10 1.25 —1.03 .071 .015
30 1.34 —1.09 .072 .017
50 1.36 —1.11 .072 .018
100 1.37 —1.13 .072 .019
200 1.37 —1.15 .071 .019
500 1.36 —1.16 .070 .020

1,000 1.35 —1.17 .070 .020
10,000 1.32 —1.19 .070 .021
bulk 1.30 —1.20 .069 .022

energy per pair for a drop with density n0, considered a planar surface of the EHL. Our
Similarly aN and e~are the surface and curvature value for a is in very good agreement with their
energies evaluated for the n0, ~ and r0 of a most recent result.

8 The value of the bending
given drop with N pairs. When N-~°’we obtain the energy is much larger than the only other
volume energy Eb, the surface energy a and the calculation of this quantity by Buttner and
bending energy e~. Table 1 gives values for aN Gerlach.9 However the difference between their
and e~. We obtain result and ours stems from the fact that we used

—4 2 an improved correlation energy and the Reinecke—
a = l.8(5)XlO ergs/cm Ying version of the gradient expansion.

d An estimate of the surface energy can be
an —10 (9) made from our self—consistent calculations for

ec = l.lXlO ergs/cm . N<l2O. First we re—express Eq. 8 in a way
which makes the N dependenceexplicit.

In the large drop limit (N-~°~)our calculation 4rr3 N N 2’3 N l’3
for the surface energy reduces to the form of EN ~ ebN + (4i1r2)a N +8irr e N (10)
the calculation of Reinecke and Ying who S S c
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Figure 1. Plot of F versus N’1~. A value of a l.9xl0~’
ergs/cm2 is extracted for the self—consistent value of
the surface energy. The solid lines are included to in-
dicate the uncertainty in the slope.
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Figure 2. The gradient result for AE (solid line) compared
to Eq. 12 (dashed line). The x’s are the results of the
self—consistent calculation. Their deviation from a smooth
curve shows the importance of the shell effects in determin-
ing f~E.
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Figure 3. Variations of density at the center of the drop
in the gradient expansion.

Here r
5 is the radius of a sphere containing one (4~r

pair at density m0, (4Irr~/3 1/n ). If we ~
2/3 .~ e~ ~ 1/3

assume that r5 and the coefficients of N,N , F 1/3 = (41rr5)GN + Bvrsec (11)
are relatively Constant as a function of N, N

we can replace them by their limit as N-~. Then 1/3
we define a function F We plot F versus N and obtain a and ec as
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shown in Fig. 1. The resulting value for the the right hand side is the bulk energy per pair.
surface energy a is I~l.9xlO~’ergs/cm

2. This is Eq. 12 gives essentially exact agreement with
in acceptable agreement with a value of a = the results of the numerical calculation for
l.6xl0~ which can be obtained from the self— N>150 and even agrees within 10% down to N10.
consistent surface calculation of Rose and Shore The small discrepancy for N<l50 can be traced
who considered the case of an EHL surface at a primarily to the fact that 8TrReN/N varies with N.
semi—infinite half—space.5 The relevant The discrepancy would be removes if we had used
comparison is with model B of that paper, when e~instead of ec.
the Reinecke—Ying correction, Aa

5, is subtracted. There has been some speculation concerning
The value of the bending energy deduced from the possible compression of the END by the
the above analysis is quite uncertain but is surface tension. Using a simple phenomenological
consistent with ec = l.lXlO~’° ergs/cn obtained model Benoit et al.

6 have predicted that substan—
using the gradient expansion. tial compression of the droplet might occur.

In Fig. 2, we plot a binding energy, LsE, as However, in experimentally analyzing the effect
a function of N. L~Eis defined as the total of droplet size on the recombination lumines—
energy per pair minus the binding energy, e ‘ cence, they found that the proposed effect

exof the exciton (4.15 mev). The solid line apparently did not occur. In Fig. 3 we plot the
gives the result for the gradient expansion, gradient expansion result for the density at the
The self—consistent results are denoted by the center of the drop. We see that the droplet is
crosses. The relative importance of shell only very slightly compressed, and has a maximum
effects in determining the binding energy can be central density for a drop with about “100—200
seen in the scatter of the self—consistent pairs. For smaller numbers of pairs our theory
results, predicts that the central density decreases.

An interesting question is: how well can The results of the gradient expansion technique
we predict the binding energy of small droplets are only approximate for the density profile
knowing the properties of the large drop since the gradient expansion theory leaves out
limits (N-~)? Using Eq. 8 obtain (~‘°) Friedel oscillations and related effects. None-

theless, the results do indicate that there is
= Rb Rex + 4TrR’a/N + 8iiR Sc/N (12) no dramatic compression of droplets for a small

number of pairs, in agreement with the

Here R is the droplet radius determine using the experiments mentioned above.

density n
0 of the bulk EHL. The first term on
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