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Abdract-A p&xiii array of interface cracks is considered as a simple model for study& interface crsck 
interaction. The novel future of the solution is the eiination of the oscillatory singularities and of the 
material ovalrpping which is accomplished by aIlowing frictionless contact zones at the crack tips. The 
results are obtaid for a combii of shear and tension-compression loads applied at infinity. It is 
shown that the stress intnsity factors become smaIkr with decreasing diW between the cracks. This 
indicates that the spreading of an interface crack is inhibited by the presence of adjacent cracks. 

INTRODUCTION 

Interface flaws and cracks are of fundamental importance in the fields of composite materials, 
rock mechanics and hydraulic fracture. Depending on the application, the growth or coales- 
cence of pre-existing cracks must either be prevented or enhanced and it is imperative to know 
whether the interacting stress fields lead to mutual attraction or repulsion of the cracks. A 
comparison of the stress intensity factors of the interacting cracks with those of a single crack 
may give an indication. Thus, the natural problem to study first is the inttraction of two 
interface cracks. For the purpose of gaining insight, however, the computationally simpkr 
problem of an array of periodic interface cracks is considered in the present paper. 

The interaction of interface cracks is by no means a new probkm. One should mention the 
work of Erdogan[ 1,2] who considered various crack cot&uNions and loading conditions. 
Unfortunately, in his solutions the effect of material over&@8 was diamiaaed as con@& to 
extremely small zones near the crack tips and thus ins@&@. This misconception was 
prevalent in the literature, with the exception of WillisPI, until recently[5]. Moreover, it was 
thought that any attempt to correct the situation must necessarily involve a muhitude of 
alternating separation and contact zones crowded at the crack tips so as to simulate the 
oscillatory nature of the stress fields present in the wrong solution. Both notioas, albeit false, 
discouraged work on the problem. In [4] Comminou showed that only a sin@ xone at each tip is 
required. In [5] and 161 it was found that under shear or combined shear and tensile bad&, the 
contact zone at one of the tips is quite large and affects the global nature of the solution. In the 
light of these developments, the interaction of interface cracks is presently reconsidered. 

FORMULATION 

Consider a periodic array of interface cracks with period 2h lying at the interface between 
two elastic solids with shear moduli pl, ~2 and Poisson’s ratios ~1, y as shown in Fii 1. Under 
the action of uniform shear stress S and tension T applied at in&&y, a representative crack of 
leq$h 2L opens over an interval (-: a, b). Its two faces are in fri&onkss contact at the tips 
over the intervals (- JL, - a) and (b, L). The parameters CI and b arc unknowns of the problem. 
The boundary conditions rquire that the shear tractions vanish over the entire length of each 
crack and the normal tractions vanish over the open part of each cr&. To enforce these 
conditions, we follow the analysis of [S] and [6] and dellne the periodic d&lo&on distrib\ltians 
B,(x) and B,(x) over the entire length and the open part of each crack, respectively. The 
dislocation distributions are related to the gap g(x) between the soliis and their relative slip 
h(x) 

g(x) = u:2’(x 9 0) - u (‘)(x 0) Y * 

h(x) = v!“(x , 0) - ux(“(x , 0) 

!nl 

(1) 

(2) 
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Fw 1. The p&dic array of intafzw cracks. 

Folb~ing [5l or [6] we obtain the integral equations 

over the entire kn#h of each crack, and 

over the open part of each crack, where 

c = 2P1t1 +dh + 1x1 -fl%. B = [LCdK - 1) - P1k2 - 1)1/[&2(K1+ 1) + P,(Q + 1)1, 

and a,is &!&t&I in [4]. 
Using periodicity, the integrals in (4) and (5) are replaced by 

The series in (6) and (7) are summed by means of the identity[7] 

(3) 

(4) 

(5) 

(6) 

03) 
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Substituting in (4) and (5), we obtain 

929 

I ” 
II 

B,(~)cot[~]d~}=O, -a<x<b. 

To ensure single-valued displacements, we require in addition that 

I 
L 

Bxk? dZ = 0, By(S) dl = 0. 
-L 

(11,12) 

The integral eqns (9) and (10) can be transformed to equations with explicit Cauchy kernels by 
means of the following changes of variables 

X= Lx’, [=4’ (13) 

tan ?j$ =ud, tan($$sd 
( ) 

(14) 

where 

Thus, (9) and (10) become 

d=ta+ 
( ) 

(15) 

S+C P,(s) l 
T-C[BB,(s)+~~.~d~}=o, 71<s<72 

(16) 

(17) 

where 

and the same symbols for the functions were retained in the new variables. Introducing the new 
functions 

Jl(u) = Bx(u) 
1 +d2ui’ 

t)(u) =,B,(rc)2 
l+d u ’ 

(11) and (12) become 

s(u) du = 0, 
I 

?$(u)du =O. 
11 

Using (19)_(22), (16) and (17) may be written as 

1 ‘s(u) 
n I -1u-s 

du = M(s) +,&ij 

(19920) 

c&m 

(23 

(24) 



930 D. SCHMUESER and M. COMNINOU 

Equation (23) can be viewed as a Cauchy integral equation for the unknown function I,!I(u) 
treating 4(s) as known. The solution, allowing integrable singularities in e(u) at - 1 and 1 and 
with (21) enforced, is [8]: 

Substituting e(s) from (2.5) into (24), we obtain 

YI < 3 < 72. (26) 

The probIem is now reduced to the solution of the Cauchy type singular integral equation (26) 
with the constraint (22). Equation (26) can be easily put in the form of an integral equation with 
a strictly Cauchy and a regular kernel. The case of a singIe interface crack is obtained in the 
limit h -*a or d +O and con&n& by the respective equation in [6]. It is noted that the function 
4(u) is bounded and vanishes at the end points of y1 and yz. 

The stress intensity factors for shear &( -t L) can be computed from B,(x) as [Al 

or in the new variables using (19) and (25) 

The normal stress intensity factors K, are given in terms of KZ [4] 

It is also recalled from [4] that Ki is zero ahead of the crack tips ? L. 

(28) 

NUMERICAL RESULTS 

The numerical procedure employed for the solution of the singular integral equation (26) 
with the constraint (22) is explained in detail in [5] and [6], and only the results are discussed 
here. It sufaces to mention that the direct integration method developed by Erdogan and 
Gupta[9] was applied. As in [6], it was found that for positive /3 the left contact zone is very 
small, or of the order of IO-‘L. Left contact zone values ranging from 10&L to 10~‘L do not 
appreciably a&t the solution. Thus, in all the results presented here, the left co&act zone was 
kept &ted and equal to (0.8)I04L. The results were generated for /3 = 0.5 and various values of 
the load and periodicity parameters TIS and h/L. Negative T/S indicates compression. 

Figures 2 and 3 show the dimensionless shear stress intensity factors K2(rtL)/SL1’2 as 
functions of T/S for various values of h/L. The curve for /t/L = 0~ corresponds to the single 
interface crack[6]. It is seen that the stress intensity factors decrease as tfre sptacing between 
the cracks decreases, indicating that the cracks do not have a tendency to join and form larger 
cracks. The normal tractions a# in the larger contact zone are shown in Figs. 4 and 5 for 
T/S = 0.4 and -0.4, respectively. The curves exhibit the sing&r behavior of the contact stress 
as x -+ L-. The gaps or crack opening displracements are plotted for various values of h/L in 
Figs. 6 and 7 for 77s = 0.4 and - 0.4, respectively. These figures show that as h/L increases, the 
tight con&&t zone decreases, whik the contact pressure is locally relieved at b. 
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Fig. 4. Normal tmctioa o& in the rig&d contact zone for T/S = 0.4. 

T/S l -(x4 

Fig. 5. Normal traction uJ3 in the right contact zone for T/S = - 0.4. 
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Fii 6. Crack opening disphcement gC/S for 77s = 0.4 pnd V~OIIS ~due~ of h/L. 
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