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In this paper we study the question of finding depth R/I” given an ideal I 
in a commutative ring. 

This problem is difficult in general; even for simple examples depth R/Z* 
can be difficult to compute. Brodmann has shown that for any commutative 
Noetherian ring depth R/Z” become stable for large n; finding this value, 
however, is quite hard. 

This problem originally arose through consideration of the following 
example: suppose k is a field and X= (xij) is an n x (n + 1) matrix of 
indeterminates. Let R = k[x,] and let 1 be the ideal generated by the 
maximal minors of X. Then, question: compute the projective dimensions of 
R/Z” for large n, or equivalently find the depth R/I”. 

In this case the maximal minors are an example of a d-sequence. A d- 
sequence x, ,..., x, is any system of elements in a commutative ring R which 
satisfy two conditions: 

(i) xi is not in the ideal generated by the rest of the .K,~, 

(ii) For all k > i + 1 and all i > 0, 

((x , . . . . . xi): xi+ I Xk) = ((x, ,...) xi): Xk) 

(See page 9 for more on this.) Thus d-sequences may be regarded as “weak” 
R-sequences. Indeed they turn out to be examples of weak R-sequences in the 
sense of [28] and of relative regular sequences as in [9]. 

The general problem of computing depth R/Z” for a given ideal Z can often 
be simplified by writing I =J + K and comparing depth (R/Z”) to depth 
R/(J, K”). In some cases this has been done; indeed considerably more has 
been done in the case K is generated by an R-sequence modulo J. These 
theorems were studied originally by Hironaka and later by Herrmann. 
Schmidt, Robbiano and Valla. In 1261. the following is shown: 

THEOREM [26]. Let I be an ideal in A. a commutative local ring and 
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suppose J= (x, ,..., x,, I) where the x1 ,..., xt form an AfI-sequence. Then the 
following are equivalent: 

(1) gr,(A) is a free A/I-module, gr,(A) = A/Z @ IfI2 @ ~1. 

(2) gr,(A) is a free A/J-module and gr,p(Ap) is a free (A/Z),, module 
for every prime p in Ass(A/J). 

This is called the “transitivity of normal flatness.” If assumption (1) 
occurs then depth A/I” = depth A/I for every positive n. If we set 
K = (x, ,..., x,) then as was well known depth A/(1, K”) = depth A/(Z, K). The 
conclusion then implies depth A/(1, K)” = depth A/J” = depth A/(Z, K”) = 
depth A/(1, K) for every positive it. 

We weaken both the hypothesis and conclusion of this to obtain a “tran- 
sitivity of depth.” What is needed to pass from depth R/(I + J)” to depth 
R/(Z, J”) is a condition controlling the powers of each ideal, namely that 

J”Z”-1 nI,l z Jm-1 n I for every m > 2 and n > 1. We show that under 
suitable conditions if J is generated by elements which form a d-sequence in 
R/I, then this condition is satisfied. 

The main result which allows us to obtain the transitivity of depth as well 
as compute specific depths in section four is the following proposition. 

PROPOSITION 3.1. Let R be a commutative ring, I and J two ideals 
which satisfy 

Let Q= I + J. Then R/Q” has a filtration M, = R/Q”,...,M, =0 of R- 
modules such that M, /M, t , is isomorphic to Ik/Ik(I, J”- “). 

The depth R/I” for large n is connected with the analytic properties of the 
ideal I. If l(I) is used to represent the analytic spread of the ideal I [ 24 1, then 
L. Burch [6] showed if R is local then (also see Brodmann 131). 

l(Z) < dim R - i;f depth (R/Z”). 

Using this, Cowsik and Nori have shown that ideals I with R/I” 
Cohen-Macaulay are close to complete intersections. Specifically, they 
proved the result below [7]. 

THEOREM. If I is a self-radical ideal in a Cohen-Macaulay local ring R 
such that 

(i) R, is regular for each minimal prime p containing I and 

(ii) R/I” is Cohen-Macaulay for every n, then I is a complete inter- 
section. 
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Recently, Brodmann [3] has given an improvement of this. 
We show every d-sequence in a local ring is analytically independent and 

give a criterion for when one obtains equality in the equation of Burch. 
Finally we note d-sequences have proved effective in the study of 

numerous problems, ranging from properties of the symmetric algebra [ 18 1 
to conditions for PC”) - - P” for a prime P generated by a d-sequence. I19 1. 

We now describe the contents of this paper more precisely. 
Section 1 introduces the notion of a d-sequence and proves several 

elementary remarks concerning their behavior. The main body of this section 
deals with giving examples of d-sequences. These examples include the 
maximal minors of an II x n + 1 generic matrix. the images of these minors 
in the symmetric algebra of the ideal they generate, the generic Pfaffians of a 
5 x 5 matrix, any two elements of an integrally closed ring, and most almost 
complete intersections, in particular ideals algebraically linked to Gorenstein 
primes. We show in “good” two dimensional local rings any system of 
parameters will have a sufliciently high power which forms a d-sequence. 
Local rings where every system of parameters form a d-sequence are exactly 
Buchsbaum rings. (1281, 1291, or 1301.) 

Section 2 develops the basic properties of d-sequences most notable of 
which is the following. 

THEOREM 2.1. Let R be a commutative ring. 
If I is an ideal of R and x , ,...,x,, are elements which form a d-sequence 

module I, then 

( x ,...., x,)mnz~ (X ,,..., x,)m-I I. 

We also show d-sequences in local rings are analytically independent. 
Most of this section is devoted to the spade-work necessary to apply the 
results of Section 3. 

Section 3 is a technical section whose purpose is to prove the transitivity 
of depth under suitable conditions. The main theorem states: 

THEOREM 3.1. (Transitivity of Depth). Let I and J be ideals itz a 
commutative Noetherian ring R and let p 1 I f J. Suppose In/I”’ ’ are free 
R/I-modules for n = l,.... If J is an ideal such that In J” E IJ”- ’ then for 
n = 1, 2... 

depth, R/(Z + J)” > min depth, R/(Z, J”). 
OSk<n 

The final section applies the above result to various of the d-sequences 
described in Section 1. In particular we compute depth R/I”, where 
R = k/x,;] and Z is the ideal generated by the maximal minors of the 
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n x (n + 1) matrix X = (xii). Hochster [ 141 has shown that gr,(R) is 
Cohen-Macaulay in this case and this yields the asymptotic value of depth 
R/I”. Robbiano [27] has also studied these depths in certain cases. These 
computations are carried out for several of the other examples of Section 1. 
Finally the equality in Burch’s equation is shown to hold under fairly general 
assumptions if the ideal in question is generated by a d-sequence. 

All rings will be commutative Noetherian with one unless stated otherwise. 
The basic definitions and notations used throughout may be found in ] 22 1. 

The author would like to thank Lorenzo Robbiano and R. Cowsik for 
valuable conversations, and would like to extend his gratitude to the referee 
for suggesting the correct statement and proof of Proposition 1.6 and for 
simplifications of Propositions 1.5, 1.7 and Theorem 2.1. 

1. d--SEQUENCES 

In this section we give the definition of a d-sequence and give several 
classes of examples, to which we will later apply the results on the tran- 
sitivity of depth. 

DEFINITION 1.1. Let R be a commutative ring. A sequence of elements 
xi ,...,x, belonging to an ideal I is said to be a d-sequence in Z (or simply a d- 
sequence) if 

(1) x~~?GRx,+--~+Rx~~~+Rx~+,+~~~+R,, for i= l,....n 

(2) For all k > i + 1 and all i > 0, (x0 = 0) 

((x () ,...) xi): xi+ ,x/J = ((x0 ,...) xi): Xk) 

Here, if I is an ideal and x E R, (I: x) = {r E R 1 rx E I}. If x, ,..., x, is a d- 
sequence in any order, we will say x, ,..., x, are an unconditioned d-sequence. 

Remarks. (1) Condition (2) is equivalent to saying xi+, is not a zero 
divisor module the ideal ((x,,..., xi): x,J, and hence a d-sequence can be 
thought of as a weak R-sequence. 

(2) As ((xi ,..., xi): xi+ i) G ((xi ,..,, xi): xi+, xk), condition 2) shows 

((x 1 ,..., xi): xi+ ,) G ((x, ,..., xi): x,J for k > i. 

(3) If x, ,..., x, form a d-sequence then the images of xi,..., x, in the 
ring R/(x, ,..., xi-, ) form a d-sequence. 

(4) The single element x is a d-sequence if and only if (0: x) = (0: x2). 

(5) Any R-sequence is trivially a d-sequence. 

(6) Let R + S be a faithfully flat extension of rings and suppose 
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x, ,..., x, are in R. Then x1,..., x, is a d-sequence in R if and only if x, ,...,x, 
is a d-sequence in S. 

Proof: x, ,..., x, is a d-sequence in S. As xi cf (x, ,..., gi ,..., xn) S, xi is 
certainly not in (x, ,..., fi ,..., x,) R. Now as S is faithfully flat, if MI E R and I 
is an ideal in R, 

Hence 

(I: wR) S = (IS: wS). 

((x , ,..., xi) R : xk R) S = ((x, I.... xi) S: xk S) 

and by assumption xi+ 1 is not a zero-divisor modulo this ideal. Set 
J = ((x, ),.., xi): xkR)). We have shown xi+, is not a zero divisor modulo the 
ideal JS. Hence there is an exact sequence O+ S/JS -+~vc+l S/JS; set 
N = kernel of the map R/JR .~~‘i+l R/JR. From 0 + N -+ R/JR +Xi-l R/JR we 
obtain by OR S the sequence 

O+N@,S-,S/JS--SIJS. 

Hence NOR S = 0 and as S in faithfully flat over R, N = 0 and this shows 
x, ,..., x, is a d-sequence. 

Now suppose x, ,..., x, is a d-sequence in R. Since S is faithfully flat over 
R, 

6 , )...) ii ,..., x,) S n R = (x1 ,..., Zi ,..., x,) R 

and this shows xi 65 (x, ,..., zi ,..., x,) S. 
We must show xi+ r is not a zero divisor modulo ((x, ,..., xi) S: x,S). 

Again, this ideal is equal to ((x, ,..., xi) R: x,R) S. 
Let J be as above; from the exact sequence 0 --) R/J-+xi+’ R/J we obtain 

0 + S/SJ% S/J& 

which establishes our claim. 

(7) Two maximal d-sequences in an ideal I need not have the same 
length. For example, consider the ideal (X) in the ring of polynomials 
k[X, Y, Z]. X itself is certainly a maximal d-sequence in (X). However, XY, 
XZ also form a d-sequence in the ideal (X), since (XY: XZ) = (Y) and XZ is 
not a zero divisor modulo (Y). 

We now begin our list of examples. 

EXAMPLE 1.1. Let X= (xii) be an n by n + 1 matrix of indeterminates 
over k(k = Z or a field). Let pi be the determinant of the matrix formed by 
deleting the n + 2 - ith column of X. Set R = k[x,]. 
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PROP~SITION 1.1. ,u,,...,~f,+, form an unconditioned d-sequence. 

Proof As rearrangement of the columns of X affects nothing, it is 
enough to show that pi,..., ,uUn+, are not zero divisors modulo the ideal 
(cUlY*~?Pi-1):Pi)* 

Let Y be the n by (n + 2 - i) matrix obtained by deleting the last i - 1 
columns of X. (Here we may assume i > 2 as any two of the maximal minors 
form an R-sequence.) 

Let ,4 be any maximal minor of Y; we claim 2 E (@, ,...,,u-,): pi)). ,l is 
fixed by choosing n + 2 - i rows of X, let o be such a choice. Expand 1 
along the (n + 1 - i)th column. We obtain 

where the Aj are minors of order n + 1 - i. If m # n + 1, II ,..., n + 2 - i. then 
by elementary linear algebra, 

K‘ XjJj = 0. 

JFO 

(1) 

We also know 
ntl 

“ x,jP, + 2 -,j = 0. 
IT, 

(2) 

Multiplying Eq. (2) by 1, when r = s and summing for s E u, we obtain 

so that 

(3) 

By (l), the inner sum is zero when j # n + 1, n ,..., n + 2 - i. When 
j = n + 2 - i, ,&, kSxSj = A. Thus Eq. (3) becomes 

Hence A E 01 , ,..., pi-, : pi) as claimed. 
Let J be the ideal generated by the maximal minors of Y. Note 

J 2 C.u, ,..., ,u- i). We have shown J c (,u, ,..., pi- i : yi), and it is clear pi 6Z J. 
By the work of Hochster and Eagon [ 151, J is a prime ideal. But then 
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implies 

and hence is equal to J. As J is prime and ,uuk @ J for k = i, i + I,..., n + 1 we 
see that pl ,..., p,,, I form a d-sequence. 

EXAMPLE 1.2. Let the notation be as in Example 1. Set I = 01, ,..., ,u,, + , ) 
and let S = S(I) be the symmetric algebra of I. (See [ 171.) In general, if / is 
an ideal generated by t, ,..., t, the symmetric algebra of I is equal to 
R [ Y, ,..., Y,]/q, where q is the ideal of R [ Y, ,..., Y,] generated by the linear 
forms b, Y, + ... + 6, Y, such that b, t, + e.. b, t,, = 0. 

As is well known [3 ] the linear relations on p, ,..., p,,+ , are generated by 
the rows of X. Hence for I as above, 

S(Z) = k[xij, Y, ,..., yn+Il/($~ xijyj). 

Write “-” for the image of an element in R = k[x,,, Y, ,..., Y,,+ , ] under the 
map R + S(I). 

As in Example 1, it is enough to show the ideal J= @, ,...,gqu,_, :Eq) is a 
prime ideal which does not contain &,..., lu,, , . As above, if we let Z be the 
n x (n + 2 - q) matrix obtained by deleting the last q - 1 columns of 2, any 
maximal minor of .?! is in J. We may assume i > 1 as S(Z) is known to be a 
domain. ([9] or [Is].) 

I claim Es,+,-,Yj *jifl+tz_iFi=O in S. 
Delete the ith column of X and expand p, + z _ i along the jth column; 

where d, are minors of order n - 1 in (x- the ith column.) 

and hence 

Consequently, rearranging the two sums gives 

mk = 0. 

607/46/3-2 

(4) 
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Now if m = j, the inner sum is fi,, i 2- i. If m = i, we are simply expanding 

f&+*-i along the ith column of X-the jth column. If m # i, j by 
elementary linear algebra, 

Hence (4) yields 

If i=n+2-q and n+3-q<j<n+ 1, then this shows 

Set J= the ideal generated by the maximal minors of 2 together with 
Yn+3+...,Y;l+,. J is of a type of ideal shown to be prime in [ 151. Also 
- - 
Pq 7’..% P” + 1 @J. As (ii, ,..., &-,)GJE@,, . . . . i&-,:&T,) we see 
/-i&q . . . . . r’,-, : PJ s (El 1..., &-i) C_ J implies J = (~7, ,..., ,&, : &). 

By the remarks above, this shows the claim. 

EXAMPLE 1.3. Let X = (x,) be an r x s matrix of indeterminates with 
r < s, and set I equal to the ideal generated by all m x m minors of X for 
0 < m < r. Set S = R/I. Then the image of the first row of X form an uncon- 
ditioned d-sequence in S. 

Proof. As rearrangement will affect nothing, consider the ideal 
(XI1 )..., qj: qj+, ) in S. It is clear that this ideal contains X1 I ,..., Xii and all 
the (m - 1) x (m - 1) minors of the first j columns of 2, which can be seen 
by considering the m x m minor determined from the given (m - 1) x 
(m - 1) minor by adding the (j + 1)” column and the first row. The ideal 
determined as above is prime by the work of Hochster-Eagon [ 151 and as 

x*j+ 1% x,j+ 1 T--*3 2,~ are not in it, this shows as above that the 2,; do indeed 
form a d-sequence. 

EXAMPLE 1.4. Let R be a commutative Noetherian ring containing an 
infinite field k which satisfies Serre’s condition S,: 

depth R, > min [ hrp, n] 

for all primes p in R. Suppose a, ,...,a,, E R such that 

(1) height (a ,,..., a,-,)=n- 1, 

(2) height ((a, ,..., a,_ ,): a,), a,) = n. 

Then the ideal f = (a, ,..., a,) can be generated by a d-sequence of length n, 
obtained from a , ,..., a, by elementary transformations. 
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ProoJ: Since R satisfies S, and height (a, ,..., LI,_ ,) = n - 1, it is easy to 
see using the following lemma that a, ,..., a,_, may be changed by 
elementary transformations to ai ,..., aA-, forming an R-sequence with 

(a , ,..*, unm,)= (u;,...,u:,-,). 

LEMMA 120, Theorem 124 J. Let P, ,..., P, be prime ideals in a 
commututiue ring R, and let I be an ideal in R, x an element of R such that 
(x. I) s.L P, u . . . v P,. Then there exists an element i in I such that x + i is 
not in the union of the Pi. 

By changing notation we may assume a, ,..., a,,-, form an R-sequence. 
Then (a, ,..., a,-,) is unmixed since R satisfies S,. Hence every associated 
prime of (a, ,..., a,- ,) (and thus of ((a, ,..., a,,- i): a,,)) has height n - 1. In 
particular, since (((a, ,..., a, _ i): a,,), a,) has height n, a,, annot be in any of 
these and so a,, is not a zero divisor modulo ((a, ,.... u,_ ,): a,,). This shows 
a, . . . . . a,, form a d-sequence. 

Recall a local ring R is said to be Gorenstein if it has finite injective 
dimension over itself. A well-known result is the following [ 2 1 ]. 

PROPOSITION. Let (R. m) be a Gorenstein local ring, I an ideal of height 
zero such that R/I is Gorenstein. Then 

(1) (0: I) = (s) is principal, 

(2) (O:s)=I. 

If R is a regular local ring, un ideal I is said to be Gorenstein if R/I is a 
Gorenstein ring. 

COROLLARY 1.4. Let R be a regular local ring and p be u Gorenstein 
prime. Choose an R-sequence x, ,..., x, in p such that (x, ,..., x,) R, =pR,, 
Then ((x, ,.... x,): p) cun be generated bv u d-sequence. 

Proof: By the quoted Proposition, there is an s such that 

F3 

. . . . x,): p) = (x, ,..., x,, s). s &p as x, ,..., x, generate p in R, and so 
x, ,..., x,): p) @p. We also have ((x, ,..., x,): s) =p and so as p is prime s is 

not a zero divisor modulo ((xi ,..., x,): s). The above Proposition now applies 
to conclude x, ,..., x,, s is a d-sequence. 

Peskine and Szpiro [25] said two ideals I and J were algebraically linked 
if there was an R-sequence (xi ,..., x,,,) in I such that ((xi ,..., x,): Z) = J and 

((x , ,..., x,): J) = I. In this terminology the Corollary reads any ideal in a 
regular local ring R algebraically linked to a Gorenstein prime is generated 
by a d-sequence.’ 

’ This is true only if the x1 ,..., x,, generate p locally as in Corollary 1.4 
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It is known [ 121 that the ideal Z in k[ [Xi, X,, X3]] defining the curve 
k[ [PI, t”*, t”‘]] is an almost complete intersection whose defining equations 
are given by 

F, = x;12x;13 -XC’ 
1 1 

F, = X;21X;z3 - XC2 
23 

F, = X;31X;32 -XC’ 
3’ 

where the ci are the smallest positive integers such that there exist integers 
rii > 0 with 

cini= L’ (- rijnj. 
,yi ICI 

Set ui = (-c,, r,2, r,3), v2 = (r2r, -c,, r23) and zr3 = (rj2, rj2, -c3). Then in 
the case above it was shown [ 121 that 

(i) u1 + n2 + v3 = 0, 

(ii) u, X v2 = v2 X n3 = v, X v3 = (n,, n2, nl). 

Using (i) and (ii) one may easily check that 

(X;12, X:2’) G ((F, , F,): F3). 

But F, is not a zero dvisor modulo (X;lz, Xi21) and so the two ideals are 
qual, and F, is not a zero divisor module ((F, , F,): F3). Hence Z is generated 
by a d-sequence. 

EXAMPLE 1.5. 

PROPOSITION 1.5. Let A be an integrally closed Noetherian domain. Zf 
J = (a, b) is an ideal of A minimally generated by two elements, then J may 
be generated by two elements which form a d-sequence. 

Proof: If we can find an a’ such that ((a’: b), 6) has height > 1 and 
(a’, b) = (a, b) then we may apply the proposition of Example 4 since A 
satisfies S, [22]. Let r E A. If (a - rb: b) = (a - rb: b*) we are done. Hence 
for every r in A we may assume b is a zero divisor module (a - rb: b). Let 
Q 1 ,..., Qk be the associated primes of b. 

Let vi be the valuation associated with Qi. Suppose v,(a) > u,(b) for 
i= 1 ,..., k while v,(a) < u,(b) for i = k + l,..., m. Choose r in A such that 
vi(r) > 1 for i = l,..., k and vi(r) = 0 for i = k + l,..., m. Thus for a suitably 
large integer, s, vi(a) < vi(rsb) for all i= l,..., m. This implies that 
b/(a - r’b) is in Aci for i = l,..., m. 

The associated primes of (a - rSb: b) by construction are distinct from 
Q I ,..., Q,. Hence b is not in any associated prime of (a - r’b: b) and this 
shows (a - r’b: b) = (a - rSb: b2) as is required. 
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EXAMPLE 1.6. 

PROPOSITION 1.6. Let (R, m) be a two dimensional local domain. Then 
there exists an N such that for every system of parameters x, y and n > N, 
x”, y” is a d-sequence ly and only if R ‘I) is a finite!v generated R-module. 
(Here R(” = f?R, taken over all height one primes.) 

Proof: If such an n exists, then (x”: y”) = (x”: y’“) for all n > N. In the 
language of [23] we have S(x,y, n) < n for every n > N. By [23], R”’ is 
then a finitely generated R-module. Conversely if R’” is a finitely generated 
R-module, let J= {r E R 1 rR’*’ G R}. Then by 1231 there is a k such that 
mk G J and C(b, c, -) ,< k + 1. By (231, S(c, b, -) < k. Finally for all n > k. 
S(x, y, n) < k < n which shows (xn: y”) = (xn: y’“) for x, y any system of 
parameters and any n > k. Take N = k. 

Now suppbse R is as above and char R =p > 0. Let F: R + R be the 
Frobenius map. Thus F(r) = 9. Fe(R) is the subring of R consisting of all 
(pe)th powers of elements of R. The map R +” R is said to be pure if for 
any R-module M the map M -+ M OR f, via m -+ m @ 1 is injective where f, 
is R regarded as an R module via F’. We see that F’(R) s R (i.e., R is 
reduced) and if 1 is an ideal in FE(R) then IR fl F’(R) = I. See 1161 for 
details on F-purity. 

COROLLARY 1.6. Let R be as in Proposition 1.6 and suppose 
charR=p>O and R+“’ R is pure for some e. Then every system of 
parameters form a d-sequence. 

Proof: The assumption shows that for every sufficiently large J if 
x,-v, w E R and xdw = yd, then w = ud for some u E R. (That is, 
xdR n Ff(R) = xdFf(R)). Let N be as in Proposition 1.6 and choose f such 
that fl> N. By Proposition 1.6, if x and y are a system of parameters for R, 
then xd, yd form a d-sequence. We wish to demonstrate that {x,J!} is a d- 
sequence. 

Let s E (x:-v’) so that y’s = xr. Then yzdsd = xdrd. As xd, yd is a d- 
sequence (in R) we must have ydsd E xdR so that ydsd = xdt for some t. 
Then ydt = rd. By purity t = ud for some u E R. But as R is reduced (again 
by purity) the equation (yu - r)” = 0 forces yu = r. Then y’s = xvu shows 
ys = xu and s E (x: y). We may interchange x and y without loss of 
generality and conclude that x,y form a d-sequence. This establishes 
CoroHary 1.6. 

Rings in which every system of parameters form a d-sequence do occur 
“in nature”. In fact the next example shows these rings are precisely 
Buchsbaum rings. 

EXAMPLE 1.7. At the end of Example 1.6 we showed how to find a local 
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ring in which every system of parameters is a d-sequence. In fact such rings 
turn out to be precisely Buchsbaum rings, which have been studied exten- 
sively by Vogel and others. (See [28-301.) 

DEFINITION [24]. A sequence of elements {a,,..., a,], r < d = dim R, R 
a local ring, is said to be a weak R-sequence if and only if for each i = l,..., r 

m[(a, T..., ai_,)’ a/)/(al )..a) Ui- I)] = O’ 

If every system of parameters for R is a weak R-sequence we say R is a 
Buchsbaum ring. 

LEMMA 1.7. (R, m) local. If every system of parameters forms a d- 
sequence, then R, is Cohen-Macaulay for every p # m. 

Prooj Let p be a minimal prime in R with R, not Cohen-Macaulay. If 
height p = n, choose a, ,..,, a, in p such that height (a, ,..., ai) = i. Complete 
a, ,..., u, to a system of parameters a, ,..., a,, a, + r ,..., ad of R. Since p is the 
minimal prime which is not Cohen-Macaulay, we may assume p is 
associated to (a, ,..., ai) with i ( n. We will show (Proposition 2.1) that 

(a 1 )...) q) = ((q )..., a,): q, ,) n (a, )...) ad). 

Now since (a, ,..., ad) is primary to m, this decomposition shows that p is 
associated to ((a, ,..., a,.): a,, ,). However ai+ r up and a,, r is not a zero 
divisor modulo ((a, ,..., a,): ai+ r). This contradiction proves the lemma. 

PROPOSITION 1.7. Let R, m be local. Then R, m is a Buchsbaum ring if 
and only if every system of parameters form a d-sequence. 

Prooj The condition of being a Buchsbaum ring is the following: for 
every system of parameters a, ,..., ad of R, 

((a 1 9eee) Ui_ 1): Ui) C ((a, 3-e.) ai- 1): m). 

As ((al,..., a,-*): m) G ((al Y.-, ai-r): ai) we see equality must hold. Let 
LIP ,,.., ad be any system of parameters. Then a, ,..., ai, a,, ,ak and a, ,..., ai, uk 
are also a part of a system of parameters. By the above comment we then see 
((a , ,.,., ai): a,, , ok) = ((ai ,..., a,): m) = ((al ,..., al): uk) and so u, ,..., ad for a 
d-sequence. 

Now suppose every system of parameters is a d-sequence. Let a, ,..., ad be 
such a system of parameters. We must show that ((a, ,..., ui-,): ai) G 
((a , ,..., a,- J: m) or equivalently if q, ,..., qn are the isolated primary ideals 
associated to (a, ,..., ai_r), we must show ((ai ,..., ai-,): m) = q, TI ... n qn. 

But we know x is not a zero divisor modulo ((al ,...% aiel): x) for every 
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xEm\p,V... Vp,, by the assumption. This implies ((a, ,..., ai_ I ): x) = 
q,n a** nq,. 

For Lemma 1.7 shows the associated primes of (a,,..., ai_,) are either 
{P,,...,P~} or 1~,,..., pm, m). Hence the same holds for ((a, ,..., ai- ,): X) and 
our first statement shows that m is not one of the associated primes. As x is 
not in the union of the pi, ((al ,..., aimI): x) = q1 n ... n q,. 

Now let tEq,n... nq,,. We have shown if x E rnb, U .a. Up,, then 
tx E (a, ,..., a, _ I). Hence 

rnSp,V... Up, U ((a, ,..., ai_ 1>: 4, n .a* n q,) 

and now the prime avoidance Lemma [lo] shows 

and hence 
m cr ((a, ,..., aim,): q, n ... n qn) 

((a 1 Y**, ui- 1 ):m)=q,fT-.. nq, 

as the reverse containment always holds. 
Hence local catenary Buchsbaum rings give us examples of rings abundant 

with d-sequences. For example of such rings, see [28] where Buchsbaum 
rings of dimension d and depth r are given. We give one example here found 
in [28]. 

Let Xc Ipi be the nonsingular curve of Macaulay given parametrically by 
If:, t:t,, t,t:, Q. 

Let A be the local ring of the vertex of the cone over X. A is not 
Cohen-Macaulay but it was shown in [28] that A is a Buchsbaum ring. The 
cone is embedded in /A: by the defining ideal 

(wx - yz, z2x - y2w, y3 - x2z, z3 - w’y). 

Suppose R, m is local and char R =p > 0. Let F: R -+ R be the Frobenius. 
Thus F(r) = rp. 

COROLLARY 1.7. Suppose R is a reduced local catenury ring of churuc- 
teristic p > 0. If Fe(R) is Buchsbaum for some e, then R is Buchsbuum. 

Proof: By Proposition 1.7, it is enough to show every system of 
parameters form a d-sequence. Accordingly, let x, ,..., xd be a system of 
parameters. Then we must show ((x, ,..., x,J: xk+ rx,) = ((x1 ,..., xk): xn). 
However, XT’,..., xze form a system of parameters Fe(R), and since Fe(R) is 
Buchsbaum, these elements form a d-sequence in Fe(R). 

Now suppose rxk+ , n - x - C:=, sixi and raise this equation to the (p’)th 
power; we obtain 

k 
rP*xP’ k+, xp,’ = -K- syxpe. 

iY* 
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In F(R), ((XT’,..., xp,‘): xfl’, 1 xpn’) = ((XT<,..., xi’): xP,‘>. This shows rPexP,’ = 
C:=, tpexpe. As R is reduced, there are unique (pe)th roots and thus 

rx, = x tixi. 
i=l 

This shows x, ,..., xd is a d-sequence and establishes our claim. 

EXAMPLE 1.8. We return here to generic determinantal phenomena. The 
maximal minors of an n by n + 1 matrix arise by the Hilbert-Burch 
structure theorem for perfect ideals if codimension 2, which states: 

THEOREM (Hilbert). Let R be a commutative Noetherian ring. If 

is a free resolution of a cyclic module R/I, where I is an ideal of R, then I is 
a multiple of the ideal generated by the n x n minors of the matrix fi. 

See (41 for a discussion of this and related topics. Recently Buchsbaum 
and Eisenbud [5] have proved a similar theorem for Gorenstein ideals of 
codimensions three. We describe their main result. 

If R is a commutative ring and F a finitely generated free R-module, a 
mapJ F* -+ F is said to be alternating if with respect to some (and therefore 
every) basis and dual basis of F and F* the matrix off is skew symmetric 
and all the diagonal entries are zero. If rank F is even andf: F* + F is alter- 
nating then det(f) is a square of a polynomial function of the entries of the 
matrix for f, called the pfaffian of F. In general if F has odd rank n, then the 
determinant of the matrix resulting from f by deleting the ith column and ith 
row is a square of a polynomial function of the corresponding entries and the 
ideal generated by these pfaftians will be denoted Pfn,- ,(f ). 

The theorem of [5] gives the structure of Gorenstein ideals of grade 3. 

THEOREM [5]. Let R be a Noetherian local ring with maximal ideal J. 

(1) Let n > 3 be an odd integer and let F be a free R-module of rank 
n. Let f: F* + F be an alternating map whose image is contained in JF, 
Suppose Pfn,,(f) has grade 3. Then Pf*-,(f) is a Gorenstein ideal, 
minimally generated by n elements. 

(2) Every Gorenstein ideal of grade 3 arises as in (1). 
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Now let 

0 XI2 Xl3 X14 Xl5 

-x12 0 x23 X24 X5 

-x13 -x23 0 x34 x35 

--Xl4 -x24 -x34 0 X45 

-x,5 -x25 --X35 --X45 0 

be a generic 5 x 5 alternating matrix. Denote the pfaffian determined by 
omitting the ith row and ith column b-v pi, and let 

P = the column vector . 

Then XP = 0, and from this it follows that 

(PI 3...3 P4 : P5) 3 (Xl5 ,...‘X,,) 

As (PI T..., P,) s (Xl, ,-**, x45) as p5 is not in the later ideal which is prime, it 
follows that (p, ,..., p4 : p5) = (xl5 ,..., x45) and p5 is not a zero divisor module 
this. 

Let us calculate ((p, ,p2 ,p3): p4). This will clearly contain x4,. But 
(pl ,p2,p3, x45) = the ideal generated by xj5 and all 2 x 2 determinants of 

Xl4 x24 x34 

Xl5 x25 x35 i 

and this is a prime ideal not containing p4 or ps. 
It follows that ((pl ,p2,p3):p4) is equal to this ideal and neither p4 nor p5 

is a zero divisor modulo this ideal. Hence pl,...,p5 is indeed a d-sequence. 
(David Eisenbud has communicated a proof that k[x,] form an algebra 

with straightening law on the poset of Pfaffians and this should imply that 
the generic Pfaffians always form a d-sequence). 

2. PROPERTIES OF d--SEQUENCES 

In this section we develop the basic properties of d-sequences which will 
allow us to apply the results of Section 3. 

First we show d-sequences are relative regular sequences in the sense of 

(91. 

DEFINITION [ 91. A sequence of elements (a, ,..., a,} is a commutative 
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ring R is said to be a relative regular sequence if ((a,,..., ai)Z: ai+,)n 

(a 1 ,..., a,) = (a, ,..., a,). Such a sequence is said to be unconditioned if any 
permutation of the sequence is relative regular. (Z = (a, ,..., a,,)). 

In [9], Fiorenteni proved that the maximal minors of a generic n x (n + 1) 
matrix formed a relative regular sequence. This follows immediately from 
Example 1 of Section 1 and the proposition below. 

PROPOSITION 2.1. Any d-sequence x, ,..., x, is relative regular sequence. 

Proof By moding out the ideal (x, ,..., xi) it is clearly enough to show if 
y, ,..., y, is a d-sequence then 

(o:Y,)n 0 * 9.e.9 Y&J = (0). 

Show this by induction on d. If d = 1, (0: y,) = (0: y:) shows 

(O:y,) n (VA = (0). 
Suppose d > 1. Let Cf=, ri yi E (0: y,). As (0: y,) c (0: yd y,) = (0: yd) we 

see rdyi E (y, ,..., yd-,) and hence as y, ,..., y, form a d-sequence, 
rdyd E (.h v...,yd-l)e But then ~~zl riJ’i E (y,,-.-5y&l)n (O:y,)=(O) by 

induction. 
The next proposition and theorem are keys to the usefulness (and 

understanding) of d-sequences. 

PROPOSITION 2.2. Suppose x, ,..., xd is a d-sequence in R. Then the 
images of x, ,..., xd form a d-sequence in R/(0: x,). 

Proof: It is enough to show that xj+ , is not zero divisor modulo the ideal 
z = (((0: x,), x, ,...) xj): x,J for k >j + 1. This will follow immediately if we 
can show 

z = (((0: x,), x I ,..‘) Xj): Xk) = ((X1 1...) Xj): Xk). 

Let c E Z so that there is an equation 

i 
cxk= v rixi+w, 

kc1 

where WX, = 0. 

But then, 

cxk- $ rixiE(x , ,...) Xd) n (0: x,) = (0) 
k=l 

by Proposition 2.1, and this shows c E ((x, ,..., xj): xk). 
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THEOREM 2.1. Let R be a commutative ring and x, ,..., x, a d-sequence 
module an ideal I of R. Let X = (x, ,..., x,). Then 

Xmnicx”-‘I. 

for all m> 1. 
Further suppose either R is local or positively graded with R, a field. 

Suppose I = (a ,,..., ad) and x ,,..., x, are elements such that a, ,..., ad, 
x, ,..., x, form a d-sequence. In the graded case suppose a, ,..., ad, x, ,..., x, 
are forms. Set M equal to the maximal ideal of R in the local case and the 
irrelevant ideal of R in the graded case. Then 17 X = (x, . . . . . x,,) 

X”nIcMXm-‘I. 

for all m > 1. 

ProoJ We prove these by induction on n. First suppose n = 1. If 
x:rE (xy)nI then as (Z:x,)= (I: xf) we obtain x’r E I and so 
x(:r=xy-‘(x,r)Ex (:-‘I. This handles the case n = 1 for (1). Suppose 
I= (a,,..., ad) as in (2). We claim x, r E Z implies x’r E MI. For we have 
x’ r = Cf=, siai. If some sj 6S M then we may assume sj is a unit and so 
aj E (a, l..., aj- 13 aj+ I ,..., a,,~,) which contradicts the definition of a d- 
sequence. 

Now assume (1) holds for all k ( n. Let J = (x2 ,..., x,) and let x = x,. The 
induction applied to (1, x) shows Jm n (1, x) c J”-‘(I, x) for all m > 1. In 
addition, since X” f’7 (I: x) E Xn (I: x) E Z by Proposition 2.1, we see that 

Xm n (I: X) = Xm n I. 

Now induct on m. 
Now suppose a E Xm n I. As X”’ = J” + Xm- ‘x 

a = b + cx, where c E X”-‘, 

and b E J”. Then 
bEJ”n(I,x) 

and so by the above comments, 

b E Jm-‘(I, x). 

Write b=u+xv, where uEJ”-‘Iand vEJ”-‘. Then 

a = u + x(v + c) 

and so 
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by above. The induction on m shows 

and so a = u + x(v + c) is in 

J”-‘I + xX”-*Zs X”-‘I. 

This shows (1). The proof for (2) is exactly the same, putting in M in each 
of the induction steps. 

As stated in the Introduction, the behavior of the ideals I” have much to 
do with the analytic properties of the ideal I. In particular as the powers of 
an ideal generated by a d-sequence will be shown to be well behaved, one 
would expect d-sequences to have nice analytic properties. In fact we show 
d-sequences in local rings are analytically independent. 

DEFINITION [ 3 11. Let R be a local ring with maximal ideal m. Elements 
z1 ,..., zn are said to be analytically independent if for every homogeneous 
polynomial F(X, ,..., X,) E R [X, ,..., X,], F(z, ,..., z,,) = 0 implies all the coef- 
ficients of F(X, ,..., X,) lie in m. 

It is well known any system of parameters is analytically independent. 
This shows analytic independence is not a sufficient condition for a set of 
elements to be a d-sequence, else by Example 1.7 every local ring would be 
Buchsbaum. 

THEOREM 2.2. Let R be local with maximal ideal m. Suppose x,,..., x, 
are a d-sequence. Then x, ,..., x, are analytically independent. 

Proo$ Induct on n. If n = 1 the result is clear as from (0: x,) = (0: x:) it 
follows that x, is not nilpotent and hence is analytically independent. 

Now assume the result for all local rings and all d-sequences of length <n. 
Assume x1 ,..., x, are not analytically independent. Then there is a 
homogeneous polynomial F(T, ,..., T,) in n-variables with a unit coefficient 
in one of the monomials and such that F(x, ,..., x,) = 0. Induct on the degree 
of F for all d-sequences of length n in any local ring; we may suppose F is a 
relation of minimal degree. Write 

F(T, ,..., T,J = T, G(T, ,..., T,,) + H(T, ,..., T,), 

where H is homogeneous of degree d in T, ,..., Tn. By induction H(T, ,..., T,,) 
cannot have a monomial with a unit coefficient as H(.f,,..., 2,) = 0 in R/Rx, 
would show & ,..., X, are analytically dependent in R/Rx,. 
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Hence H(T, ,..., 7’,) E m [ T, ,..., T,, ] and G(T, ,..., r,,) must have a unit coef- 
ficient. Now E&x, ,..., x,) + x, G(x, ,..., x,) = 0 shows 

w = H(x, ,..., xn) E Jd n (x,), 

where J = (x1 ,..., x,,). By Theorem 2.1, Jd f? (x,) 5 mid- ‘x, as J is generated 
by a d-sequence modulo (x,). Hence there is a homogeneous polynomial 
K(T2 ,..., T,,) E R[T,,.... T,] of degree d - 1 with coefficients in m such that 
MI = x, K(x, ,..., x,). Then x, ,..., x, is a solution to the equation 

T, G(T, ,.... T,) + T, K(T,,.... T,) = 0 

but 

implies 

x,(G(x, ,.... x,,) + K(x, ,..., x,)) = 0 

[G(x, ,..., x,J + K(xz ,..., xn) ] E (0: x, ). 

If d > 1, then G(x, ,..., x,) + K(x, . . . . . x”) E (x, ,..., x,) and so Proposition 2.1 
implies G(x, ,..., x”) + K(x, ,.,., xn) = 0. Now G(T, ,..., T,) + K(T, . . . . . T,) is a 
homogeneous polynomial of degree d - 1 and has a unit coefficient in some 
monomial as G did and K(T,,..., T,) has coefficients in m. The induction 
gives the required contradiction. 

3. TRANSITIVITY OF DEPTH 

We list the basic definitions and conventions. For further information see 

PI* 

DEFINITION. Let R be a commutative ring and M an R-module. A 
sequence x, ,..., x, is called an M-sequence if xi is not a zero-divisor on the 
module M/(x, ,..., xi- ,) M for i = l,..., n and (x, ,..., x,,) M # M. 

The following characterization of depth is well known [22]. 

THEOREM. Let R be a commutative Noetherian ring and M a finitely 
generated R-module. Let I be an ideal such that IM # M. Then the following 
are equivalent: 

(i) There exists an M-sequence of length n in the ideal I, 

(ii) Extf(R/I, M) = 0 for i < n. 
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Further there exist jkite maximal M-sequences in I. If x,,..., x, is 
maximal M-sequence in I then Exti(R/I, M) # 0. 

This shows the length of any two maximal M-sequences in I is the same, 
that number being the least n such that Exti(R/I, M) # 0. This number is 
denoted depth,(M). depth,(R) is also called the grade of I. If f = m is the 
maximal ideal of a local ring R, depth,(M) is simply called depth M. 

We now prove the main technical result. 

PROPOSITION 3.1. Let R be a commutative ring, I and J two ideals 
which satisfv 

Ik+l nIkJ” sIk+lJm-Ie 

Let Q = I + J. Then R/Q” has a filtration M, = R/Q”,..., M, = 0 such that 

Mkl”kt I is isomorphic to Ik/Ik(I, Jn pk). 

Proof: Set M, = Ik/IkQnpk where by convention we set I0 = R. Then 
MO = R/Q”, M,-, = I”~‘/Z”-‘Q = Inp’/(Zn + I”-‘J), while M, = 0. 

There is a surjective map from Mk onto Ik/Ikf ’ + IkJnpk; it is enough to 
show the kernel of this map is isomorphic to M,, , . 

The kernel ’ (Ikt ’ + IkJn-k)/(IkQn-k) = (Ik+’ + IkJ”-“)/ 
(Ik+‘Q”-k-’ + IkJnpk~ which is isomorphic to 

Ik+l/(Ik+lQn-k-l +lk+l nrkJ”-k). 

However, Ik+l,IkJn-kczktIJn-k-l 
- by assumption and as 

Ikt IJn-k-l c Ikt 1 
- Qnek-’ we find the kernel is just 

Ik+l/zktlQn-k-l, 

which is by definition Mk+ , as required. 
This gives us knowledge of the depth R/Q” as the following lemmas show. 

LEMMA 3.1. (See 1221.) Suppose R is Noetherian ring and I an ideal. 
Suppose 

is an exact sequence offinitely generated R-modules. Then either 

(a) depth, K > depth, N = depth, L 

(b) depth, N > depth, K = depth, L + 1 

(c) depth, L > depth, K = depth, N. 
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In particular if depth, K = depth, L, then 

depth, K = depth, L = depth, N. 

Also if depth, K > depth,L then depth, N > depth, L. 

ProoJ: Well known and easy from the homological characterizations of 
depth. 

LEMMA 3.2. Suppose R is a Noetherian ring, I is an ideal, and M is a 
Jinitely generated modules with a filtration (Mk}czO. rf 

then depth, M 2 t. 

t = min depth, (Mk /M, i , ) 
0<k<n- I 

Proof: Induct on the length of the filtration. We may assume depth 
M, > t. We have an exact sequence, 

O-tM,-,M+M/M,+O 

and depth M, > t, depth M/M, > t. By Lemma 2.3, depth M > t. 
To obtain the transitivity of depth it remains to calculate the 

depthZk/Zk+ ’ + ZkJnmk in terms of depth R/(Z, J”). 

LEMMA 3.3. Suppose I is an ideal in a commutative Noetherian ring and 
Y/Z” + ’ are free R/I modules. Suppose J is any ideal and p is an ideal 
containing I + J. Then 

min 
O<k<n 

depth, R/(Z, Jk) < depth,(R/I” + I”- ‘J”) 

for all m > 1 and all n > 0. 

Set t = min Osksn dWh,R/(h Jk) 

Proof: Induct on t. If t = 0 there is nothing to show so suppose t > 0 and 
choose z E p, z not a zero divisor on (R/I, Jk) for 0 < k < n. Set R = R/(z). 
We claim (Zk/Zk+i) OR R is isomorphic to (Zk, z)/(Zk+‘, z). For 

(Ik, z) Ik 

(zk+‘, z) N- zk+’ + (zkn (z))’ 

By an easy induction using the fact that z is not a zero divisor modulo Z and 
the Ik/Ik+ ’ are free R/Z-modules, one sees z is not a zero divisor modulo Zk 
for every k. Hence Zk n (z) = Ikz and 

(Zk, z) Ik 
(Ik+ I, z> = Ik+ I + zkz = Vk/Zk+‘) OR R/(z). 
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-- 
As Ik/Ik+’ is a free R/I module, Ik/Ik+ ’ OR R is a free R/I module where 

f= (I, z)/(z>- Hence (Ik, z)/(lk+ ‘, z) N I /I X -‘+I is a free module for every k. 
But depth, R/(z ?) = t - 1 and so the induction shows 

t - 1 < depth- P 

and it is enough to show z is not a zero divisor modulo Im + I”- ‘J”. If 

zcEIm+zm-‘J” then c E Imp’ 

since z is not a zero divisor modulo I”- ‘. Choose a free R/I basis j, ,..., VF-4 
for I”- ‘/I”‘. Reading mod I,,,, zc = Cy= 1 ri yi, where each ri can be assumed 
to be in J”. But c E I”-’ * modulo I” that c = C ci yi. Hence, 

(zci - ri) yi E 0 mod I”’ 

and as 7, ,..., V, are a R/I-basis we see zci - ri E I. Hence zci E (I, J”). But z 
is not a zero-divisor modulo this ideal and so ci E (I, J”). Then 
c E Im-‘(I, J”) = I” + I”-‘J” and this finishes the claim and the lemma. 

LEMMA 3.4. Suppose I is an ideal with In/I”+ ’ free R/I modules and J 
another ideal such that In J” c IJm-‘. Then I and J satisfy 
I” nI”-‘J” E I”Jm-‘. 

Proof. We must show JmI”-’ nF G J”-‘I”. Let y, ,.,.,y, be elements of 
I”-’ which are a free R/I basis of In-‘/In. If x7=, zi yi E I” where the 
zi E J”, then by the freeness of the basis y, ,..., yp, zi E I and hence zi E In 
Jm E Jmp’ I. Then CP= i zi yi f J”- ‘I” as required. 

THEOREM 3.1. (Transitivity of depth.) Let I and J be ideals in a 
commutative Noetherian ring R and suppose p is an ideal containing I + J. 
Further assume Y/I”+ ’ are free R/I modules for every n > 0, and 
InJm&IJm- for all m> 1. Then for all n> 1, depth,R/(I+J)“> 
minOGkGn depth,(R/(I, J”)) where R/(I, Jo) = R/I. 

Proof: By Lemma 3.4, I” n I”-‘Jm E I”J”‘-’ for every n > 1 and m > 1 
and so Proposition 3.1 combined with Lemma 3.2 shows that 

depth, R/(I + J)” > ,mj~, depth,, Ik/(Zk” + IkJ”-k). 
. \ 

Set t = minoGkgn depth, R/(I, Jk) and consider the exact sequences 

0 -+ zk/pk+ ’ +IkJ”-k)+R/(Ik+‘+IkJ”-k)+R/Ik+O. 
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Since t < depth, R/I and the Ik/Ik” are free, it is easy to see t < depth, R/I” 
for every k > 1. Lemma 3.3 shows t < depth,(R/(lkf ’ + IkJnmk)). Now using 
Lemma 3.2 we see 

t < depth, Ik/(Ik+’ + IkJnph) 

for 0 < k ,< n. This proves Theorem 3.1. 

4. CALCULATION OF DEPTH 

In this section we apply the results of the previous sections to explicitly 
calculate the depth of R/Z” for ideals I generated by d-sequences. 
Theorem 4.1 below shows that these depths depend only on the linear 
relations of the d-sequence. 

LEMMA 4.1. Suppose x, ,..., x, is a d-sequence in a commutative ring R. 
Set x = x, . and J = (x2 ,.... x,,). Then (xkt ‘) f? xkJm G xki ‘J”‘- ’ for k 2 0. 

ProoJ: Suppose .yk’ ‘a = xkb, where b is in J”‘. Then x”(xa - b) = 0 and 
so x(xa - 6) = 0. xa - b E (0: x) n (1, x) = (0) by Proposition 2.1 and so 
xa = b and b E J” f’ (x). By Theorem 2. I, b E J”-‘x and so xkb E xkt ‘J”-’ 
as is needed. 

DEFINITION 4.1. An ideal I will be said to be related to the d-sequence 
x, ,..., x, if I is of the form 

((C-K, ..*., xi): xi+ 1). Xi+ I )..., .K,,) 

for O<i<n- 1. 

THEOREM 4.1. Let R be a commutative ring and x,,...,xn a d-sequence 
in R. Let I = (x1 ,..., x”). Then R/i” has aJiltration (Mj/fz, such that for all 
k,O,<k<d- l,Mk/Mk+, is isomorphic to R/K, where K is a related ideal. 

Proof: Induct on n. If n = 1, then since (0: xf) = (0: x,), 

(x,)/(x:) N (x:)/(x:) = 4.. ZY (x;)/(x: + ‘) ‘v . . . . 

As WAX:> v Rl((O: x,>, x,> we see R/(x:) has the required filtration from 
the exact sequence 

0 -+ W<x:> + R/(x:) -+ R/(x,) -+ 0. 

From the exact sequences 

0 + (x:)/(x; + ‘) --t R/(x? + ‘) --t R/(x;) --t 0 

607/46/3-3 
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and the isomorphisms (x:)/(x;’ ‘) ‘Y (x,)/(x:) = R/((O: x,), x,) we obtain the 
result by induction. 

Suppose then n > 1. Set x = x, and J = (xz ,.,., x,). By Lemma 4.1 and 
Proposition 3.1 we may conclude R/Z” has a filtration whose factors are 
isomorpic to (xk)/(Rxk+ ’ + xk.Zndk). Map R onto this by multiplication by 
xk; since (0: x) = (0: x2) we see 

(xk)/(Rxk+ I + x~J”-~) N R/(x, (0: x), Jn-k). 

Now set S = R/(x, (0: x)). By Proposition 2.2 the images of x2 ,..., x, form 
a d-sequence in S. By induction, the modules S/p have filtrations whose 
factors are of the form S/Z?, where Z? is a related ideal to 22,..., f,,. Reading 
this back in R, we see R/(x, (0: x), Jnek) have filtrations whose factors are 
isomorphic to 

R/((x, (0: X), X2,.‘., Xi): Xi+ 1), Xi+ I ,.,., X,). 

However, we claim 

((0: x), x, x2 ,..., Xi): Xi + I) = ((X, X* ‘..., Xi): Xi + I) 

For if cxi+ , = s + f, where s E (x, x2 ,..., xi) and t E (0: x), then 

t E (x, X2,..., ~,)n (0:x)= (0). 

Hence cxi+ , E (x, x2 ,..., xi). Thus R/(x, (0: x), Jnek) has a filtration whose 
factors are isomorphic to R/K where K is a related ideal of x, ,.,., x,. This 
proves Theorem 4.1. 

COROLLARY 4.1. Suppose R is a commutative ring and Z is an ideal 
such that Z’/Z”’ are free R/Z modules. Let J= (xl ,..., x,) be an ideal 
generated by elements x1 ,..., x, which form a d-sequence module I. Let A4 be 
an ideal and let t = min,4iCn-, depth, R/((Z,x ,,..., xi): xi+ ,), xi+ 1 ,..., xn). 
Then 

inf depth,(R/(Z + .Z)“) > f. 
” 

Proof. Theorem 2.1 shows Jm n Z c Jm-‘I and now we may apply 
Theorem 3.1 to conclude for all n 

depth,, R/(Z + J)” > i:f depth,(R/(Z, Jk)). 

By the theorem above, this infimum is at least t. 
Note the conditions of the corollary are satisfied if Z is generated by an R- 

sequence. 
We now apply these results to some of the examples of Section 1. 



POWERS OF IDEALS 273 

EXAMPLE 4.1. Let X= (xii) be a generic n by n + 1 matrix and let 1~~ be 
the minor determined by deleting the kth column of X. Set 
J=($ , ,..., pn+ ,) R, where R = k[~;~],.~~~, with k a field. Then 

i;f depth(R/Jk) = n2 - 1. 

ProoJ We apply Theorem 4.1. Let us find depth R/Z where Z is a related 
ideal to J. By the calculations in Section I. 

equals the ideal generated by all the n X n minors of X together with the 
maximal minors of the matrix obtained by deleting the first i - 1 columns of 
X. Hochster and Eagon [ 15 ] have shown such ideals are perfect; that is R/I 
is Cohen-Macaulay. But observe all such related ideals are contained in 

As all the ideals are perfect and all are contained in this ideal, it is enough to 
find depth RI&,, + , , xln + , , . . . . x,, + , ). But this is clearly n(n + 1) - (n + I) = 
(n - I)(n + 1) = n2 - 1. We conclude inf, depth(R/Jk) > 12’ - 1. But as is 
well known ([ 71) and also follows from Theorem 2.2. pi are analytically 
independent. L. Burch [6] proved the basic theorem relating the depths of 
R/Jk to the analytic spread. 

THEOREM [4]. Let R, m be local and let I be an ideal. Denote bv I(Z) the 
analytic spread of I = the degree + 1 of the polynomial which gives the 
dim Y/ml” for large n. Then 

I(Z) < dim R - i;f (depth R/I” i. 

We may conclude n + 1 = f(J) < dim R - inf, {depth R/Jk}, or, 
inf,(depth R/Jk] < n(n + 1) - (n $ 1) = n* - 1. Putting the two inequalities 
together, we conclude the inf, { depth R/Jk } = nz - 1. 

In fact even more can be shown. Brodmann [3] has shown that 

f(Z) ,< Dim(R) - lim inf(depth(R/Z”)) 

Thus whenever equality occurs in Burch’s inequality, we see 

Dim(R) - inf(depth R/Z”) = Z(Z) < Dim(R) - lim inf(depth R/Z”) 

< Dim(R) - inf(depth R/Z”) 
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and so 

lim inf(depth R/I”) = inf(depth R/Z”) 

Consequently the minimum depth is taken infinitely many times. 

EXAMPLE 4.2. Let 

0 XI2 *.. Xl5 

0 
x= 

-X12 i: 4 . . 
x45 

-x,, .f’ - X45 0 

be as in Example 1.8. As in that example, let J be the ideal generated by the 
4 x 4 Pfaffians. Then, if R = k[xijlxii, where 

xii = 0 if i>j, i;f depth(R/Jk) = 5. 

ProoJ We apply Theorem 4.1. It is enough to find min depth R/I where I 
runs through the related ideals of the d-sequence p, ,..., ps (notation as in Ex- 
ample 1.8). 

There are three types of related ideals for the Pfaffians (p, ,...,Rs). 

((P,,P~,P~, :P~),P~~P~) and ((P~,...,P,):P,),P,). 
Now, (P, ,..., P,) is Cohen-Macaulay of codimension 3 IS]. As 

dim R = 10, we obtain depth R/(p, ,...,p5) = 7. By the calculations in 

Example 1.8, ((P, ,Pz> Pj):P4) = (I-‘I~Pz~P~~X~~). 

Hence (((P,,P~,P~):P~),P~,P~) = (P,~--~P~~x~~) and as (P,-P~) is a 
prime perfect ideal, we see 

depth R/(p, ,..., p5, x45) = 6. 

Finally, (((pl ,..., pa): pd, PA = (xl5 - x45y p5>. 
Hence depth R/(x,, ,..., x45, p5) = 10 - 5 = 5 and this gives the result. 
Note as for maximal minors of Example 4.1, since the Pfaffians are 

analytically independent we will obtain equality in Burch’s Theorem. 

EXAMPLE 4.3. Let X= (xii) be r x s matrix of indeterminates as in 
Example 1.3 and let I be the ideal generated by all the m X m minors of X, 
with 0 < m < r. Set S = (k[x,]/Z) k a field. It was shown that X,, ,.., Xls 
for a d-sequence in S. Let J = (%,::I’.‘., f,,). Then, 

inf depth,(S/Jk) = (r + s - m + l)(m - 1) - s. 
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Again, by Theorem 4.1 it is enough to check the depths of the related 
ideals. As was shown in Example 1.3, the related ideals have the form 

B = CC, X,i+ 1 ,..., Zrs), 

where C is generated in S by the m - 1 x m - 1 minor of the matrix 

To calculate depth S/J, it is clearly enough to lift B back to R to an ideal 
B’ and calculate depth R/B’. 

These depths were computed in (151. For B’ as above, we obtain from 

[151 
depth R/B’ = (r + s)(m - 1) - (m - l)l -j 

=(m- l)(r+s-m+ 1)-j 

for j < n and for j = n, the depth in question is 

(r+s-m+ l)(m- 1)-s. 

Now comparing these we see that 

(m- l)(r+s-m+ l)-j>(r+s-Mm l)(m- 1)-s 

if j < s. This holds in our case and this implies the minimum depth is 

(r+s-m+ l)(m- 1)-s. 

From [ 151 we may compute dim S. It is (m - l)(r + s - m + 1). Hence 

s = f(J) < dim S - inf depth,(S/Jk) < s 

and we obtain equality in Burch’s equation. 

We now consider when equality occurs in Burch’s equation. 

THEOREM 4.2. Suppose R, m is a local Cohen-Macaula~~ ring and 
x, ,..., x, is a d-sequence such that 

dim R -depth R/(x, ,..., xk) < k 

for 1 < k < n. Then 

dim R - inf,,,{depth R/(x, ,..., x,)~) = n = l((x, ,..., x,,)). 
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Remark. The condition that R be Cohen-Macaulay is necessary; for if 
x E R, not a zero divisor, then we would need 

dim R - inf depth R/(x”) = 1. 

But depth R/(x”) = depth R - 1 in this case so equality occurs if and only if 
R is Cohen-Macaulay. 

Finally, if dim R - depth(R/(x, ,..., x,J) > n then there is little chance of 
obtaining equality. But this should not be regarded as serious; where Burch’s 
inequality becomes bad is in the high powers of the ideal in question, and it 
is not too much to assume the ideal itself is well behaved with regard to 
depth. 

Proof of Theorem 4.2. Set x=x,. We induct on n. First, we claim 
R/((O: x),x) is Cohen-Macaulay. For, consider the exact sequence 

0 -+ R + R/Rx @ R/(0: x) + R/((O: x), x) --, 0, 

which is exact since (0: x) = (0: x2). Let m be the maximal ideal of R and 
apply Hom,(R/m, -) to this exact sequence. We obtain 

+ Extk(R/m, R) -+ Extk(R/m, R/Rx) @ Extk(R/m, R/(0: x)) 

-+ Extk(R/m, R/(0: x), x)) + ExtF’(R/m, R) + .a*. 

Now Extk(R/m, R) = 0 for i < d = dim R. Also depth R/((O: x), x) = 
depth(R/(O: x)) - 1 as x is not a zero divisor modulo (0: x). By assumption 
depth R/Rx > d - 1. Hence Extk(R/m, R/Rx) = 0 if i < d - 1. If i < d - 1 
we obtain the sequence 

0 + Extk(R/m, R/(0: x)) --t Extk(R/m, R/(0: x), x) + 0. 

If either of these were nonzero, then both would have to be nonzero. As 
the depth is characterized by the first nonvanishing Ext, this would 
contradict the depth inequality between R/(0: x) and R/((O: x), x). Hence all 
these are zero if i < d - 1. When i = d - 1 we obtain 

0 + Ex$‘(R/m, R/Rx) @ Extt-‘(R/m, R/(0: x)) 

+ Extg-‘(R/m, R/((O: x), x)) + Extg(R/m, R) + . 

Now as dim R/((O: x)) = d - 1 and the depth cannot be larger than d - 1, 
we see Exti-‘(R/m, R/((O: x), x)) # 0. In any case R/((O: x), x) is 
Cohen-Macaulay. 

Set S = R/((O: x), x). We wish to apply the induction to S. To do this it is 
necessary to show 

dim S - depth S/(& ,..., Xk) < k - 1. (*) 



POWERS OF IDEALS 271 

Suppose (*) has been shown; we complete the proof of the Theorem. The 
induction allows us to conclude 

n - 1 = dim S - inf, depth S/(X *,..., X,)“, 

But the proof of Theorem 4.1 shows 

inf, depth R/(x, ,..., x,)“‘. 

> inf, depth R/((O: x,), x1, (x2 ,..., x,,)~) 

= inf,,, depth S/(X, ,..., X,)“. 

As dim S = dim R - I, we obtain, 

n - 1 = dim R - 1 - inf, depth S/(Xz ,..., X,,)” 

> dim R - 1 - inf, depth R/(x, ,..., x,)“’ 

and so 

n > dim R - inf, depth R/(x, ,..., x,)“‘. 

But, x, ,..., x, are analytically independent by Theorem 3.2 and so Burch’s 
Theorem gives the opposite inequality which proves the theorem if we can 
demonstrate (*). 

We need to prove that 

dim R - 1 - depth R/((O: x,), x, ,..., xk) < k - 1, 

i.e., that 

dim R - depth R/((O: x,), X, ,..., x,J < k. 

We know by assumption that 

dim R - depth R/(x, ,..., xk) < k. (1) 

Let J = (x, ,..., xk) and x, = x. Then by Proposition 3.1, Jn (0: x) = 0 
mnd so there is an exact sequence 

0 + R -+ R/J @ R/(0: x) + R/(J, (0: x)) + 0. 

As above, apply Hom,(R/m, -) to this sequence. As by above R/(0:x) is 
Cohen-Macaulay and as its dimension is d = dim R, we see that for i < d the 
long exact sequence for Ext degenerates to 

0 + Ext;(R/m, R/J) + Extk(R/m, R/(J, (0: x)) + 0. 
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This shows depth R/J= depth R/(J, (0: x)) and this, together with the 
inequality (1) prove (*) and finish the proof of Theorem 4.2. 

By discussion following Example 4.1 we see that under the conditions of 
Theorem 4.2 the minimum depth is taken infinitely many times. 
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