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Neumann 19 1 (see also Magnus [ 7 1) and later Tretkoff 1 12 j have stt:died 
subgroups of the modular group &I=- PSL(2, Z) that arc maximal with 
respect to containing no parabolic elements. If P is a maximal parabolic 
subgroup of At, that is, with all nontrivial elements parabolic, and S is L 
complement of P in /M. then S is a maximal nonparabolic subgroup. It was 
groups S of this type that were studied by Neumann and TretkoK, and W: 
call such groups ?Veumann subgroups; it is not known a.hether all maxImal 
nonparabolic subgroups are of this sort (see Magnus [7, p. 121 ]).* 

Neumann and Tretkoff showed that the Neumann subgroups are 
associated with what we call tmnsitice triples (a: A, B): A and R arc 
permutations of a (necessarily countable) infinite set I2 such that A’ = B’ = i 
and that C =- AB is transitive on R. A knowledge of ali such Lrlpics 1’: 
equivalent to a knowledge of all Neumann subgroups. Morcovcr. Tretkofr 
obtained, by the Reidemeister-Schreier process, a presentaticn for S 
expressed very simply in terms of an associated triple (a: ‘4. L3). From :h\: 
well known fact that :M is the free product of a group of order 2 with a group 
of order 3, it follows from the Kurosh Subgroup Theorem Lhal S is the fret 
product of r; groups of order 2, rI groups of order 3, and r-L infinite cyclic 
groups, for certain numbers r,, 0 < r, < oc, (we write CG for EC,,). ‘I‘retkotj 
obtained partial information about the numbers rz, r3, r,r . 

Tretkoffs work prompted us to study the set of transitive triples (Q. .$I: R:t. 

’ SW note (2) on page 321 
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where we now relax the condition that 0 be infinite. In another paper 1 I ] we 
have associated each transitive triple with what we call an Eulerian graph 
G”. that is, a graph in which each vertex has degree at most 3, and equipped 
with a path n that traverses each directed edge exactly once, and we have 
reduced the study of such graphs to cubic Eulerian graphs. Although we did 
not obtain a detailed description of the class of such graphs, our analysis 
suffices to determine the structure of S, that is, the numbers r7, r3, rX. We 
complete Tretkoffs results by establishing the following (and this without 
appeal to the Kurosh Subgroup Theorem). 

(I. 1) rz is the number offixed points of A and r3 is the number of fixed 
points of B. 

(I.21 rz is the Betti number of the graph G*. 

(1.3) r2 + rl + rsr. = 03. 

(1.4) If rX is finite then it is ecen. 

(I .5) Ecery triple of numbers rz, rl , rT . where 0 ,< rz, r3, rX, < 03. that 
satisfies (I .3) and (1.4) is realized by a triple (0, A, B) associated with some 
Neumann subgroup S. 

Some of our arguments establish somewhat more general results 
concerning a generalization of Tretkoff’s presentation associated with an 
arbitrary locally finite graph, in particular, with any finite graph, and with 
the Betti numbers of such graphs. We know of no application of these results 
beyond that given above. 

2. NONPARABOLIC SUBGROUPS 

The modular group M = PSL(2. Z) can be viewed as the group of all 
linear fractional transformations of the extended complex plane C* = 
CU {co}, of the form 

ar + b 
a: Lb--: 

cz + d 
where a, 6, c, d E Z and ad - bc = I. (2.1) 

A transformation c1 is parabolic if it has a single (necessarily real or co) 
fixed point, or alternatively if it is nontrivial and has trace a + d = rt2. A 
parabolic subgroup of M is one whose nontrivial elements are all parabolic. 
A nonparabolic subgroup is one containing no parabolic elements. 

It is well known that M is the free product of a group of order 2 with a 
group of order 3. Explicitly, M has a presentation 

M= (0, T: co2 = I. @Jr)3 = I), P-2) 
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whcrc (1) and r are the transformations 

0: z:-4 -l/z, r: z ‘-, z + I. 

(2.3) LEMMA. The maximal parabolic subgroups of M are exactly the 
conjugates of the translation group T = (T). 

ProoJ A4 acts transitively on Q* = QU {co 1. For. if 9 E Qv writing 
y q : a!c. where (a: c) = 1, there exist b and d such that un - hc = 1. snd 
hence an element L( of M, as in (2. I ), such that u( co) = a/c. Now of P is 3 
parabolic group containing a nontrivial element u with fixed poim q, then, 
after replacing P by a conjugate in M, we may suppose that (x has lixed 
point co. This means that a, as in (2.1). has c = 0: hence ad = I, and we 
may take a = d = 1. whence a = 7* E T. b # 0. If U, is another element of P. 
thenp-((,nr”*isinPforallnEA,andthetracen,+d,+nbc,mustbe 22 
for all n E Z. which implies that c, = 0 and hence that 2 is m 7. Thus 
P G 7, and if P is maximal, P = T. 0 

(2.4) DEFINITION. A Neumann subgroup of M is a complement S of a 
maximal parabolic subgroup P; that is, SP = M and S PI P = 1. 

(2.5) LEMMA. The following are equicalent: 

(2.5. I) S acts transitively on Q”. 

(2.5.2) SP = MJor some maximal purabolic subgroup P. 

(2.5.3) SP = M for all maximal parabolic subgroups P. 

ProoJ Since all maximal parabolic subgroups arc conjugate in M, i! 
suffices to show that (2.5.1) holds if and only if ST = 44. If S7.= 44: then. 
since M is transitive on Q*, Q* = M(ao) = ST(o0 j = S(co j. and S IS tran- 
sitive on Q”. For the converse assume that S is transitive on Q”. and let 
(I EM. Then S contains some /I such that P(m) = cr(co). whcncc 
/3 ‘a(ao)==ao,/3 ‘aET,andaE/?T&ST. Cl 

(2.6) LEMMA. If S is transitive on Q* and S r\ P = I for some maxtmal 
parabolic subgroup P, then S n P = I for all ma.uimul parabolic subgroups P. 

ProoJ If P has a fixed point p E Q*, then S n P T= S,, the stabilizer of p 
m S. Since S is transitive on Q”, all S,, for p E Q” are conjugate in S. 0 

(2.7) COROLLARY. A Neumann subgroup of M is a complemetd to ever;, 
maximal parabolic subgroup of M. 0 

(2.8) PROPOSITION. A Neumann subgroup of M is a maximui 
nonnarabolic subgroup of’M. 
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Proof: If S is a Neumann subgroup then S n P = 1 for some maximal 
parabolic subgroup P, and hence, by (2.5): for all. Thus S contains no 
parabolic elements; that is, S is nonparabolic. If a & S and a(co) = y, then, 
since, by (2.5): S is transitive on Q+, /I(co) = y for some j3E S. Now 
p-‘a # 1 fixes co, and the group (S, a) contains a parabolic element. This 
shows that S is maximal nonparabolic. 0 

By a lriple (Q,A, B) we shall always understand one where J2 is an 
infinite set, and where A and B are permutations of 0 such that A’ = B’ = 1 
and that C = AB is transitive on S. 

(2.9) PROPOSITION. The conjugacy classes of Neumann subgroups of M 
are in one-to-one correspondence with the isomorphism classes of triples. 

ProoJ Let S be a Neumann subgroup, and hence a complement to T. Let 
0 be the family of cosets Srk, k E Z. Then the action of M on R by right 
multiplication defines a map 

4: M+SymR. (2.9.1) 

Let 
A = 04, B = (or)& 

then A2 = B’ = 1 and C = AB = rd is transitive on R; that is? (J2, A, B) is a 
triple. 

Since ST= M, every conjugate of S has the form S’ = rmhSr”. The cosets 
of S’ have the form rmhSrhtk, k E Z. The correspondence r-“Srhtk H 
Ssh + k from a’ to f2 induces an isomorphism between the triples (f2’, A’, B’) 
and (0, A. B). 

Now let a triple (fi, A, B) be given. Since M has the presentation (2.2), 
Eqs. (2.9.2) define a map 

q3: M++ SymR. (2.9.1) 

Choose an element p E R and let S = (a: a E M, p(a4) = p j. Since C = to is 
transitive on infinite 0. p(tk4) # p for k # 0, whence S n T = 1. Moreover, 
if u E M. then p(a@) =pCk = p(s”4) for some k. whence p((ar k)#) = p, 
arVk E S, and a E Srk c ST. Thus ST = M and S is a Neumann subgroup. 

Finally, it is clear that if a different element p of R is chosen, then S will 
be replaced by a conjugate in M. Cl 

3. ASSOCIATED GRAPHS 

In [ 11 we associated with each triple (0, A, B) a pair of graphs G and G*. 
The graph G has vertex set R. It has a directed edge, called an A-edge, from 
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p to q whenever p ti q and pA = q. and a B-edge from p io q whenever p f q 
and pB = q, with inverse B-‘-edge from q to p. A B-orbit is represented 
either by a single vertex of degree 1, or by an oriented triangle of R-edges. 

The graph G* is obtained from G by contracting every triangle to a point. 
It is a cuhoid graph in the sense that each vertex has degree at most 3. ir 
possesses an Eulerian path n. that is, a path that is reduced except a: vertices 
of degree 1. and which traverses each directed edge exactly- once. 

The main result of [ 11. restricted to infinite graphs, is as follows. 

(3.1) THEOREM. If (0: A. B) is a triple, then G* has one c$the..Tollowmg 
,founs: 

(3. I. I) G” is a simply infinite tree. that is, a tree with exact& one 
iajinite reduced path beginning at each point: 

(3.1.2) G* is obtainedfrom a finite cubic graph G,X by attaching trees 
to G; at new certices introduced to subdivide certain edges: exactly one oj’ 
these trees is simpiy infinite, and there are finite& many finite trees; 

(3.1.3) G* is obtained from an inJinite cubic graph G,* by attaching o 
finite or inArrite number offlnite trees. 

From this we shail derive the main result of this paper. 

(3.2) THEOREM. Let S be a Neumann subgroup of the modular group, 
and let (Q. A. B) be the associated triple. with G. G* the associated graphs. 
Then, for certain numbers r2. r3, ra;, where Cl < r2. rj . rJ < cc. S is thcjree 
product of rz groups qf order 2, r3 groups of order 3, and rz, inJinrte c~~-lic 
groups. Moreocer. 

(3.2.;) I’, is the number of Jixed points of A and r? is the number of’ 
fi.ued points of’ B: 

(32.2) <.r is the Betti number of the graph G*.: 

(3.2.3) r? $ r, + r,r = a~; 

(3.2.4 j i/r is finite then it is ecen: 

(3.25) ecerjt triple of numbers r2: r,’ rCr: where 0 < I’~, ri. r ,. ,< CC. 
that satisJies (3.2.3) and (3.2.4) is realized by a triple (0, A. B) associated 
with some Neumann subgroup of the modular group. 

We shall use also the Following result of Tretkoff, obtained by the 
Reidemeister-Schreier Process. 

(3.3) THEOREM (Tretkoff). Let S be a Neumann subgroup of the 
modular group, and let (Q, A, B) be the associated triple. Then S has n 
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presentation with R as set of generators, and with defining relations 
p( PA) = 1 and p(pB)(pB*) = 1 for ail p in R. 

We shall use a modification of Tretkoffs presentation, which we first 
describe in the simplest case. Suppose the permutations A and B in the triple 
(0, A, B) are without fixed point, so that the associated graph H = G* is a 
cubic graph. As generators for S we replace each vertex LJ by the unique 
(directed) edge e,. beginning at C; thus the presentation will have as set of 
generators the set E of all edges of H. If GA = t”, then e, , = e; ‘, whence the 
‘*edge relations” c(vA) = 1 take the form ee- ’ = 1. Let p,. pl, p1 be. in 
order, the three elements of a B-orbit in G, corresponding to a single vertex t’ 
in /I, and let e, : ez, e, be the three A-edges beginning at these points. Then 
the “vertex relation” p,(p,B)(p,B’)= 1, or p,pzp3 = I takes the form 
r,:: e,e2ei = 1. 

(3.4) PROPOSITION. Let S be a Neumann subgroup of the modular group 
such that. in the associated triple (Q, A, B). neither A nor B has a Jived 
point, whence the associated graph H = G* is cubic. Then S has a presen- 
tation 

S=(E: ire= I), (rL= I)), 

where E is the set of edges of H, where, for each edge e of H, rc = ee- ‘, and 
where, for each vertex v of H: r1 = e, e, e3, e, . ezV e, being the three edges at 
v, in the order dictated by the Eulerian path on H. 

Next suppose that H is merely cuboid (but not necessarily cubic). 
Reference to the graph G establishes the following. 

(3Sa) If v is a vertex of H of degree 2, with edges e, and e, at C. then 
there is associated with v an additional generator f and a pair of relations 
e,ez =J’andf* = 1. 

(3.5b) If v is a vertex of H of degree 1, with edge e, beginning at v. then 
there is associated with L either a relation e: = 1: or else two additional 
generators f, and.fi and three relations e, = f,f2. f: = 1,f: = 1. 

In the sequel we shall use both presentations for S. 
We begin the proof of (3.2) by studying the contribution to the group S of 

an attached tree T. Suppose that H is obtained by attaching a tree T to the 
remainder K of H at a root cu. Figure (3.6) shows schemattcally, in the case 
that T is not trivial, the configuration in H and the corresponding 
conliguration in G. 

By S,(T) we understand the group associated with T, but excluding the 
relation run = 1 associated with the vertex v,,. (If T = ( L’,~}, trivial, then vg is a 
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FIGLRI-. 3.6 

fixed point of A, and we take S,(T) = (a,: ri = l).) WC take S*(T) to be the 
free product of all the groups (23: t” = 1) and (t’: u3 = 1) generated by I’ in 
T? a fixed point of A or B, excluding the case that K is trivial and L’” is a 
fixed point ofB. 

(3.7) LEMMA. I” 7‘ is Jinite, then S,(T) = S”( 7’); in parricular. if T is 
trivial, with a single l:ertex t’, [hen S,(T) = (~9”: rf, = 1). 

Pro@ If an edge e of T has one end of degree 1. then e E S*(7-j by 
(3.5a,b). Inductively, if e is the last edge on the path from c,) to L’? then the 
remaining edges at u lie in S*(T), whence by the relation r, = 1 we have 
eE S*(T). Cl 

(3.8) LEMMA. If T is a simply inj%te tree with rool cOl then S,(T) = 
S”(T) * (e,), where e, is the edge oj‘ T at uO. and (eO) is injinite cyclic. 

ProoJ We may suppose that T consists of vertices L’,,, c, . t’*, with edges 
c, from C, to u,+, , and with additional finite trees T,. Tzt... attached at L’. 
I;,.... . We show. as in the proof of (3.7j, that ail the edges of the T; are ~rl 
S-*(T), whence at each vertex C, = u,: Us,... there is a relarion e, = e, ,.c or 
e, = J,c,: , with f, E S*(T). These relations just suffice to eliminate recut 
sively e, : e, ,.... yielding S,(7) = S*(T) * (e,). (e,) being an infinite cfclic 
group. F 

(3.9) COKOLLAKY. If H is a simply infinile tree, then (3.2) hoidy. 

Proof. WC have H = T for T as in (3.8). 5 is obtained from S,(T) by 
adding relations assoctated with the vertex L’(, in accordance with (3.5bj: that. 
is. either et = I or e, = f,J2? whereff =- 1 andJ’i = 1. Thus S = S*. the free 
product of the groups of order 2 and 3 corresponding to the fixed points of A 
and B. El 
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(3. IO) I’H is obtained by attaching (possibly infinitely many)finitc trees 
T’ to an infmite cubic graph K: then (3.2) holds. 

Proof: Let K’ be obtained from K by subdividing certain edges of K by 
the points L‘I) of attachment of the finite trees 7”. Let K” be obtained from K’ 
by attaching a new edge e:, at each cb. (By (3.7), the relations m S,(7“) give 
eb E S*‘(T).) Let S* = ++ S”(7’). Then the group S is obtained from S* by 
adding as new generators the set E of all edges e of K’. with the relations 
ee- ’ = I, and also the relations r, = I at the vertices of K’. Note that at 1:; 
one has a relatton of the form e&e:, = 1, where e. e’ E E and EI, is a gtven 
clement of S”. 

Let M be a maximal tree in K’, and E, the set of edges of K’ not in M. II 
e is the only edge of M at a vertex t’. we can use the relation at L’ to express c 
in terms of E, and S*, that is. as an element of (E,, S*). WC can repeat this 
process on M’ obtained from M by deleting e and L:, and, continuing thus. 
we can delete any finite branch of M. Now tither A4 is simply infinite. or 
every finite branch of M is contained in a maximal finite branch. In either 
case, after deleting finite branches, we can rcplacc ‘51 by an infinite tree A4’ 
with a base point z:,,, such that M’ has no finite branch not containing co. 

It follows that at every vertex c of M’ there is an edge e, leading away 
from t’,,. We choose such an e,: for each vertex L’, and let E’? be the set of all 
edges of M’ not of the form e,., e, ’ for any 1;. The relation at t’,) enables us 
to express e, in terms of E,, E, , and S*. that is, as an element of 
(E, u E,, S”). By Induction on the distance from I:,, to L:, we can USC the 
relation al c to express eL as an element of (E, u ET. S*>. In this way we 
use up all the relations associated with vertices of&f to express all the c, in 
terms of (E, U E,. SF). In short, we have shown that S = F * S’“. where 
F = (E, U E?) is a free group. 

To show that F has infinite rank, it is enough to prove that K. and thus 
also H: have infinite Betti number, for then, E, is infinite. We suppose that 
the Betti number of K is finite, and derive a contradiction. 

Suppose that K,, obtained from K by deleting a finite number of edges, is 
simply connected. Since K is infinite, K, also is infinite, and therefore has a 
connected component K, that is infinite and simply connected, that is. an 
infinite tree. Moreover, since K was cubic, K, will be cuboid, and indeed 
with only finitely many vertices of degree less than 3. If cO is any vertex of 
K, . we may choose a vertex C, farther from c,, than any vertex of degree less 
than 3. Then there will be an infimte branch KJ at L’, , all of whose vertices 
except c, have degree 3-that is. Kz is a “binary tree,” as shown in 
Fig. (3.11). But K, also occurs as a branch in K. Since Kz is not simply 
infinite. this contradicts the fact that K has an Eulerian path. q 
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(3.12) PROPOSITIOV. If H is obtained b.y attaching one infinite tree ;fi’ 
and a jinirc set T’...., T’ oJ’JXle trees to a.finite cubic graph K. :hen (3.2) 
holds. 

ProoJ. Let K’, K”, L:;, L;: ,,.... L(,,, and ei. ei . . . . . e{; be as in :he proof C-I’ 
(3.10)? except that we now have e; . . . . . 6, E S*. and S is obtained from 
S” * (e$ by adjoining the set E of generators with relations as before. Agair! 
let M be a maximal tree in K’ and E, the set of edges of K’ not in 1%‘. WC 
emphasize that in this presentation for S, the generaLor eg appears in on!y 
one relation. that given by the vertex c z. If e is any edge of M al a vertex L 
of M other than C: of degree I, we may use the relation at c to eliminate e in 
terms of (E,. S*). Iterating this elimination on the finite tree M. IVC finally 
come to a point where the only remaining relation at P: is of the form 
ee’eil := i, and where e and e’ have already been expressed as clemen:s of 
(E,. S’*). WC use this last relation to eliminate eg. This gives a prcsentatiorl 
S = F * S”, where F = (E,) is a free group. &ow 1 E, i is twice the rank of 
the free group F, while, by construction, \E, I is twice the Betti number of K’., 
and hence twice the Betti number of K. It follows that the rank of F is the 
Betti number of K. 0 

4. COMPLEMBWARY RMAI~KS 

An obvious generalization of TretkolYs prcsentatlon of S. as given in 
(3.3), pertains to an arbitrary set of permutations of the set Q. We have no: 
pursued this generalization. 

A second obvious generalization is based on the alternative form 3:‘ 
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Tretkoffs presentation, as given in (3.4). We discuss it here because a 
number of the arguments used to establish (3.2) do go through in this more 
general situation. Although we have found no application for these more 
general results, we believe they help to put the discussion above in 
perspective. 

(4.1) DEFINITION. Let H be any graph. A group S will be called a 
Tretkoflgroup of H if it has a presentation of the form 

where 
S=(E: {re= I}, {ro= I}), 

(i) E is the set of edges of H; 

(ii) for each edge e there is a relation re = 1, with re = ee-‘: 
(iii) for each vertex t’ of finite degree d there is a relation rC = 1, with 

rr = e, . -. ed, where e, ,..., e,, are the edges at v in some order. 

Evidently the study of such groups reduces to the case that H is connected 
and locally finite. 

(4.2) THEOREM. Let H be a connected and 1ocallyJnite graph, and S a 
Tretkqfy group of H. Then 

(4.2a) If H is inJinite. then S is a free group. 

(4.2b) If H is finite, then, for some finite f, g > 0, one has a presen- 
tation for S of the form 

s = (x , ,--., xg, Y, 7-e*, YR’ 2, ,-**, z/: lx,~J~,l~~~Ix,~Y,l=~). 

(4.3) THEOREM. Let H be a finite graph with an Eulerian path 71, that is, 
a reduced closed path that traverses each edge of H exactly once in each 
direction. Let S be the Tretkofl graph of H in which, in the relations r,. = 1, 
the factors of r,, = e, . . . ed appear in the (cyclic) order induced by t (that is. 
for subscripts module d, e,, , follows e; ’ in n). Then S has a presentation 

.S=(x , ,..., Xx, J', ,...: Y,: [.K,, Y, I *.. Ix,, Yxl = 1): 

where 2g is the Betti number of H. 

(4.4) THEOREM. Let H be a Jinite cuboid graph with an Eulerian path 71, 
associated with a triple (Q, A, B), where R is finite. Let S be the TretkoJ* 
graph of H associated with (Q, A, B) in the manner of (3.5a,b), and with the 
factors in the r,: = e, . . . ed in the order induced by II. Then 

S=G,*G,*G,, 
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where 

(i) G, = (x, ,..., x,. I’, )...$ y,: Ix,. L’, 1 * ’ * Ix,, y, j = I>. ilnd 2g is Ihe 
Betti number of i-l: 

(ii) G, is the free product of rz groups of’ order 2. rz being the number 
of ,fixed points of A : 

(iii) G, is the.free product uj’r, groups of‘order 3. rl heiny the number 
of’.fi.ued points of B. 

We do not give proofs of these results. In part they can be obtained b:i 
essemialiy the same methods as those that were used in the proof of (3.2). 
However, a substantial simplification can be obtamed by appealing to the 
theory of quadratic systems of words as studied by Hoare et al. 12. 3 I. (See 
also j 5. p. 581.) 

For example. we note that all the presentations of S glvcn in (4.1). (4.2,~ 
t.4.3) are quadratlc. and, indeed, may be taken as alternating. Now (4. I) anti 
(4.2) follow from the general theory of quadratic presentations. 

The proof of (4.4) contains a new element. beyond the ideas used in .he 
proof of (3.2), which appears clearly in the case that H is cubict that is. .hat 
rz = r3 = 0. Here one can observe that the cyclic order ir which the edges e 
appear in thr Eulerian path x is precisely the order in which these edges (ir. 
the role of “letters”) appear as vertices in the cycies of the coinitiai graph (or 
star graph). It follows that this graph is connected; that is, it is a s~nglc 
cycle. Thus the system of relations is minimal under automorphism (that IS. 
N&en transformations), and from this it follows in tarn that S hay 3 
presentation of the form (4.2b): in which al! generators appear in the defining 
relator, that is, in whichJ‘ = 0. 

Posrscrrpr. (I ) It has come to our attention that Stothers ! 13 ) (see also j I? 1) has ct-ar:~ 

antlupatcd 11s cn provmg Theorem 3.2. by esscntlally the same method. 

(7) WC haire recently ohtarncd, by thcw same mcrhods. mammal ncmparabo;:c 

subgroups &’ the modtilar group that are not Ncumann subgroups ThL simplest of thc~e ‘s ill” 

free product of the 2 clement groups generated b) the C”BAH- ‘C I’. fo- all mtcgsrs I: :te 

ccse! qann tot thrs group IS shown m the accompwymp schcmc 

. . . . . l *** 
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