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1. INTRODUCTION

Neumann [9] (see also Magnus [7]) and later Tretkoff |12} have studied
subgroups of the modular group M = PSL(2, Z) that arc maximal with
respect to containing no parabolic elements. If P is a maximal parabolic
subgroup of M, that is, with all nontrivial elements parabolic, and § is ¢
complement of P in M. then S is a maximal nonparabolic subgroup. It was
groups S of this type that were studied by Neumann and Tretkoff, and we
call such groups Neumann subgroups; it is not known whether all maximai
nonparabolic subgroups are of this sort (sce Magnus |7, p. 121])."

Neumann and Tretkoff showed that the Neumann subgroups ure
associated with what we call transitive triples (2, 4,B): A and B arc
permutations of a (necessarily countable) infinite set 2 such that 4% = B® = |
and that C = AB is transitive on 2. A knowledgc of ali such tripics 14
equivalent to a knowledge of all Neumann subgroups. Morcover. Tretkof”
obtained, by the Reidemeister—Schreier process, a presentaticn for $
expressed very simply in terms of an associated triple (Q, 4. B). From the
well known fact that M is the free product of a group of order 2 with a group
of order 3, it follows from the Kurosh Subgroup Theorem that § is the frec
product of r. groups of order 2, r, groups of order 3, and r_, infinite cvclic
groups, for certain numbers r,, 0 r, € © (we write o for R,). Tretkoft
obtained partial information about the numbers r,, ry, r. .

Tretkoff’s work prompted us to study the set of transitive triples (2. 4, B},
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where we now relax the condition that £2 be infinite. In another paper | 1] we
have associated each transitive triple with what we call an Eulerian graph
G*. that is, a graph in which each vertex has degree at most 3, and equipped
with a path 7 that traverses each directed edge exactly once, and we have
reduced the study of such graphs to cubic Eulerian graphs. Although we did
not obtain a detailed description of the class of such graphs, our analysis
suffices to determine the structure of S, that is, the numbers r,, ry, r.. We
complete Tretkoff's results by establishing the following (and this without
appeal to the Kurosh Subgroup Theorem).

(1.1) r, is the number of fixed points of A and r, is the number of fixed
points of B.

(1.2) r,, is the Betti number of the graph G*.

(1.3) ry+ry+r, =oo.

(1.4) If r, is finite then it is even.

(1.5) Every triple of numbers ry, ry, r.. where 0 K ry, ry, r < 00. that

satisfies (1.3) and (1.4) is realized by a triple (2, A, B) associated with some
Neumann subgroup S.

Some of our arguments establish somewhat more general results
concerning a generalization of Tretkoff’s presentation associated with an
arbitrary locally finite graph, in particular, with any finite graph, and with
.the Betti numbers of such graphs. We know of no application of these results
beyond that given above.

2. NONPARABOLIC SUBGROUPS

The modular group M = PSL(2.Z) can be viewed as the group of all
linear fractional transformations of the extended complex plane C* =
CU {0}, of the form

az+ b
cz+d’

where a,b,c,d€Z and ad—-bc=1. (2.1)

A transformation « is parabolic if it has a single (necessarily real or c0)
fixed point, or alternatively if it is nontrivial and has trace a + d= t2. A
parabolic subgroup of M is one whose nontrivial elements are all parabolic.
A nonparabolic subgroup is one containing no parabolic elements.

It is well known that M is the free product of a group of order 2 with a
group of order 3. Explicitly, M has a presentation

M={(w,1 o' =1 (wr)’=1) (2.2)
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where w and t are the transformations
w: z+— —l/z, . ozrrz 4 L

(2.3) LeMMA. The maximal parabolic subgroups of M are exactiy the
conjugates of the translation group T = (7).

Proof. M acts transitively on Q* = QU {co|. For. if g€ Q, writing
g = a/c. where (a,c)=1, there exist b and d such that ad — bc = 1. and
hence an element « of M, as in (2.1), such that a{co) =a/c. Now 1f Pis o
parabolic group containing a nontrivial element ¢ with fixed poin: g, then,
after replacing P by a conjugate in M, we may suppose that ¢ has fixed
point co. This means that a, as in (2.1). has ¢ =0: hence ad = 1, and we
may take a =d = 1. whence a =1* € T, b # 0. If «, is another element of P.
then f==«,a™ is in P for all n € A4, and the trace a, + d, + nbc, must be +2
for all n € Z. which implies that ¢, =0 and hence that @ is »n 7. Thus
Pc T, and if Pis maximal, P=T. O

{(2.4) DEFINITION. A Neumann subgroup of M is a complement S of n
maximal parabolic subgroup P; that is, SP=M and SMP=1.

{2.5) LEmMMA. The following are equivalent:

(2.5.1) S acts transitively on Q*.
(2.5.2) SP=M for some maximal parabolic subgroup P.
(2.5.3) SP=M for all maximal parabolic subgroups P.

Proof. Since all maximal parabolic subgroups arc conjugate in M, i
suffices to show that (2.5.1) holds if and only f ST=M. Il ST =M, then,
since M is transitive on Q%, Q* = M(oc) = ST{c0)= S(o0). and § 1s tran-
sitive on Q*. For the converse assume that S is transitive on Q*. and let
aEM. Then § contains some [ such that f(o0)= a{c0). whence
B 'a(w)=ow,f 'a€T, and a €FT<ST. O

(2.6) LEMMA,  If' S is transitive on Q* and S NP =1 for some maximal
parabolic subgroup P, then S M P =1 for all maximal parabolic subgroups P.
Proof. If P has a fixed point p € 0*, then SN P =§,, the stabilizer of p

mm S. Since S is transitive on Q*, all S, for p € Q™ are conjugate in §S. O

(2.7) COROLLARY. A Neumann subgroup of M is a complemerit 1o ever
maximal parabolic subgroup of M. 0O

(2.8) PROPOSITION. A Neumann subgroup of M is a maximal
nonparabolic subgroup of M.
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Proof. If S is a Neumann subgroup then SN P =1 for some maximal
parabolic subgroup P, and hence, by (2.5), for all. Thus S contains no
parabolic elements; that is, S is nonparabolic. If ¢ € S and a(o0) = ¢, then,
since, by (2.5), S is transitive on Q%, f(c0)=¢ for some fE€ S. Now
B~ 'a# 1 fixes o, and the group (S, &) contains a parabolic element. This
shows that § is maximal nonparabolic. O

By a triple (2,4, B) we shall always understand one where 2 is an
infinite set, and where 4 and B are permutations of 2 such that 4> =B" = |
and that C = AB is transitive on Q.

(2.9) ProposITION.  The conjugacy classes of Neumann subgroups of M
are in one-to-one correspondence with the isomorphism classes of triples.

Proogf. Let S be a Neumann subgroup, and hence a complement to T. Let
2 be the family of cosets St*, k € Z. Then the action of M on £ by right
multiplication defines a map

¢: M- Sym Q. (2.9.1)
Let
A = wg, B = (wr)d;

then 4>=B"'=1 and C = AB =14 is transitive on 2; that is, (£, 4, B) is a
triple.

Since ST = M, every conjugate of S has the form S’ =7~ "St*. The cosets
of S’ have the form t7"St"** k€ Z. The correspondence 7~ "St"** -
St"*¥ from £’ to 2 induces an isomorphism between the triples (', 4’, B')
and (02, A. B).

Now let a triple (£, 4, B) be given. Since M has the presentation (2.2),
Eqgs. (2.9.2) define a map

¢: M Sym Q. (2.9.1)

Choose an element p € 2 and let S = {a: ¢ € M, p(aé) = p}. Since C =10 is
transitive on infinite 2. p(t*¢) # p for k # 0, whence S T = 1. Moreover,
if « € M. then p(ad) =pC* = p(*¢) for some k. whence p((at “)¢) = p.
at™*€ S, and a € St* < ST. Thus ST =M and S is a Neumann subgroup.

Finally, it is clear that if a different element p of 2 is chosen, then S will
be replaced by a conjugate in M. O

3. ASSOCIATED GRAPHS

In [1] we associated with each triple (£, 4, B) a pair of graphs G and G*.
The graph G has vertex set £2. It has a directed edge, called an 4-edge, from



NONPARABOLIC SUBGROUPS 315

p 1o g whenever p # g and p4 = q. and a B-edge from p 10 g whenever p # ¢
and pB =g, with inverse B~ '-edge from g to p. A B-orbit is represenrted
cither by a single vertex of degrec 1, or by an oriented triangle of B-edges.

The graph G* is obtained from G by contracting every triangle to a poiat.
It is a cuboid graph in the sense that each vertex has degrec at most 3, It
possesses an Eulerian path 7. that is, a path that is reduced except ai vertices
of degree 1. and which traverses each directed edge exactly once.

The main result of [1]. restricted to infinite graphs, is as follows.

(3.1) THEOREM. If (2, A.B) is a triple, then G* has one of the following
forms:

(3.0.1) G* is a simply infinite tree. that is, a tree with exactiy one
infinite reduced path beginning at each point.

(3.1.2) G* is obtained from a finite cubic graph G5 by attaching trees
to Gy at new vertices introduced to subdivide certain edges. exactly one of
these trees is simply infinite, and there are finitely many finite trees;

(2.1.3) G* is obtained from an infinite cubic graph G by attaching o
finite or infinite number of finite trees.

From this we shail derive the main result of this paper.

(3.2) THEOREM. Let S be a Neumann subgroup of the modular group,
and let (2. A. B) be the associated triple. with G. G* the associated graphs.
Then, for certain numbers r,. ry, r.., where 0 ryory. r, < oo, Sis the free
product of r, groups of order 2, ry groups of order 3, and r, infinite cyclic
groups. Moreover.

(3.2.1) r, is the number of fixed points of A and r. is the number of
Jixed points of B:

(3.2.2) r, is the Betti number of the graph G*:

(3.23) ra+ry+r, = o00;

(3.2.4) if r is finite then it is even;

(3.2.5) every triple of numbers r,, ry, r .. where 0 r,, ri. r, € oC.

X

that satisfies (3.2.3) and (3.2.4) is realized by a triple (2, A. B) associated
with some Neumann subgroup of the modular group.

We shall use also the following result of Tretkoff, obtained by the
Reidemeister—Schreier Process.

(3.3) THeorRem (Tretkoff). Let S be a Neumann subgroup of the
modular group, and let (2, A, B) be the associated triple. Then S has a
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presentation with 2 as set of generators, and with defining relations
p(pA)=1 and p(pB)(pB*) =1 for all p in Q.

We shall use a modification of Tretkoff's presentation, which we first
describe in the simplest case. Suppose the permutations A and B in the triple
(2, A, B) are without fixed point, so that the associated graph H =G* is a
cubic graph. As generators for § we replace each vertex v by the unique
(directed) edge e, beginning at v; thus the presentation will have as set of
generators the set E of all edges of H. If v4 = v’, then ¢,. = e, !, whence the
“cdge relations” v(rA) =1 take the form ee”'=1. Let p,. p,, p, be. in
order, the three elements of a B-orbit in G, corresponding to a single vertex v
in 71, and let e, e,, e, be the thrce A-edges beginning al these points. Then
the “vertex relation” p,(p,B)(p,B*)=1, or p,p,p;=1 takes the form
rpeee,=1.

(3.4) PROPOSITION. Let S be a Neumann subgroup of the modular group
such that. in the associated triple (2, A, B). neither A nor B has a fixed
point, whence the associated graph H = G* is cubic. Then S has a presen-
tation

S=(E: fro=1h{r,=1})
where E is the set of edges of H, where, for each edge e of H, r,=ee™ ", and

where, for each vertex v of H, r, = e e, e, €,. e,, e, being the three edges at
v, in the order dictated by the Eulerian path on H.

Next suppose that H is merely cuboid (but not necessarily cubic).
Reference to the graph G establishes the following.

(3.5a) If v is a vertex of H of degree 2, with edges e, and e, at v, then
there is associated with v an additional generator [ and a pair of relations
e,e,=fand f1=1.

(3.5b) If v is a vertex of H of degree |, with edge e, beginning at v. then
there is associated with v either a relation e} =1, or else iwo additional
generators f, and f, and three relations e, = f, f,. f1=1,f3=1.

In the sequel we shall use both presentations for S.

We begin the proof of (3.2) by studying the contribution to the group S of
an attached tree 7. Suppose that H is obtained by attaching a tree T to the
remainder K of H at a root v,. Figure (3.6) shows schematically, in the case
that T is not trivial, the configuration in H and the corresponding
configuration in G.

By S§,(T) we understand the group associated with T, but excluding the
relation r, = 1 associated with the vertex v,. (If T'= {v,}, trivial, then v, is a
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FIGURE 3.6

fixed point of 4, and we take S,(T) = (v,: vy = 1).) We take $*(T) to be the
free product of all the groups {v:v”> = 1) and (v: ¢’ = 1) generated by r in
T, a fixed point of A or B, excluding the case that K is trivial and v, is a
fixed point of B.

(3.7) LemMa.  If T is finite, then S (T)= S*(T); in particular. if T is
trivial, with a single vertex v, then S,(T) = {vy: vy = 1>

Proof. 1f an edge e of T has one end of degree 1. then ¢ € S*(T) by
(3.5a,b). Inductively, if e is the last edge on the path from ¢, to v, then the
remaining edges at v lie in $*(T), whence by the relation r =1 we have
ec S¥(T). O

(3.8) LeMMA. If T is a simply infinite tree with root vy, then S (T)=
S*(T) » {e,), where e, is the edge of T at v,. and {e,) is infinite cyclic.

Proof. We may suppose that T consists of vertices vy, v,. v,, with edges
e, from v, 10 v,,,, and with additional finite trees T,. T,.... attached a1 ¢ .
Uy.... . We show. as in the proof of (3.7), that ail the edges of the 7, are 11
S*(T), whence at each vertex v, =v,, ,,... there is a relation e, =e, _, f, or
e,= fie,., with f,€ S*(T). These relations just suffice to eliminate recur
sively e,, e,,.... yielding S,(T)=S*(T) » {e,). {e;) being an infinite cyclic
group.

(3.9) CorOLLARY. If H is a simply infinite tree, then (3.2) hoids.

Proof. Wc have H=T for T as in (3.8). S is obtained from §,(T) by
adding relations associated with the vertex t,, in accordance with (3.5b): that
is. either e? == 1 or e, = f, f,, where f7=1and /3= 1. Thus S = S*. the frec
product of the groups of order 2 and 3 corresponding to the fixed points of 4
and B. U



318 BRENNER AND LYNDON

(3.10) If H is obtained by attaching ( possibly infinitely many) finite trees
T' to an infinite cubic graph K, then (3.2) holds.

Proof. Let K' be obtained from K by subdividing certain edges of K by
the points ¢§ of attachment of the finite trees 7°. Let K“ be obtained from K’
by attaching a new edge e, at each v{. (By (3.7), the relations in S,(7") give
€, € S¥(T').) Let S* =3 S*(T"). Then the group § is obtained from S* by
adding as new generators the set E of all edges e of K’. with the relations
ee” "= 1, and also the reclations r, = 1 at the vertices of K'. Note that at ¢/,
one has a relation of the form ee’e; = 1, wherc e.e’ € E and ¢ is a given
clement of S*.

Let M be a maximal tree in K’, and £, the set of edges of K’ not in M. If
e is the only edge of M at a vertex v. we can use the relation at ¢ to express ¢
in terms of E, and S*, that is. as an element of (E,, $*). We¢ can rcpeat this
process on M’ obtained from M by deleting e and v, and, continuing thus.
we can delete any finite branch of M. Now cither M is simply infinite. or
every finite branch of M is contained in a maximal finitc branch. In cither
case, after deleting finite branches, we can rcplace M by an infinite tree M’
with a base point ¢y, such that M’ has no finite branch not containing ¢.

It follows that at every vertex v of M’ there is an edge e, leading away
from ¢,. We choose such an e, for each vertex v, and let E, be the set of all
edges of M’ not of the form e, e; ' for any v. The relation at v, enables us
to express e, in terms of £,, E£,, and S* that is, as an element of
(E,UE,,S*). By induction on the distance from », to v, we can usc the
relation al v to express e, as an element of (E,\U E,.S$*). In this way we
use up all the relations associated with vertices of M’ to express all the ¢, in
terms of (E,U E,.S*). In short, we have shown that §=/Fx §*, where
F=(E, JUE,) is a free group.

To show that F has infinite rank, it is enough to prove that K. and thus
also H, have infinite Betti number, for then, £, is infinite. We suppose that
the Betti number of K is finite, and derive a contradiction.

Suppose that K, obtained from K by dcleting a finite number of edges, is
simply connected. Since K is infinite, K, also is infinite, and therefore has a
connected component K, that is infinite and simply connected, that is. an
infinite tree. Moreover, since K was cubic, K, will be cuboid, and indced
with only finitely many vertices of degree less than 3. If ¢ 1s any vertex of
K,. we may choose a vertex v, farther from ¢, than any vertex of degree less
than 3. Then there will be an infinite branch K, at t,, all of whose vertices
except v, have degree 3—that is. K, is a “binary trec,” as shown in
Fig. (3.11). But X, also occurs as a branch in K. Since K, is not simply
infinite. this contradicts the fact that K has an Eulerian path. O
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(3.12) ProPOSITION. If H is obtained by attaching one infinite tree T°
and a finite set T*...., T' of finite trees to a finite cubic graph K. then (3.2)
holds.

Proof. Let K', K", v0), vl,....v}, and €. e...., e} be as in the proof o
(3.10), except that we now have ey...,e, € S*. and S is obtained from
S* x {ej) by adjoining the set E of generators with relations as before. Agzain
let M be a maximal tree in K’ and £, the set of edges of K’ not in M. We
emphasize that in this presentation for S, the generator e) appcars in only
one relation. that given by the vertex ¢§. If e is any edge of M at a veriex ¢
of M other than ¢ of degree I, we may use the relation at ¢ to climinate e in
terms of (E,.8*). Iterating this elimination on the finite tree M. we firally
come to a point where the only remaining relation at o) is of the form
ee’ey =i, and where e and e’ have already becn cxpressed as clemen:s of
(E,.S8*). We use this last relation to eliminate ey. This gives a presentation
S=FxS* where F=(E,) is a free group. Now |E,; is twice the rank of
the free group F, while, by construction, | F,! is twice the Betti number of K”,
and hence twice the Betti number of K. It follows that the rank of F is the
Betti number of K. O

4. COMPLEMENTARY REMARKS

An obvious generalization of Tretkoff’s presentation of S. as given in
(3.3), pertains to an arbitrary set of permutations of the set 2. We have noi
pursucd this generalization.

A second obvious generalization is based on the alternative form o
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Tretkoff’s presentation, as given in (3.4). We discuss it here because a
number of the arguments used to establish (3.2) do go through in this more
general situation. Although we have found no application for thcse more
general results, we believe they help to put the discussion above in
perspective.

(4.1) DeEFINITION. Let H be any graph. A group S will be called a
Tretkoff group of H if it has a presentation of the form

S=(E: {r,=1}{r,=1D),
where
(i) E is the set of edges of H,
(i) for each edge e there is a relation r, = I, with r, =ee™":
(iii) for each vertex v of finite degree d there is a relation r, = 1, with
r,=e, -+ e4, where e, ..., e, are the edges at v in some order.

Evidently the study of such groups reduces to the case that A is connected
and locally finite.

(4.2) THEOREM. Let H be a connected and locally finite graph, and S a
Tretkolf group of H. Then

(4.2a) If H is infinite, then S is a free group.

(4.2b) If H is finite, then, for some finite f, g >0, one has a presen-
tation for S of the form

S = (X peeer Xy Vireers Vg 2 50ees 2 (X0 il (x5 Yo = 1)

(4.3) THEOREM. Let H be a finite graph with an Eulerian path n, that is,
a reduced closed path that traverses each edge of H exactly once in each
direction. Let S be the Tretkoff graph of H in which, in the relations r.= 1,
the factors of r,=e, --- e, appear in the (cyclic) order induced by t (that is.
Jor subscripts modulo d, e,, , follows e; ' inn). Then S has a presentation

8 = (X Xy Fiveeer Vet X0 Vi ] 15 3] = 1)
where 2g is the Betti number of H.
(4.4) THEOREM. Let H be a finite cuboid graph with an Eulerian path .
associated with a triple (2, A, B), where Q is finite. Let S be the Tretkoff

graph of H associated with (2, A, B) in the manner of (3.5a,b), and with the
Sfactors in the r,=e, --- e, in the order induced by n. Then

§S=G,*G,*G;,
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where

Betti number of H:

(i1) G, is the free product of r, groups of order 2. r, being the number
of fixed points of A:

(iii) G, is the free product of ry groups of order 3. r, being the number
of fixed points of B.

We do not give proofs of these results. In part they can be obiained by
esseniially the samec methods as those that were used in the proof of (3.2).
However, a substantial simplification can be obtamed by appealing to the
theory of quadratic systems of words as studied by Hoare er al. |2. 3]. (See
also {5.p. 38].)

For cxample. we note that all the presentations of § given in (4.1). (4.2,
(4.3) are quadratic. and, indeed, may be taken as alternating. Now (4.1) and
(4.2) follow from the general theory of quadratic presentations.

The proof of (4.4) contains a new element. beyond the ideas used in .he
proof of (3.2), which appears clearly in the case that H is cubic, that is. .hat
r, = r; = 0. Here one can observe that the cyclic order ir which the edges ¢
appear in the Eulerian path 7 is precisely the order in which these edges (ir
the role of “letters™) appear as vertices in the cycies of the coinitiai graph (or
star graph). It follows that this graph is connected; that is, it is a single
cvcle. Thus the system of relations is minimal under automorghism (that 1s.
Niclsen transformations), and from this it follows in turn that S hay 2
presentation of the form (4.2b), in which al! generators appear in the definung
relator, that is, in which /= 0.

Posiscript. (1) 1t has come to our attention that Stothers [13| (see also {14} has cloariy
anucipated us in proving Theorem 3.2. by essenually the same method.

(2) Wec have recently obtamned, by thesc same methods. maxima) nonparaboi:c
subgroups of the modular group that are not Neumann subgroups The simplest of these °s the
free product of the 2 clement groups generated by the C"BAB™'C ". fo- all integers i the
ccset grapn tor this group is shown n the accompanying scheme

~
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