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The thioethers, S-(4-amino-2,4-dicarboxybutyl)cysteamine, S-(4-amino-2,4- 
dicarboxybutyl)cysteine and S-(4-amino-2,4-dicarboxybuty’)glutathione, were 
synthesized by a Michael addition between 4-methyleneglutamic acid and the 
respective thiol. In dilute aqueous solution, the reactions exhibit second 
order kinetics; glutathione reacts much slower than cysteine or cysteamine. 
The adducts were characterized chromatographically, electrophoretically, and 
by their infra-red and nuclear magnetic resonance spectra. None of these 
thioethers was detected in peanut plants (&achi.$ hypogaea L.), even though 
large amounts of 4-methyleneglutamic acid, its amide, and glutathione are 
synthesized during peanut germination. 

lNTRODUCTlON 

A variety of plants, primarily legumes, accumulate significant quantities 

of 4-MeGlu’ and 4-MeGln (l-3). Large amounts are especially formed in 

germinating peanuts, wherein 4-MeGIn is found as the predominant free amino 

acid in the xylem sap(h). For this reason, it is thought that the main 

function of such glutamate derivatives might be in nitrogen transport. No 

direct evidence, however, supports this role or eliminates other 

possibilities. 

4-MeGlu and b-MeGln are unusual amino acids in having an a&-unsaturated 

carboxyl function which should readily undergo Michael additions(5). The 

thiol group is a good nucleophile for such additions; several cases in which a 

cysteinyl residue reacts with unsaturated compounds to form thioethers in 

biological systems have been reported(6-8). Since giutathione, cysteine and 

‘Abbreviations: 4-MeGlu, 4-methyleneglutamic acid; 4-MeGln, L-methylene- 
glutamine; L-MeClu-cysteamine, S-(4-amino-2,4-dicarboxybutyl)cysteamine: 
4-MeGlu-cys, S-(4-amino-2,4-dicarboxybutyl)cysteine; 4-MeGIu-GSH, 
S-(4-amino-2,4-dicarboxybutyl)glutathione. 
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presumably other thiols are also present in peanut seedlings(g), adduct 

formation with 4-MeGlu and 4-NeGln in the plant seemed reasonable. We, 

therefore, synthesized and characterized the adducts of 4-MeGlu with 

cysteamine, cysteine and glutathione, and examined extracts of germinating 

peanuts for their presence. 

EXPERIMENTAL 
Materials: &-4-MeGlu was synthesized as previously described(l0). All other 
chemicals wet-e commercially available and of analytical grade. IR spectra 
wet-e recorded on a Perkin-Elmer Model 283 spectrophotometer and NHR spectra 
with a Varian T-60 spectrometer using 3-(trimethylsilyl)propionic acid as an 
internal reference. Melting points (uncorrected) were determined in sealed 

capillary tubes using a Thomas-Hoover melting point apparatus. Amino acid 
analyses were carried out on a Beckman Model 1205 amino acid analyzer modified 
for three buffer operation(4). Elemental analyses were performed by Spang 
Microanalytical Laboratory, Eagle Harbor, Ml. 

Cysteamine, cysteine and glutathione conjugates of 4-MeGlu were prepared by 
modification of an earlier procedure(ll). E-4-MeGlu (795mg, 5 mmol) was 
dissolved in 20 ml of water with an equimolar quantity of either cysteamine 
(568mg), cysteine*HCl (878mg), or glutathione (1540mg). The reaction mixture 

was adjusted to pH 8.5 with 3N NaOH and incubated 48 hr at 25’C. The solution 
was then acidified to pH 2.5 with 4N HCl $nd applied to a column (I.5 x 2Ocm) 
of BioRad AG 50-X8 resin (200-400 mesh, H ). The column was washed with 
several volumes of water and the adduct, along with any unreacted substrates, 
displaced with IN NH,OH. Ninhydrin-positive fractions were concentrated to an 
oil at 37°C in vacua. The oil was dissolved in a small volume of water and 
applied to a column (1.5 x 20cm) of BioRad AGI X8 resin (200-400 mesh, acetate 
phase). For the cysteamine adduct, the solution was adjusted to pH I2 with 3N 
NaOH. The column was washed with water and the acidic amino acids eluted with 
a 500-ml linear gradient (0 -> l.ON) of acetic acid. Ninhydrin-positive 
fractions were pooled and concentrated to clear oils which were crystallized 
from water by adding acetone. The 4-MeGlu-cys conjugate was crystallized from 
water. 

The yield of S-(4-amino-2,4-dicarboxybutyl)cysteamine was 0.55s (52%): 
mp=21 I-212’C (decomp.) : NMR(D,O-NaOD) 2.00 (2H,m) , 2.75 (2H,s), 2.6 (lH,bur ied) , 
2.85(2H,t), 3.20(2H,d), 3.6O(lH,m). IR (KBr pellet, cm-‘) 3450, 2940, 1680, 
1600, 1510, 1400, 1340, 1320. 

Anal. Calcd for C,H,,N,O,S: C,40.63, H,6.77, ~,11.85. Found: C,40.54, H,6.79, 
N,ll.53. 

The yield of S-(4-amino-2,4-dicarboxybutyl)cysteine was I.029 (69%). 
Anal. Calcd for C,H,,N,O,S*H,O: C.36.21, H,6.03, N,9.39. Found: C,36.45, 
H,6.01, N,g.O4. 

The diastereoisomers of 4-HeGlu-cys were resolved as follows. After the 
BioRad AC 50-x8 resin was eluted with IN NH,OH, the ninhydrin-positive 
fractions were pooled and concentrated in vacua at 37°C. The residue was 
dissolved in boiling water and applied to a column (1.6 x 48cm) of BioRad AGI 
X8 resin. The column was then washed with water and eluted with a linear 
gradient of acetic acid (0 -> 0.6N; 500 ml water + 500 ml of 0.6N acetic 
acid). Those fractions containing the resolved diastereoisomers (designated 
form A and form B) were pooled, concentrated to dryness, and recrystallized 
from boiling water. 
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J-MBGIU 0 46 0 30 0 47 0 59 -0 42 -0 a1 

CyStl?am,“e 0 58 0 73 0 57 NDC ND ND 

Cystnmlne 0 42 0 73 0 39 NO ND ND 

4-M&l”-C~St~~f7li”CZ 0 17 0 18 0 46 1 14 0 22 0 17 

cysteine 0 41 0 26 0 54 0 56 0 09 0 to 

cyst Ine 0 08 0.22 0 24 0 56 ND 0 07 

d-MeGlu-cystelne 0 10 0 06 0 19 0 65 -0 36 -0 55 

Gl”t~thlOtV?(~~d, 0 41 0 10 0 58 0 40 -0 36 -0 65 

Glutathlone(ox) 0 10 0 03 0 38 ND ND -0 72 

4-MeGI”-gl”tathione 0 09 0 04 0 32 0 51 -0 56 -0 aa 
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eld of form A was 0.399 (26%): mp=201-203”C(decomp.); NMR(D,O-NaDD) 
Hem), 2.7OtjH,s), 2.90 (2H.d)) 3.45(2H,m) . IR (KBr pellet, cm-l) 3520, 
3110, 1695, 1600, 1500, 1425, 1360, 1300, 1230, 870. 

eld of form B was 0.329 (22%) : mp=226-227°C (decomp.) ; NMR(!J,O-NaOD) 
1.95(2H,m), 2.70(3H,s), 2.90(2H,d), 3.55(2H,m). IR (KBr pellet, cm-l) 3450, 
3120, 1695, 1600, 1420, 1300, 1240, 870. 
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The yield of S-(4-amino-2,4-dicarboxybutyl)glutathione was 1.70s (75%): 
mp=128-135°C (decomp.) ; NMR(D,O-NaOD) 2.25(4H,m), 2.50(2H,d), 3.80(3H,s), 
3.95(2H,s), 4.55(lH,t). IR (KBr pellet, cm-l ) 3420, 3100, 1730, 1650, 1540, 
1410, 1230. 
Anal. Calcd for C,,H,,N,O,,S 
for C,,H,,N,O,,S: C,42.07, H 
each of water and acetone). 

Thin-layer chromatography of 
carried out on microcrystall 

c,41 
6.27, 
Found 

react 
ne ce 

18, H,5.58, N.12.01, 5,6.88. Anal. Calcd 
N,l0.33, S.5.90 (including one molecule 

c,42.18, ~,6.14, N.lo.96, s,6.25. 

on mixtures and purified products was 
lulose plates (Analtech) in the following 

,. . . 
solvents: (1) isopropanol-formic acid-water (40:2:10), (2) ethanol-ammonium 
hydroxide-water(80:5:15), (3) phenol-water(75:25). Thin-layer electrophoresis 
was performed on the same support using a flat bed apparatus in the following 
systems: (1) buffer pH l.g(acetic acid-formic acid-water) (4:1:45), 2 hr at 20 
V/cm and 7 mA; (2) buffer pH 4.5(pyridine-acetic acid-water) (lO:l5:2OO), I.5 
hr at 20 V/cm and 40 mA; (3) buffer pH 6.5(pyridine-acetic acid-water) 

(25:1:235), 1.5 hr at 30 V/cm and 15 mA. 

Peanuts (Arachis fiypogaea L., Valencia cv Tennessee Red, G.W. Park Seed Co., 
Greenwood, S.C.) were germinated on damp sand for varying time periods. Amino 
acids were extracted with 70% boiling ethanol and acidic components purified 
by anion-exchange chromatography. Samples were hydrolyzed with 6N HCI at 
110°C for 24 hr in evacuated sealed tubes. 

Kinetic studies: -- Rates of thiol addition to 4-MeG 
removing aliquots of the reaction at timed interva 
of 4.4’-dithiodipyridine(l2). Reactions were run 
bottles flushed with argon. Absorption measuremen 
Cary 219 spectrophotometer. 

lu were determined by 
1s and adding to a solution 
in stoppered 20-ml serum 
ts at 324 nm were made on a 

RESULTS AND DISCUSSION 

The three thiol compounds tested readily formed Michael addition products 

with 4-MeGlu; chromatographic and electrophoretic properties of the purified 

adducts are shown in Table 1. The product of each synthesis was shown to be 
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Fig.1. Column chromatography of 4-MeGlu-thioethers on BioRad AGl X8 resin 
(acetate phase). The sample contained 20 mg each of B-4-heClu(c), 

a-4-HeG I u-cysteam i ne (a) , &-4-heG 1 u-cys (b) , and DC-4-HeGI u-GSH (d) . The pH of 
the solution was adjusted to 11.0 with IN NaOH just before it was applied to 
the column (I.0 x l&m). The thioethers were eluted with a 0 -> l.ON linear 
gradient of acetic acid (500 ml, total volume); fractions of 3.5 ml were 
co1 lected. 

distinct from the starting materials and their respective disulfide forms. In 

the case of 4-ReClu-GSH, a small contamination by unreacted glutathione was 

found. Crystallization of 4-MeGIu-GSH from aqueous acetone also could result 

in retention of tightly bound acetone molecules; such has been observed in the 

case of oxidized glutathione(5). If true, this could explain the results of 

the elemental analysis. When hydrolysates of 4-MeGIu-GSH were subjected to 

automated amino acid analysis, glycine, glutamic acid, and 4-MeGlu-cys (the 

sum of both diastereoisomers) were found in approximately equal quantities. 

Column chromatographic elution patterns of the thioethers under consideration 

are shown in Figure 1. 

Proton NMR assignments are based on comparison with known resonance 

frequencies for 4-MeGlu and the individual thiols. The chemical shifts 

observed with the three thioethers exhibit the differences expected due to the 

reaction of 4-MeGlu with each of the thiols. 

Since addition to the double bond results in formation of a new chiral 

center, the adducts should be a mixture of diastereoisomers. When DC-4-MeG 1 u 
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Fig.2. Elution pattern of the diastereoiromers of C&-4-MeGlu-cys from a 
column (1.6 x 48cm) of BioRad AGl X8 resin (acetate phase). The sample 
contained 250 mg (0.84 mmol) of the combined diastereoisomers. Fractions 
(7.0 ml) were collected: the diastereoisomers were located and quantitated by 

reacting a 20 41 aliquot with ninhydrin. Recovery, based on the total 
C&-4-heGlu-cys applied to the column, was > 95% (40% form A, 60% form B). 

and L-cysteine were reacted, - two diastereomeric forms of 4-ReClu-cys were 

separated by column chromatography (Figure 2). The C-4-MeGlu-C-cys adduct was 

also synthesized and resolved into two diastereoisomers, confirming that a new 

chiral center had been formed. 

When 4-MeGlu and thiol were present in equimolar concentrations, second 

order kinetics were observed. The disappearance of free thiol, as a function 

of reaction time, is shown by reciprocal second order rate plots in Figure 3. 

Reactions were carried out under argon to minimize aerobic oxidation of the 

thiols. Cysteine and cysteamine react more rapidly than glutathione, 

reflecting the catalytic function of the nearby ,&amino group which is absent 

in glutathione(l3). 

No detectable amounts of 4-MeGlu or 4-MeGln-thiol adducts were found in 

ethanolic extracts of peanut plants (at ages of 4 to 14 days and mature 

plants) . Although synthetic sulfhydryl adducts with 4-MeGln have not 

themselves been characterized, acid hydrolysis of adducts formed with either 

cysteine or glutathione and 4-MeGln will yield 4-MeGlu-cys. However, no 
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INCUBATION TIME (hr 1 

Fig.3. Kinetics of the reaction of &-4-IleClu (1.0 mmol) with thiols (1.0 
mmol) at 37’C in IO ml of deionized water (pH adjusted to 8.5 with 3N NaOH). 
The reaction flasks were maintained under an atmosphere of argon. In each 
case, 50 ~1 of the reaction mixture were diluted to 1.0 ml with water and a 
20 ~1 aliquot then added to 0.98 ml of 2.Omfi 4,4’-dithiodipyridine in 50mM 
sod-ium phosphate buffer (pH 7.4). The decrease in absorbance at 324 nm 
measured the quantity of free thiol remaining in the reaction mixture. 

(A) cysteamine; (0) cysteine: (m) glutathione. 

4-MeClu-cys was seen in acid hydrolyzed extracts even though normal quantities 

of 4-MeGln were present. This finding might be due to the acidity of peanut 

extracts (i.e. pH 6) as the sulfhydryl group of cysteine is a poor nucleophile 

under acidic conditions. Alternatively, free thiols and 4-MeGlu/4-MeGln may 

not exist in the same subcellular compartment of intact peanut plants. In 

other plants, localized conditions of higher pH or different compartmentation 

might allow for such conjugations to occur. 

In addition to reacting with free thioi compounds, 4-MeGlu or k-MeGln 

might also act as an inhibitor of enzymes which contain active-site sulfhydryl 

groups; this possibility remains to be explored. The finding by Fitzpatrick 

et a7.(14) thatb-methylene-E-aspartic acid inhibits rat brain glutamate- 

aspartate aminotransferase activity might be due to a Michael addition between 

this aspartate analog and an active-site thiol or amino group. If this proves 

correct, similar reactions between 4-MeGlu and a variety of enzymes would seem 

reasonable. Such interactions might provide a means for combating fungal 

attack during the early stages of germination when peanuts are most 
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susceptible to infection. Exploration and establishment of the various 

reactions 4-MeGlu or 4-heGIn undergo with other biological components of 

plants may ultimately lead to a better understanding of the role of these non- 

protein amino acids in the plant kingdom. 
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