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Let p(n) denote the smallest prime factor of an integer n > 1 and let p(1) = Q). 
We study the asymptotic behavior of the sum M(x, y) = x1 <.Cx,p,n, >,p(n) and use 
this to estimate the size of A(x) = maxI,,<, ICICnCxl( (n)f(p(n)X where ,u(n) is the 
Moebius function. Applications of bounds for A(x), M(x, y) and similar quantities 
are discussed. 

1. INTRODUCTION 

For an integer n > 1 let p(n) denote its least prime factor and put 
p( 1) = co. Our object is to determine the size of the quantity 

A(x) = max F7 #G>SMn)) 9 (1.1) 
f 2<:<* 

where p(n) is the Moebius function and the maximum is over all functions f 
for which If(n)1 < 1 for all n > 1. Previously [ 11, I gave a crude bound for 
A(x) and noted some consequences of such bounds. Clearly 

x P(n)f(P(n))= 2 S(P) c P(n)- 
2<n<x P+x Z<n<x 

p=prime P(n) =P 

and on writing n = m . p, we see that this is 

- Z: ./“(P) z Am). 
P<X I<lll<XlP 

p(m) >P 

Hence 

A(x) = 
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(1.2) 

(1.3) 
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where 

and we are led to consider the size of this latter sum. 
Let 

(1.4) 

q&Y)= c 1, l<n<x 
PW)<Y 

where P(n) is the largest prime factor of n if n > 1 and P( 1) = 1. It is well 
known [2] that for any fixed a > 0 

Y(x, xl/a) - xp(a), x-+ co, 

where p(a) is defined by the relations 

P(a) = 1 for 0 < a < 1 
(1.5) 

=I-- 
I 
.= p(t - 1) dt 

for a>l. 
1 t 

Similarly we derive 

THEOREM 1. Zfy > x, then M(x, y) = 1. Zfy = x1’u, then 

M(x,y)=- - w’(4 + Y + o x. a* 
1% Y logy ( J logzy 

uniformly for 2 < y < x. 

From the analysis of de Bruijn [2] we see that if a > 3, then 

p’(a) = -exp {-a log a - a log log a + O(a)}. U-6) 

Thus the main terms of Theorem 1 are smaller than the error term when a is 
large. For large values of a we can obtain bounds for M(x, y) that are 
superior to Theorem 1 by using the following results of de Bruijn [3]: 

and 

Y(x,y)<xexp{-alogo} 
log2 x 

for y> I6 

log2 x 
(1.7) 

Y(x, y) < x2” for y<~. 

In fact we use de Bruijn’s bounds in an elementary way to demonstrate 
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THEOREM 2. Suppose that a > 2 and y = x’la. Then 

M(x, y) < x(log log x)’ exp - 2 log a 
12 ii& + 

uniformly for 2 < y < ~5. 

We use Theorems 1 and 2 to get our main result: 

THEOREM 3. Let A(x) be defined by (1.1). Then 

asx-+co. 

2x 
A(x)--- 

log x 

Finally, in Section 5 we discuss some applications of upper bounds for 
A(x), M(x, y) and similar quantities. 

Note that if y = 1, then, M(x, y) is the well-known sum M(x) = 

c i gngx,u(n). Apart from this special case, the function M(x, y) has not been 
studied in detail, though it has been implicit in the literature for some time. 
There is a paper of Levin and Fainleib [S] where various results are 
established for functions which generalize Y(x, y). Some of their results do 
apply to M(x, y). But there are some mathematical errors in [S] and so we 
preferred to study the function M(x, y) independently. Moreover, many 
results and applications presented here are new. 

Throughout we let a = log x/log y, where x, y > 1. By c,, c2, c3... we 
mean absolute positive constants. Implicit constants are absolute unless 
otherwise indicated. 

2. PROOF OF THEOREM 1 

From (1.5) it follows that p’(a) satisfies 

p’(a) = - + for 1 < a < 2 

=-$-$rl”p+ 1)du 

(2-l) 

for a > 2. 

Let fi < y < x. Then from (1.4) and the quantitative form of the Prime 
Number Theorem (see Prachar [6, p. 611) we get 

M(x,y)=l- s l= 
Y<P<X 

From (2.1) and (2.2) we see that Theorem 1 is true when 1 ( a < 2. 
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Next, let a > 2. Soy < G. We note that 

and on letting n = m . p we see that 

M(x,y)=---r+O & - ( ) \’ 
log x Y<izfi 

fkf $,P * 
( 1 

(2.3) 

By Stieltjes integration and the quantitative form of the Prime Number 
Theorem we have 

We will prove Theorem 1 from (2.3) by induction on [a], the largest integer 
<a. 

For x > t > 1 let u = log x/log t. For a > 2 we assume that there exists 
d(u), a positive increasing function of u, such that for all u < a - 1 and 
x > I > 1 we have 

v’(u) f qx, t) - ~ - - 4(u) 
log t log t <log2t- (2.5) 

For instance (2.2) shows that (2.5) is valid for 1 < u < 2. Therefore 

4 
fixfqa - 1) df 

“Y t log3 t - P-6) 

By change of variables we see that the second integral on the left of (2.6) is 

-x -cl 

- 
! logx 2 

p’(u- 1)du 

since t = x’lU. So from (2.3), (2.4), (2.5) and (2.6) we get 

< 
c, ax 

--T--+ 
x9@ - 1) 

log Y log2 y * (2.7) 
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We will choose 4 to satisfy (2.5) for 1 < u < 2 and the inequality 

$(a- 1>+c,a<4ta> for a > 2. 

Clearly d(a) = c2 . a2 satisfies these conditions. Therefore by (2.1) and (2.7) 
we have 

wx, Y> = ~ xp’(a) + o x. a2 

1% Y ( 1 logzy G9) 

holds uniformly for 2 & y < fi. Since a > 2, the term y/log y can be added 
to (2.8) without effect. Theorem 1 for the case 2 <y < x follows from (2.8) 
and (2.2). The case y > x is trivial. Theorem 1 is proved. 

From (1.6) it follows that Theorem 1 fails to yield an asymptotic estimate 
for M(x, y) if a -+ co with x. We now discuss briefly a method which enables 
us to estimate M(x, y) asymptotically, even for large a, provided y is also 
large. This method was initiated by de Bruijn [3] while considering the 
problem of obtaining an asymptotic estimate of !P(x, y) for long ranges of a. 
We note that M(x, y) satisfies the recurrence 

M(x, y) = M(X,Yh) - y 
y<P<yh 

when 1 < y < yh < x. We want a continuous function A(x, y) that satisfies a 
recurrence similar to (2.9) and is close to M(x, y) when fi< y ( x. 

If we let 

we see from (2.1) that 

(2.10) 

when fi< y < x. From (2.2) and (2.11) we deduce that the difference 
M(x, y) -A(x, y) is relatively small when 1 < a < 2. Also from (2. IO), (2.1) 
and (1.6) we deduce by change of variables that 

4x,Y)=R(x.Y”)-JyyhA (+)&+o (&) (2.12) 

when 1 < y < yh < x. Therefore A(x, y) satisfies our requirements. 
From (2.2), ‘(2.11), (2.9) and (2.12) we expect that the difference 

M(x, y) - A (x, y) can be bounded in terms of a and a monotonic decreasing 



ASYMPTOTIC ESTIMATES 91 

function R(y) that bounds the relative error in the Prime Number Theorem. 
More precisely, for y > 2 we want R(y) to satisfy the inequality 

I4Y) - ei(Y)l < g) * R(Y), 

where 

ci(y)=j:&. 

Then from (2.2), (2.11), (2.9) and (2.12) we can show by induction on ]a] 
that 

M(x, Y) - A(x, Y> g xa*R(Y) (2.13) 

holds uniformly for 2 < y ( x. 
In most applications of (2.13) it suffices to choose R(y) to be 

Gexp{-c, fi}. (2.14) 

If we integrate (2.10) by parts and use a result of de Bruijn [3] that 

p”(a) <p’(a) log@ + 2), 

we get 

w’(a) A(X,Y)=- 
1% Y +&+“( (2.15) 

It follows from (2.13), (2.14) and (2.15) that as x + co 

v’(a) 
wx, Y) - - 

1% Y 
if exp ((log x)*13 +’ } < y = o(x). (2.16) 

This is an improvement of Theorem 1 for large a and y. 
In fact repeated integration by parts of (2.10) shows that 

XP’@) XP”@) xp “’ (a) 
A(X,Y)=--7++ 

log Y lois Y log Y 
. . . + (-I)“- ’ xi;:‘,“’ 

+ on 
( 

xp(a) log”(a + 2) 
nt1 

1% Y ) ’ 
(2.17) 

where n < [a] - 1 and p’“‘(a) is the n th derivative of p(a). From (2.13) and 
(2.17) we get a series expansion for M(x, y) of any desired length for large y, 
provided a + CL) with x. 
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3. PROOF OF THEOREM 2 

We note that for (T > I 

I -=& IJy (1-$‘9 c P(n) 
n=1 ns 

p(n) >?’ 

where c(s) is the Riemann zeta function. Thus the coefficients of the series on 
the left is a Dirichlet convolution of the coefficients of the Dirichlet series on 
the right. Therefore 

WX,Y) = y ,4(d). 
md(x 

P(m) 64’ 

(3.1) 

Let t be a real number satisfying 1 < t < fi. We break up (3.1) as 
follows: 

M(x, y) = 1 p(d) x 1 + 2 1 p(d). (3.2) 
dSt msxld 

P(rn)<Y 
m<x/t t<d<xlm 

P(m) SY 

The upper bounds (1.7) show that the first term on the right of (3.2) is 

- 

(see From the quantitative form of the Prime Number Theorem for M(x) 
Prachar [ 6, p. 7 11) we see that the last term on the right of (3.2) is 

4 ,z,t Gexp !-cd Jlog (t) 1 exlogxexp {-c4&1. 
1 

Theorem 2 follows from (3.2), (3.3) and (3.4) on choosing 

t = exp 
I 
3 (lois 1% 4’ 1. 

(3.4) 

For certain purposes t = fi proves useful. In this case we can prove that 

M(x,y)<xlogxexp ]-:log (4) 1 +xexp(--c,*}. (3.5) 
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We can prove a slightly sharper form of (3.5) for large a and y by using 

where a > 1, T > 3 and x is half an odd integer. We estimate the integral by 
contour integration, using well-known results on zero free regions of c(s) and 
bounds for c(s) in such regions. For instance, when x”~ > y > exp (c, fi 
log log x), this method yields 

M(x, y) < x logk x exp (-a log a - a log log a + O(a)), 

where k is an absolute positive constant. 

4. PROOF OF THEOREM 3 

We begin with a 

LEMMA. There exist a constant x0 > 0 such that if x > x0 and 
x”‘oB’08x < y < x(1 - l/log*,x), then M(x,y) < 0. 

Proof. From the quantitative form of the Prime Number Theorem it 
follows that for all large x, there is a prime in the interval 
(x { 1 - l/log2 x}, x). So if x is large enough and fi < y < x{ 1 - l/log2x}, 
then 

M(x, y) = 1 - n(x) t 7r( y) < 0. (4-l) 

Next from Theorem 1 and (1.6) we deduce that if x is large and 
x1’- < y <fi, then 

The lemma follows from (4.1) and (4.2). 

Proof of Theorem 3. We begin by splitting the sum in (1.3) into 

F- + -s =z,+z*. 
P<y\/; &zP<X 

(4.3) 

The Prime Number Theorem implies that 

(4.4 ) 
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To estimate Z, we note that there exists x, > 0 such that if x > x, and 
x1’- < p <fi{ 1 - 3/lag* x}, then 

and 

X ( 1 
11 l/l08 lOi?WP) 

-F 
<p<; l- 

( 

1 

i log*wP) * 

Next we write 

and 

z 
0 

= xvloBlo~x > z1 = xl/@aG 

z*=q-&). 

First by Theorem 2 we get 

z, -e x log log x 
log2x ’ (4.6) 

To estimate C, we use Theorem 1, (1.6) and elementary results on prime 
numbers. That is, we have 

z4 ‘=3 z,<;<z, /&PJ g& 1) + x’b”;04pp”‘z 1 

~ x exp~-$GiGG~ X 

log x I 
+ x(log log x)4 

log2 x = cJ log . ( 1 
(4.7) 

On the other hand it is clear that 

(4.8) 

Finally the lemma shows that 



ASYMPTOTIC ESTIMATES 95 

So we combine (4.3)--(4.9) and arrive at 

A(x)=Z, +z*= x X --c;+o - . 
log x ( ) log x 

Now consider 

M(x)- 1 = s /f(n). 
2<n<x 

If we takef= 1 in (1.2), then we get from (1.4) 

jqx)- I=- s M $P . 
Z$PGX ( 1 

(4.10) 

From the quantitative form of the Prime Number Theorem for M(x) we get 

M(x)=0 -5 . ( 1 log x 
(4.12) 

Therefore if we split the sum in (4.1 I) as in (4.3) and (4.5), then the above 
method yields 

M(x)-l=-z,-C{+o -I!-- =--- 
i ) 

X 

log x log x 
z;to -?f-. 

i ) log x 
(4.13) 

Thus from (4.13) and (4.12) we deduce that 

--C;=X+o x, 
log x ( i log x 

(4.14) 

Theorem 3 now follows from (4.14) and (4.10). 
With greater care we can improve Theorem 3 by using (2.16) and (3.5). 

First we show that M(x, y) < 0 for x > X,,(E) and exp { (log x)“~+‘} < 
y < x( 1 - exp {-c, G}). This is an improvement of the lemma. Then by 
choosing zO, z, and z2 properly we can use the above method and prove 

A(x) = 2&(x) t 0,(x . exp (- (log x) Ii3 -’ }), 

where E > 0 is arbitrary. 
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5. APPLICATIONS 

We first consider an application to the Sieve. 
Let A(n) be Liouville’s function. The asymptotic results stated so far for 

M(x, y) also hold for the function 

-qx,v)= 1 4n). 
I<n<x,P(n)>Y 

The proofs are almost identical with L(n) replacing p(n). 
Let 1 < 4’ < x and 

We now consider the distribution of Q(n) = Cp,, ,,n v modulo 2 for n E S(x, y). 
So we define 

<e(x, y) = (n E Y(x, y)l Q(n) = i (mod 2)}, i=O, 1. 

It is known by the use of sieve methods (see Halberstam and Richert 14, 
pp. 225-2401) that 

Iqx,y)j = Iyy)’ (1 + O(exp{-a log a}) + O((10gx)-“‘4)} (5.1) 

for i = 0, 1. 
We note that 

ux, Y) = lx&7 Y)l - I%@. Y)l. 

From Theorem 1, (3.5) (now for L(x, y)) and (1.6) it follows that 

(5.2) 

L(x,y)d- 
logy exp i I 

-4109: 
i 

+ exp (-CR&) . 
1 

(5.3) 

On the other hand, if y > exp {(log x) 2/3+C}, then by (2.16), Theorem 1 (now 
for t,(x,y)) and (1.6) we have 

W,y)+ x -exp(-a log (r). 
1% Y 

From the Prime Number Theorem and the Linear Sieve (see Halberstam and 
Richert [4, pp. 225-2401) it follows that 

(5.5) 
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Therefore from (5.2), (5.3), (5.4) and (5.5) we have the following 
improvement of (5.1): 

THEOREM 4. Zfx>y>l,thenfori=O,l wehave 

(5.6) 

If E > 0 is arbitrary, then for i = 0, 1 we have 

I9;(x,y)l = ‘-y-(y) (1 +O(exp{-aloga}) 

+ O,(exp {-(log x)‘13-c))}. (5.7) 

Theorem 4 or the weaker (5.1) shows that Q(n) is uniformly distributed 
modulo 2 (u.d. mod 2) in 9(x, y), provided a -t co with x. The function 
a(n) does not have this property if a 4 co with x. A necessary and sufficient 
condition for L?(n) to be u.d. mod 2 in 9-(x, y) is that L(x, y) = 0(19(x, y)I), 
and this clearly does not hold when 1 < a < 2. If a > 2 remains bounded as 
x+ co, then by Theorem 1 (for L(x, y)) and (5.5) we have 
UX,Y) = O(lWX~Y)l) f i and only if p’(a) = 0. But this never happens 
because p’(a) < 0 for all a > 1. 

The function M(x, y) is the basic computational tool to evaluate sums of 
the form 

because we can use (1.2) and (1.4) to rewrite this as 

q(x)=- 5 f(p)M ;,p - 
P<X ( i 

(5.8) 

When f(x) is a simple differentiable function it is not usually ‘difficult to 
estimate M,(x). The contribution due to “large p” in (5.8) can be estimated 
with the aid of (2.16) and well-known results on primes, while the 
contribution due to small p can be bounded by using (3.5). For example, 
when f(n) = log n we can show that 

x ,u(n)logp(n)=C.x+O X , 
2<n<x ( 1 log x 
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where 
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C= 
I 
mz p’(s) ds 

I s * 

Previously [ 11, I observed that non-trivial upper bounds for A(x) have 
some interesting consequences. I used a result weaker than Theorem 3 and 
showed for that iff is a bounded function, then 

exists if and only if 

G$ P(n) m(n)) = -1 
n=2 n 

This equivalence has an interesting application to the Prime Number 
Theorem for Arithmetic Progressions. 
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