Asymptotic Estimates of Sums Involving the Moebius Function

KRISHNASWAMI ALLADI

Department of Mathematics, University of Michigan Ann Arbor, Michigan 48109

Communicated by H. Montgomery

Received December 23, 1977; revised March 17, 1981

Let p(n) denote the smallest prime factor of an integer n > 1 and let $p(1) = \infty$. We study the asymptotic behavior of the sum $M(x, y) = \sum_{1 \le n \le x, p(n) > y} \mu(n)$ and use this to estimate the size of $A(x) = \max_{|f| \le 1} |\sum_{1 \le n \le x} \mu(n) f(p(n))|$, where $\mu(n)$ is the Moebius function. Applications of bounds for A(x), M(x, y) and similar quantities are discussed.

1. Introduction

For an integer n > 1 let p(n) denote its least prime factor and put $p(1) = \infty$. Our object is to determine the size of the quantity

$$A(x) = \max_{f} \left| \sum_{2 \le n \le x} \mu(n) f(p(n)) \right|, \tag{1.1}$$

where $\mu(n)$ is the Moebius function and the maximum is over all functions f for which $|f(n)| \le 1$ for all $n \ge 1$. Previously [1], I gave a crude bound for A(x) and noted some consequences of such bounds. Clearly

$$\sum_{\substack{2 \leqslant n \leqslant x \\ p = \text{prime}}} \mu(n) f(p(n)) = \sum_{\substack{p \neq x \\ p = \text{prime}}} f(p) \sum_{\substack{2 \leqslant n \leqslant x \\ p(n) = p}} \mu(n),$$

and on writing $n = m \cdot p$, we see that this is

$$-\sum_{p\leqslant x} f(p) \sum_{\substack{1\leqslant m\leqslant x/p\\p(m)>p}} \mu(m). \tag{1.2}$$

Hence

$$A(x) = \sum_{p \leqslant x} \left| M\left(\frac{x}{p}, p\right) \right|, \tag{1.3}$$

where

$$M(x,y) = \sum_{\substack{1 \leqslant m \leqslant x \\ p(m) > y}} \mu(m), \tag{1.4}$$

and we are led to consider the size of this latter sum.

Let

$$\Psi(x,y) = \sum_{\substack{1 \leqslant n \leqslant x \\ P(n) \leqslant y}} 1,$$

where P(n) is the largest prime factor of n if n > 1 and P(1) = 1. It is well known [2] that for any fixed $\alpha > 0$

$$\Psi(x, x^{1/\alpha}) \sim x \rho(\alpha), \qquad x \to \infty,$$

where $\rho(\alpha)$ is defined by the relations

$$\rho(\alpha) = 1 \qquad \text{for } 0 < \alpha \le 1$$

$$= 1 - \int_{1}^{\alpha} \frac{\rho(t-1) dt}{t} \qquad \text{for } \alpha > 1.$$
(1.5)

Similarly we derive

THEOREM 1. If $y \ge x$, then M(x, y) = 1. If $y = x^{1/\alpha}$, then

$$M(x, y) = \frac{x\rho'(\alpha)}{\log y} + \frac{y}{\log y} + O\left(\frac{x \cdot \alpha^2}{\log^2 y}\right)$$

uniformly for $2 \le y < x$.

and

From the analysis of de Bruijn [2] we see that if $\alpha > 3$, then

$$\rho'(\alpha) = -\exp\{-\alpha \log \alpha - \alpha \log \log \alpha + O(\alpha)\}. \tag{1.6}$$

Thus the main terms of Theorem 1 are smaller than the error term when α is large. For large values of α we can obtain bounds for M(x, y) that are superior to Theorem 1 by using the following results of de Bruijn [3]:

$$\Psi(x, y) \leqslant x \exp\{-\alpha \log \alpha\} \qquad \text{for} \quad y \geqslant \frac{\log^2 x}{16}$$

$$\Psi(x, y) \leqslant x^{2/3} \qquad \text{for} \quad y < \frac{\log^2 x}{16}.$$
(1.7)

In fact we use de Bruijn's bounds in an elementary way to demonstrate

THEOREM 2. Suppose that $\alpha \geqslant 2$ and $y = x^{1/\alpha}$. Then

$$M(x, y) \ll x(\log \log x)^2 \exp\left\{-\frac{\alpha}{2}\log \alpha\right\} + \frac{x}{\log^2 x}$$

uniformly for $2 \le y \le \sqrt{x}$.

We use Theorems 1 and 2 to get our main result:

THEOREM 3. Let A(x) be defined by (1.1). Then

$$A(x) \sim \frac{2x}{\log x}$$

as $x \to \infty$.

Finally, in Section 5 we discuss some applications of upper bounds for A(x), M(x, y) and similar quantities.

Note that if y = 1, then, M(x, y) is the well-known sum $M(x) = \sum_{1 \le n \le x} \mu(n)$. Apart from this special case, the function M(x, y) has not been studied in detail, though it has been implicit in the literature for some time. There is a paper of Levin and Fainleib [5] where various results are established for functions which generalize $\Psi(x, y)$. Some of their results do apply to M(x, y). But there are some mathematical errors in [5] and so we preferred to study the function M(x, y) independently. Moreover, many results and applications presented here are new.

Throughout we let $\alpha = \log x/\log y$, where x, y > 1. By $c_1, c_2, c_3...$ we mean absolute positive constants. Implicit constants are absolute unless otherwise indicated.

2. Proof of Theorem 1

From (1.5) it follows that $\rho'(\alpha)$ satisfies

$$\rho'(\alpha) = -\frac{1}{\alpha} \qquad \text{for } 1 < \alpha \le 2$$

$$= -\frac{1}{\alpha} - \frac{1}{\alpha} \int_{2}^{\alpha} \rho'(u - 1) du \qquad \text{for } \alpha > 2.$$
(2.1)

Let $\sqrt{x} < y < x$. Then from (1.4) and the quantitative form of the Prime Number Theorem (see Prachar [6, p. 61]) we get

$$M(x,y) = 1 - \sum_{y$$

From (2.1) and (2.2) we see that Theorem 1 is true when $1 < \alpha \le 2$.

Next, let $\alpha > 2$. So $y < \sqrt{x}$. We note that

$$M(x, y) = M(x, \sqrt{x}) + \sum_{\substack{1 \leqslant n \leqslant x \\ y < p(n) \leqslant \sqrt{x}}} \mu(n)$$

and on letting $n = m \cdot p$ we see that

$$M(x,y) = -\frac{x}{\log x} + O\left(\frac{x}{\log^2 x}\right) - \sum_{y$$

By Stieltjes integration and the quantitative form of the Prime Number Theorem we have

$$\sum_{y (2.4)$$

We will prove Theorem 1 from (2.3) by induction on $[\alpha]$, the largest integer $\leq \alpha$.

For x > t > 1 let $u = \log x/\log t$. For $\alpha > 2$ we assume that there exists $\phi(u)$, a positive increasing function of u, such that for all $u \le \alpha - 1$ and x > t > 1 we have

$$\left| M(x,t) - \frac{x\rho'(u)}{\log t} - \frac{t}{\log t} \right| < \frac{x\phi(u)}{\log^2 t}. \tag{2.5}$$

For instance (2.2) shows that (2.5) is valid for $1 < u \le 2$. Therefore

$$\left| \int_{y}^{\sqrt{x}} M\left(\frac{x}{t}, t\right) \frac{dt}{\log t} - \int_{y}^{\sqrt{x}} \frac{x}{t \log^{2} t} \rho'\left(\frac{\log x - \log t}{\log t}\right) dt - \int_{y}^{\sqrt{x}} \frac{t dt}{\log^{2} t} \right|$$

$$< \int_{y}^{\sqrt{x}} \frac{x \phi(\alpha - 1) dt}{t \log^{3} t}.$$
(2.6)

By change of variables we see that the second integral on the left of (2.6) is

$$\frac{-x}{\log x} \int_2^\alpha \rho'(u-1) \, du$$

since $t = x^{1/u}$. So from (2.3), (2.4), (2.5) and (2.6) we get

$$\left| M(x, y) - \frac{x}{\log y} \left\{ -\frac{1}{\alpha} - \frac{1}{\alpha} \int_{2}^{\alpha} \rho'(u-1) du \right\} \right|$$

$$< \frac{c_{1}\alpha x}{\log^{2} y} + \frac{x\phi(\alpha-1)}{\log^{2} y}. \tag{2.7}$$

We will choose ϕ to satisfy (2.5) for $1 < u \le 2$ and the inequality

$$\phi(\alpha-1)+c_1\alpha<\phi(\alpha)$$
 for $\alpha>2$.

Clearly $\phi(\alpha) = c_2 \cdot \alpha^2$ satisfies these conditions. Therefore by (2.1) and (2.7) we have

$$M(x, y) = \frac{x\rho'(\alpha)}{\log y} + O\left(\frac{x \cdot \alpha^2}{\log^2 y}\right)$$
 (2.8)

holds uniformly for $2 \le y < \sqrt{x}$. Since $\alpha > 2$, the term $y/\log y$ can be added to (2.8) without effect. Theorem 1 for the case $2 \le y < x$ follows from (2.8) and (2.2). The case $y \ge x$ is trivial. Theorem 1 is proved.

From (1.6) it follows that Theorem 1 fails to yield an asymptotic estimate for M(x, y) if $\alpha \to \infty$ with x. We now discuss briefly a method which enables us to estimate M(x, y) asymptotically, even for large α , provided y is also large. This method was initiated by de Bruijn [3] while considering the problem of obtaining an asymptotic estimate of $\Psi(x, y)$ for long ranges of α . We note that M(x, y) satisfies the recurrence

$$M(x,y) = M(x,y^h) - \sum_{y (2.9)$$

when $1 < y < y^h < x$. We want a continuous function A(x, y) that satisfies a recurrence similar to (2.9) and is close to M(x, y) when $\sqrt{x} \le y < x$.

If we let

$$A(x, y) = \frac{x}{\log y} \int_{1}^{x/y} \rho' \left(\frac{\log x - \log t}{\log y} \right) \frac{dt}{t^2}, \tag{2.10}$$

we see from (2.1) that

$$A(x, y) = -\int_{y}^{x} \frac{dt}{\log t}$$
 (2.11)

when $\sqrt{x} \leqslant y < x$. From (2.2) and (2.11) we deduce that the difference M(x, y) - A(x, y) is relatively small when $1 < \alpha \leqslant 2$. Also from (2.10), (2.1) and (1.6) we deduce by change of variables that

$$A(x,y) = A(x,y^h) - \int_y^{y^h} A\left(\frac{x}{t},t\right) \frac{dt}{\log t} + O\left(\frac{y^h}{\log y}\right)$$
 (2.12)

when $1 < y < y^h < x$. Therefore A(x, y) satisfies our requirements.

From (2.2), (2.11), (2.9) and (2.12) we expect that the difference M(x, y) - A(x, y) can be bounded in terms of α and a monotonic decreasing

function R(y) that bounds the relative error in the Prime Number Theorem. More precisely, for $y \ge 2$ we want R(y) to satisfy the inequality

$$|\pi(y) - \ell i(y)| < \frac{y}{\log y} \cdot R(y),$$

where

$$\ell i(y) = \int_{2}^{y} \frac{\mathrm{d}t}{\log t}.$$

Then from (2.2), (2.11), (2.9) and (2.12) we can show by induction on $[\alpha]$ that

$$M(x, y) - A(x, y) \leqslant x\alpha^2 R(y)$$
 (2.13)

holds uniformly for $2 \le y \le x$.

In most applications of (2.13) it suffices to choose R(y) to be

$$\ll \exp\{-c_3\sqrt{\log y}\}. \tag{2.14}$$

If we integrate (2.10) by parts and use a result of de Bruijn [3] that

$$\rho''(\alpha) \leqslant \rho'(\alpha) \log(\alpha + 2)$$
,

we get

$$A(x,y) = \frac{x\rho'(\alpha)}{\log y} + \frac{y}{\log y} + O\left(\frac{x\rho'(\alpha)\log(\alpha+2)}{\log^2 y}\right). \tag{2.15}$$

It follows from (2.13), (2.14) and (2.15) that as $x \to \infty$

$$M(x,y) \sim \frac{x\rho'(\alpha)}{\log y} \qquad \text{if } \exp\{(\log x)^{2/3+\epsilon}\} < y = o(x). \tag{2.16}$$

This is an improvement of Theorem 1 for large α and y.

In fact repeated integration by parts of (2.10) shows that

$$A(x,y) = \frac{x\rho'(\alpha)}{\log y} - \frac{x\rho''(\alpha)}{\log^2 y} + \frac{x\rho'''(\alpha)}{\log^3 y} \dots + (-1)^{n-1} \frac{x\rho^{(n)}(\alpha)}{\log^n y} + O_n \left(\frac{x\rho(\alpha)\log^n(\alpha+2)}{\log^{n+1} y}\right), \tag{2.17}$$

where $n \le [\alpha] - 1$ and $\rho^{(n)}(\alpha)$ is the *n*th derivative of $\rho(\alpha)$. From (2.13) and (2.17) we get a series expansion for M(x, y) of any desired length for large y, provided $\alpha \to \infty$ with x.

3. Proof of Theorem 2

We note that for $\sigma > 1$

$$\sum_{\substack{n=1\\p(n)>y}}^{\infty} \frac{\mu(n)}{n^s} = \frac{1}{\zeta(s)} \cdot \prod_{p \leqslant y} \left(1 - \frac{1}{p^s}\right)^{-1},$$

where $\zeta(s)$ is the Riemann zeta function. Thus the coefficients of the series on the left is a Dirichlet convolution of the coefficients of the Dirichlet series on the right. Therefore

$$M(x,y) = \sum_{\substack{md \leqslant x \\ P(m) \leqslant y}} \mu(d). \tag{3.1}$$

Let t be a real number satisfying $1 \le t \le \sqrt{x}$. We break up (3.1) as follows:

$$M(x,y) = \sum_{d \le t} \mu(d) \sum_{\substack{m \le x/d \\ P(m) \le y}} 1 + \sum_{\substack{m \le x/t \\ P(m) \le y}} \sum_{t \le d \le x/m} \mu(d).$$
 (3.2)

The upper bounds (1.7) show that the first term on the right of (3.2) is

$$\ll \sum_{d \leqslant t} \Psi\left(\frac{x}{d}, y\right) \ll \frac{x}{\log^2 x} + x \log t \exp\left\{-\frac{\log(x/t)}{\log y} \log\left(\frac{\log(x/t)}{\log y}\right)\right\}.$$
(3.3)

From the quantitative form of the Prime Number Theorem for M(x) (see Prachar [6, p. 71]) we see that the last term on the right of (3.2) is

$$\ll \sum_{m \leqslant x/t} \frac{x}{m} \exp\left\{-c_4 \sqrt{\log\left(\frac{x}{m}\right)}\right\} \ll x \log x \exp\left\{-c_4 \sqrt{\log t}\right\}.$$
(3.4)

Theorem 2 follows from (3.2), (3.3) and (3.4) on choosing

$$t = \exp \left\{ \frac{9}{c_4^2} \left(\log \log x \right)^2 \right\}.$$

For certain purposes $t = \sqrt{x}$ proves useful. In this case we can prove that

$$M(x, y) \leqslant x \log x \exp \left\{-\frac{\alpha}{2} \log \left(\frac{\alpha}{3}\right)\right\} + x \exp\left\{-c_5 \sqrt{\log x}\right\}.$$
 (3.5)

We can prove a slightly sharper form of (3.5) for large α and y by using

$$M(x,y) = \frac{1}{2\pi i} \int_{a-iT}^{a+iT} \frac{x^{s} \prod_{p \le y} (1-1/p^{s})^{-1}}{s\zeta(s)} ds + O\left(\sum_{n=1}^{\infty} \frac{x^{a}}{Tn^{a} |\log(x/n)|}\right),$$

where a > 1, T > 3 and x is half an odd integer. We estimate the integral by contour integration, using well-known results on zero free regions of $\zeta(s)$ and bounds for $\zeta(s)$ in such regions. For instance, when $x^{1/3} > y > \exp\{c_6 \sqrt{\log x} \log \log x\}$, this method yields

$$M(x, y) \leqslant x \log^k x \exp\{-\alpha \log \alpha - \alpha \log \log \alpha + O(\alpha)\},$$

where k is an absolute positive constant.

4. Proof of Theorem 3

We begin with a

LEMMA. There exist a constant $x_0 > 0$ such that if $x > x_0$ and $x^{1/\log\log x} < y < x(1 - 1/\log^2 x)$, then $M(x, y) \le 0$.

Proof. From the quantitative form of the Prime Number Theorem it follows that for all large x, there is a prime in the interval $(x\{1-1/\log^2 x\},x)$. So if x is large enough and $\sqrt{x} < y < x\{1-1/\log^2 x\}$, then

$$M(x, y) = 1 - \pi(x) + \pi(y) \le 0.$$
 (4.1)

Next from Theorem 1 and (1.6) we deduce that if x is large and $x^{1/\sqrt{\log\log x}} < y < \sqrt{x}$, then

$$M(x,y) \leqslant \frac{x\rho'(\alpha)}{2\log y} < 0. \tag{4.2}$$

The lemma follows from (4.1) and (4.2).

Proof of Theorem 3. We begin by splitting the sum in (1.3) into

$$\sum_{p < \sqrt{x}} + \sum_{\sqrt{x} \le p \le x} = \Sigma_1 + \Sigma_2. \tag{4.3}$$

The Prime Number Theorem implies that

$$\Sigma_2 = \sum_{\sqrt{x \le p \le x}} \sim \frac{x}{\log x}.$$
 (4.4)

To estimate Σ_1 we note that there exists $x_1 > 0$ such that if $x > x_1$ and $x^{1/\sqrt{\log\log x}} , then$

$$\frac{x}{p} > x_0$$

and

$$\left(\frac{x}{p}\right)^{1/\sqrt{\log\log(x/p)}}$$

Next we write

$$\Sigma_{1} = \sum_{p \leqslant z_{0}} + \sum_{z_{0}$$

where

$$z_0 = x^{1/\log\log x}, \qquad z_1 = x^{1/\sqrt{\log\log x}}$$

and

$$z_2 = \sqrt{x} \left(1 - \frac{3}{\log^2 x} \right).$$

First by Theorem 2 we get

$$\Sigma_3 \ll \frac{x \log \log x}{\log^2 x}.\tag{4.6}$$

To estimate Σ_4 we use Theorem 1, (1.6) and elementary results on prime numbers. That is, we have

$$\Sigma_{4} \ll \sum_{z_{0}$$

On the other hand it is clear that

$$\Sigma_6 \ll \sum_{z_2$$

Finally the lemma shows that

$$\Sigma_5 = \sum_{z_1$$

So we combine (4.3)–(4.9) and arrive at

$$A(x) = \Sigma_1 + \Sigma_2 = \frac{x}{\log x} - \Sigma_5' + o\left(\frac{x}{\log x}\right). \tag{4.10}$$

Now consider

$$M(x)-1=\sum_{2\leqslant n\leqslant x}\mu(n).$$

If we take $f \equiv 1$ in (1.2), then we get from (1.4)

$$M(x) - 1 = -\sum_{2 \le p \le x} M\left(\frac{x}{p}, p\right). \tag{4.11}$$

From the quantitative form of the Prime Number Theorem for M(x) we get

$$M(x) = o\left(\frac{x}{\log x}\right). \tag{4.12}$$

Therefore if we split the sum in (4.11) as in (4.3) and (4.5), then the above method yields

$$M(x) - 1 = -\Sigma_2 - \Sigma_5' + o\left(\frac{x}{\log x}\right) = -\frac{x}{\log x} - \Sigma_5' + o\left(\frac{x}{\log x}\right). \tag{4.13}$$

Thus from (4.13) and (4.12) we deduce that

$$-\Sigma_5' = \frac{x}{\log x} + o\left(\frac{x}{\log x}\right). \tag{4.14}$$

Theorem 3 now follows from (4.14) and (4.10).

With greater care we can improve Theorem 3 by using (2.16) and (3.5). First we show that $M(x, y) \le 0$ for $x \ge x_0(\varepsilon)$ and $\exp\{(\log x)^{2/3+\varepsilon}\} < y < x(1 - \exp\{-c_7\sqrt{\log x}\})$. This is an improvement of the lemma. Then by choosing z_0 , z_1 and z_2 properly we can use the above method and prove

$$A(x) = 2\ell i(x) + O_{\epsilon}(x \cdot \exp\{-(\log x)^{1/3 - \epsilon}\}),$$

where $\varepsilon > 0$ is arbitrary.

5. APPLICATIONS

We first consider an application to the Sieve.

Let $\lambda(n)$ be Liouville's function. The asymptotic results stated so far for M(x, y) also hold for the function

$$L(x,y) = \sum_{1 \leqslant n \leqslant x, p(n) \geqslant y} \lambda(n).$$

The proofs are almost identical with $\lambda(n)$ replacing $\mu(n)$.

Let 1 < y < x and

$$\mathcal{F}(x, y) = \{n \mid 1 \leqslant n \leqslant x, p(n) \geqslant y\}.$$

We now consider the distribution of $\Omega(n) = \sum_{p^{\nu} \parallel n} \nu$ modulo 2 for $n \in S(x, y)$. So we define

$$\mathcal{S}_i(x, y) = \{n \in \mathcal{S}(x, y) | \Omega(n) \equiv i \pmod{2}\}, \quad i = 0, 1.$$

It is known by the use of sieve methods (see Halberstam and Richert [4, pp. 225-240]) that

$$|\mathcal{S}_{i}(x,y)| = \frac{|\mathcal{S}(x,y)|}{2} \left\{ 1 + O(\exp\{-\alpha \log \alpha\}) + O((\log x)^{-1/14}) \right\}$$
 (5.1)

for i = 0, 1.

We note that

$$L(x, y) = |\mathscr{S}_0(x, y)| - |\mathscr{S}_1(x, y)|. \tag{5.2}$$

From Theorem 1, (3.5) (now for L(x, y)) and (1.6) it follows that

$$L(x, y) \ll \frac{x}{\log y} \left(\exp \left\{ -\frac{\alpha}{2} \log \frac{\alpha}{4} \right\} + \exp \left\{ -c_8 \sqrt{\log x} \right\} \right). \tag{5.3}$$

On the other hand, if $y > \exp\{(\log x)^{2/3+\epsilon}\}$, then by (2.16), Theorem 1 (now for L(x, y)) and (1.6) we have

$$L(x, y) \ll_{\epsilon} \frac{x}{\log y} \exp\{-\alpha \log \alpha\}.$$
 (5.4)

From the Prime Number Theorem and the Linear Sieve (see Halberstam and Richert [4, pp. 225-240]) it follows that

$$\frac{x}{\log y} \leqslant |\mathcal{S}(x, y)| \leqslant \frac{x}{\log y} \quad \text{for} \quad y \leqslant \sqrt{x}. \tag{5.5}$$

Therefore from (5.2), (5.3), (5.4) and (5.5) we have the following improvement of (5.1):

THEOREM 4. If x > y > 1, then for i = 0, 1 we have

$$|\mathscr{S}_{i}(x,y)| = \frac{|\mathscr{S}(x,y)|}{2} \left\{ 1 + O\left(\exp\left\{-\frac{\alpha}{2}\log\frac{\alpha}{4}\right\}\right) + O(\exp\left\{-c_{8}\sqrt{\log x}\right\}) \right\}.$$
(5.6)

If $\varepsilon > 0$ is arbitrary, then for i = 0, 1 we have

$$|\mathcal{S}_{i}(x,y)| = \frac{|\mathcal{S}(x,y)|}{2} \left\{ 1 + O(\exp\{-\alpha \log \alpha\}) + O_{\epsilon}(\exp\{-(\log x)^{1/3-\epsilon}\}) \right\}.$$

$$(5.7)$$

Theorem 4 or the weaker (5.1) shows that $\Omega(n)$ is uniformly distributed modulo 2 (u.d. mod 2) in $\mathcal{S}(x,y)$, provided $\alpha \to \infty$ with x. The function $\Omega(n)$ does not have this property if $\alpha \not\to \infty$ with x. A necessary and sufficient condition for $\Omega(n)$ to be u.d. mod 2 in $\mathcal{S}(x,y)$ is that $L(x,y) = o(|\mathcal{S}(x,y)|)$, and this clearly does not hold when $1 \le \alpha \le 2$. If $\alpha > 2$ remains bounded as $x \to \infty$, then by Theorem 1 (for L(x,y)) and (5.5) we have $L(x,y) = o(|\mathcal{S}(x,y)|)$ if and only if $\rho'(\alpha) = 0$. But this never happens because $\rho'(\alpha) < 0$ for all $\alpha > 1$.

The function M(x, y) is the basic computational tool to evaluate sums of the form

$$M_f(x) = \sum_{2 \le n \le x} \mu(n) f(p(n))$$

because we can use (1.2) and (1.4) to rewrite this as

$$M_f(x) = -\sum_{p \leqslant x} f(p) M\left(\frac{x}{p}, p\right). \tag{5.8}$$

When f(x) is a simple differentiable function it is not usually difficult to estimate $M_f(x)$. The contribution due to "large p" in (5.8) can be estimated with the aid of (2.16) and well-known results on primes, while the contribution due to small p can be bounded by using (3.5). For example, when $f(n) = \log n$ we can show that

$$\sum_{2 \le n \le x} \mu(n) \log p(n) = C \cdot x + O\left(\frac{x}{\log x}\right),\,$$

where

$$C=\int_1^\infty \frac{\rho'(s)\,ds}{s}.$$

Previously [1], I observed that non-trivial upper bounds for A(x) have some interesting consequences. I used a result weaker than Theorem 3 and showed for that if f is a bounded function, then

$$\lim_{x \to \infty} \frac{1}{x} \sum_{n \le x} f(P(n)) = l$$

exists if and only if

$$\sum_{n=2}^{\infty} \frac{\mu(n) f(p(n))}{n} = -l.$$

This equivalence has an interesting application to the Prime Number Theorem for Arithmetic Progressions.

ACKNOWLEDGMENTS

I am grateful to Professors P. Erdös, R. J. Miech, H. L. Montgomery, and E. G. Straus for their critical comments, advice, and encouragement.

REFERENCES

- 1. K. ALLADI, Duality between prime factors and an application to the Prime Number Theorem for Arithmetic Progressions, J. Number Theory 9 (1977), 436-51.
- 2. N. G. DE BRUJN, On the asymptotic behavior of a function occurring in the theory of primes, J. Indian Math. Soc. (N.S.) 15 (1951), 25-32.
- N. G. DE BRUIJN, On the number of positive integers ≤x and free of prime factors >y, Indag. Math., 13 (1951), 50-60.
- 4. H. R. Halberstam and H.-E. Richert, "Sieve Methods," Academic Press, New York, 1974.
- B. V. LEVIN AND A. S. FAINLEIB, Applications of some integral equations to problems of number theory, Russian Math. Surveys 22 (1967), 119-204.
- 6. K. PRACHAR, "Primzahlverteilung," Springer-Verlag, Berlin, 1957.