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This paper develops the notion of transition correspondences; the set-valued analog of transition 
probabilities. A generalization of the Feller property for transition probabilities is shown to 
imply the existence of a selection from the transition correspondence having a stationary 
equilibrium. These techniques are applied to the existence problem for Markov temporary 
equilibrium processes in place of assumptions about the existence of continuous selections from 
the equilibrium price correspondence. 

1. Introduction 

In this paper I propose a method of constructing Markov processes of 
temporary equilibrium states that provides a useful alternative to the usual 
approach [Grandmont and Hildenbrand (1974) and Blume (1977)]. In this 

new method I construct transition correspondences, the set-valued analog of 
transition probabilities. Properties such as the existence of stationary 
equilibria are studied by using the hemi-continuity properties of the 
transition correspondence rather than continuity or stability properties of 
some pre-chosen selection from the equilibrium correspondence. It will be 
seen that the required upper hemi-continuity of the transition 
correspondence is often more easily established than the existence of a 
selection from the equilibrium correspondence having the desired properties. 

The usual approach to this question involves constructing a 
correspondence defining equilibrium states. A selection is chosen from this 
correspondence and used to construct a transition probability. Desirable 
properties for the transition probability such as the Feller property can be 
inferred from properties of the selection, and these properties in turn imply 
the existence of an invariant probability measure for the transition 
probability. The technique proposed in this paper avoids all difficulties 
concerning the existence of well-behaved selections by working directly with 
the equilibrium correspondence. Theorems 2.1, 3.1 and 3.2 taken together in 
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effect prove the existence of a selection from the equilibrium correspondence 
such that the transition probability constructed from it has an invariant 
probability measure. 

In section 2, Markov transition correspondences are defined, and sufficient 
conditions for the existence of an invariant measure are given. Section 3 

shows how to construct Markov transition correspondences satisfying the 
sufficient conditions of section 2. An application of the results to stochastic 

equilibrium is offered in section 4. 

2. Invariant probability measures 

In this section I show that convex-valued upper hemi-continuous 
transition correspondences have fixed points. The dependence of fixed points 
on parameters is also studied. Let X and Z be subsets of complete, separable 
metric spaces, with X compact and Z closed. Let C(X) denote the set of all 
continuous functions from X into the real line, and let D denote the unit ball 
in C(X) (with the sup norm). Let o(X) denote the a-field of Bore1 subsets of 

X, and let M(X) denote the set of all probability measures on (X,0(X)), 

topologized with the topology of weak convergence. Also, cr(M(X)) is the 
Bore1 c-field on M(X). 

Transition probabilities are particular examples of stochastic kernels, and 
so I begin by defining multivalued stochastic kernels: 

Definition 2.1. A multivalued stochastic kernel (m.s.k.) is a correspondence 
K:Z-+M(X) with measurable graph. 

This definition generalizes the stochastic kernel concept. A stochastic 

kernel is a function kZ:Zxa(X)+R such that K(z, *)EM(X), VZEZ, and 
K( .,A) is measurable for all AE~(X). If an m.s.k. is singleton valued, then 
the measurable graph condition implies that the function K :Z-+M(X) is 
measurable. Define I?:Z x a(K)+R such that Z?(z,A)=K(z)(A). The maps 
A,:p-+-,(A), V~EM(X), are measurable for all Aea(X), so g(*,A) is 
measurable. Since I? (z, .) =K (z) E M(X), g is a stochastic kernel. 

The action of an m.s.k. K on a measurable function f is defined by 
applying to f measurable selections from K. If g:Z-+M (X) is a measurable 
selection from K, I will write g-K. 

Definition 2.2. If* f :X-+R is measurable, then j f (x)K (z, dx) =Pr(z) 

=Cjf (x)g(z,dx); g-K). 

If K were a stochastic kernel and f a bounded measurable real-valued 
function, then p,(Z) would be a bounded measurable real-valued function. 
An analogous property holds for m.s.k.‘s. 
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Proposition 2.1. If K is an m.s.k. and f a bounded measurable real-valued 
function, then fif is a correspondence with (a(Z) x o(R)) analytic graph. 

Proof The map P-J f dp is measurable. The conclusion follows from 

Hildenbrand (1974, D.II.3, proposition 2). Q.E.D. 

The Feller property for stochastic kernels states that if f EC(X), then 
/Is E C(Z). This property is a key sufficient condition for the existence of 
invariant probability measures for transition probabilities. An analogous 
property for m.s.k.‘s plays the same role in the study of multivalued 
transition probabilities: 

Definition 2.3. An m.s.k. K has the multivalued Feller property if for all 
f E C(X), Br:Z+R is upper hemi-continuous (u.h.c.). 

The Feller property for stochastic kernels implies that the map K :Z+ M (X) 
is continuous. This result generalizes. 

Proposition 2.2. An m.s.k. K has the multivalued Feller property, tr K is 
upper hemi-continuous. 

Proof Let I denote the interval [ - 1, 11. The map i:M (X)-+ZZ,,, I defined 
such that n(p), =I f dp is continuous with respect to the product topology 
and is a homeomorphism of M(X) onto A(M(X)). Thus it suffices to show 
that 13. .K :Z+D,,, I is u.h.c. 

It suffices to show that {zeZ:A .K (z)cA) is open for all A in some sub- 

base of II,,, I. Consider the sub-base of sets of the form A;= II,,, B(f) 
where B, = I if f # f ‘, and B; is open in I. Then {z :;1 .K (z) c A;} = {z :fi&z) 
cB>) which is open since j3, is u.h.c. 

Conversely, if K is u.h.c., then pf has closed graph. Since f is bounded, 
range /Is is compact and so fir is u.h.c. Q.E.D. 

Stochastic kernels also act upon probability measures. If K is a stochastic 
kernel, then jK(z, A)dp=v(A) defines a probability measure v. A similar 
action can be defined for m.s.k.‘s. 

Definition 2.4. If PEM(X) then y(~)(A)=jK(z)(A)d~={jg(z)(A)d~; 

g-K). 

Note that YW=MW), and Y(P)#+ since, from the Aumann selection 
theorem, there exists an (a.e.p) selection g from K. 

The Feller property for stochastic kernels implies that y is a continuous 
function. This result also generalizes. 
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Proposition 2.3. If an m.s.k. K has the multivalued Feller property, then 
y:M(Z)+M(X) is u.h.c. 

Proof. The idea is the same as that in Proposition 2.2. It suffices to show 
that h. y is u.h.c. The set 

Thus it suffices to show that for all feD, the correspondence /.~+J&(z)dp is 
u.h.c. Since @:Z-+Z, I need only show that this correspondence has closed 
graph. Let h+pO, and applying Skohorod’s theorem, there exists a proba- 
bility space (S,& V) and measurable maps h,, h, such that h =v. hi’, 
pO=v - ho, and h,-+h a.e.v. From Hildenbrand (1974, D.II.4, theorem 5) 
conclude that jPfdpr?=j/3r* h,dv, for nz0. Then his D.II.4, theorem 6, 
implies that j&dF has closed graph. Q.E.D. 

So far, the definition of the domain of the stochastic kernel has been 
general. Now I want to explicitly consider multivalued transition 
probabilities. In applications I might want to study a parametric class of 
multivalued transition probabilities and see how the invariant measures 
depend on the parameter. 

Definition 2.5. A parametric multivalued transition probability (p.m.t.p.) is a 
multivalued stochastic kernel K :X x Z -+M (X). 

The main result of this paper is the following theorem: 

Theorem 2.1. Let K be a convex valued p.m.t.p. satisfying the multivalued 
Feller property. Then for all vcM(Z) there exists @EM(X) such that PE 

y(pxv). Furthermore, the correspondence v+-{p: PE y(pXv)} is u.h.c. 

Neglecting the parameters, this theorem says that, under the given 
hypotheses, there exists a selection g-K and a ,LJ E M(X) such that for all 
AEU(X), p(A)=Jg(x)(A)dp. A transition probability having an invariant 
probability can be selected from K. The selection g need not satisfy the Feller 
property, and in fact no selection satisfying it may exist. 

Proof: Fix v. The map p+,u xv is continuous, so from Proposition 2.3, the 
correspondence p-+y(p x v) is non-empty and u.h.c. If K is convex-valued, 
then so is y(p x v). For let 6,6’~y(p x v). Then there exists g,g’-K such that 
6(.)=jg(x,z)(.)d(pxv), %(.)=jg’(x,z)(.)d(pxv). Then a6+(1-~)a’(.) 

=Jag+(l-a)g’(.)d( p xv), and ag+(l-ct)g’-K. M(X) is convex and 
compact, and so Ky Fan’s fixed point theorem implies the existence of PE 
-&XV). Since y is u.h.c. and (p,v)+pxv is continuous, the fixed point 
correspondence is u.h.c. Q.E.D. 
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3. Identifying convex-valued p.m.t.p.‘s with the multivalued Feller property 

Multivalued stochastic kernels amenable to the analysis of section 2 arise 
in a variety of economic settings. In this section I identify an important 
source of these kernels - those arising as distributions of a correspondence 
with respect to a transition probability. As before, let X be compact and 2 
closed. Furthermore, let E be a compact subset of a complete separable 
metric space. 

Assumption 3.1. Let 4 :X x 2 x E-+X be a non-empty valued u.h.c. 
correspondence. 

Assumption 3.2. Let $:X+M(E) be a map with the following two 
properties : 

(i) * is continuous, 
(ii) p~range II/ implies that p is atomless. 

Definition 3.1. Let K(x,z)=ll/(x).~-‘={~EM(X):~=lj/(x).g-’(.,x,z) for 
some g-4}. 

The main results of this section are: 

Theorem 3.1. If c$ satisfies Assumption 3.1 and $ satisfies Assumption 3.2.i, 

then K has the multivalued Feller property. 

Theorem 3.2. Zf 4 satisfies Assumption 3.1 and $I satisfies Assumption 3.2.i, 

ii, then K is convex valued. 

Thus if Assumptions 3.1 and 3.2 are satisfied, the hypotheses of Theorem 
2.1 are satisfied. 

Proof of Theorem 3.1. Since X is compact, it suffices to show that K :X x Z 
+M(X) has closed graph. So, let {(x,, y,)},“, 1 be a sequence with limit 
(x,, yO). Skorohod’s theorem says that there exists a probability space 
(a, a,h) and measurable functions f,, :0-E, nz0 such that fn+=fO a.e. A and 
$(x,)=A . f; ‘. Without loss of generality a negligible set can be removed 
from 52 so that convergence is sure in the topology of pointwise convergence 
on E*. Thus, let F = UzzO {f,}. Then F cE* is compact. Let Y 

= U?=,, {(x,,z,))-and Y(w)= UzEO {( x,, z,, f. (w))}. These sets are compact in 
X x Z and X x Z x E, respectively. 

Let G,={g:E+X, g-~(x,,z,, .)} for n=O,l,... . Then since $ is u.h.c. 
and Z x E is compact, $(Z x E) is compact, and so Uz=,, G, is compact in 
XE. Let H = UrzO G, . f,. Thus, h E H iff for some n there exists a g E G, such 
that g, . f, = h. 
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Lemma 3.1. H is compact. 

Proof of Lemma. It suffices to show that (a) H is pointwise closed, and (b) 
ZZ,(H)={h(w):hoH} is compact in X. 

(a) Let {h,,aeA} be a net in H with limit h. Then h, =I$ *fn, where L,EG, 

for some n and f,=f,. Since F is compact, the net {f,, creA} has a 
convergent subnet {f,, /Ion’} with limit f6F. Then there exists a g:E+X 

such that the diagram 

f 

comments. Since f=f, for some n, it suffices to show that g E G,. 

Consider the net {(x0, za,fs, hp), PEA’} where (xg, zp)= (x”, z,,) iff h, = g, .f,. 
Since Y is compact there exists a subnet {(x,,z,,f,,h,), CYEA”} with limit 
(x,, y,,f,,, h). For each w, (x,,ya,fa(w), h,(w))EGr4(,,,. Since 4 is u.h.c. 
and ZXE is compact, Gr4 lZxE is compact. Hence, for all w, 

(x,,z,,f,(w),h(w))EGr~lzxE. Now f,(a) and its complement are analytic 
sets (hence measurable). Define g I,.(Q) such that g(f,(w))=h(w). Define 
g I,“(a), to be an arbitrary measurable selection from 4(x,, z,, .) If,(sZ),. Then 
g so defined is a function in G,, and h = g. f,, as was to be shown. 

(b) Choose w-52. Then ZZ,(H)=U,“=,{~,(~,(~)):~,,EG,}=~(Z(~)) which 
is compact since Z(w) is compact and 4 is u.h.c. This proves the lemma. 

To complete the proof of the theorem, it suffices to show that K(Z) is 
compact. But K(Z)= {A. he1 :h-’ EH} which is compact since H is 
compact. Q.E.D. 

Proof of Theorem 3.2. Let VE M(E) be atomless. It suffices to show that 
v . & 1 is convex. I need some intermediate propositions. 

Lemma 3.2. Let {X, ,..., X,} be a finite, measurable partition of X. Then the 

set {CL (XI ), . . ., p(X,); ~Ev.4~i} is convex. 

Proof of Lemma 3.2. Let g,, g, - 4. Let ai = (v . g,: ’ (Xl), . . ., v . g; ’ (X,)) for i 

= 1,2. We need to find for each CL, 0s a 5 1, a measurable function g - 4 such 
that a=(v.g-l(X1),...,v~g-l(X,))=aa,+(l-a)a,. 
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Let Eii=g~‘(Xi) for j=1,2, i=l,..., n. Let Ekl =g;‘(X,)ng;‘(Xt). Then 
{I!&~};,~= 1 is a measurable partition of E. Also, Uk~kl =ElV2, uI E,, = Ekq” 
Finally, v . g,: 1 (Xi) = v(E’j). 

Since v is atomless, there exists for all c(, 0 5 u 5 1, sets R,, c E,, such that 

v(R,,) = rxv(kkl). Then the sets {R,,,, E,, [\R,, l};, 1 = 1 form a measurable 
partition of E. Define g as follows: 

=g2(e)3 eE Uk,l(Ek,l\Rk,l)y k, 1= 1,. . ., n. 

Evidently g is measurable, and g-4. Furthermore, g-’ txk) 

=tt_@k,)” d.@,k\R,k). Thus 

Since this holds for all k, the Proposition is proved. Q.E.D. 

An immediate consequence of Lemma 3.2 is: 

Lemma 3.3. Let {X, ,..., X,} be a measurable partition of X, and let fi,. . ., fk 
be k functions such that fi( )=cij for xeXj. Then the set {j fidp, . . ., J fkdp; 
~ev.4~l} is convex. 

Proof of Lemma 3.3. We have Jfidp = cjcijp(Xj). The result then follows 
from Lemma 3.2. Q.E.D. 

Lemma 3.4. Let h 1,. . ., h, be k functions founded and continuous from X into 
R. Then { J1 dp, . . ., J h,dpu; /1 E v. b- ‘} is convex. 

Proof of Lemma 3.4. There exists a sequence of functions {(f 7,. . ., f i)}.“= 1, 
each set of functions (f;, . ._, f;) constant on members of a partition 

{X;, . . ., X:} of X, and such that f y-+ hi uniformly. Let A, = {f 1 dp, . . ., f idpu; 
,u E v . CJ- ‘}. From Theorem 3.1 each A, is closed. Let A = lim, A,. Thus a E A 
iff there is a sequence {P~}cv.c#I-~, a=lim,(Jf~d~,,,..., JfidpL,). Since 
V.&l is compact, there is a subsequence {IL,} c {pL,}, ~,,,+PEv. & ‘. For 

each i, 11 Jf~dtL,-_Shid~lIIJIIfl-hiIId~,+II Jhidpm-JhidPII. Each term 
converges to 0, and so lim,Jf~d~,,,=Jhid~. Thus aEA iff a 
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= (1 hidp, . . ., j h,dp) for some p E v . qb - ‘. Since each A, is closed and convex 

(Theorem 3.1 and Lemma 3.3), A is convex. Q.E.D. 

Let {hi}i”=, be a dense set of continuous functions from X into the unit 
interval 1. Let R,(~)={(Sh,d~,...,Sh,d~); ~EV.C#-~} xl xl x... . Then 
R,(qb) is convex subset of the Hilbert cube. Let R(4)= { (j h,dp, . . .); 

~~v.4~~). Then R(+)=n,,K(4), and so R(4) is a convex subset of the 

Hilbert cube. Define the map A:A4(X)-+nz 1 I by A.(p)= (Jh,dp,. . .). This 
map is continuous, linear, and invertible. Thus v .c#-’ = A-'(R(4)), and so 
v. c#- ’ is convex. Q.E.D. 

This concludes the proof of Theorem 3.2. 

4. Applications 

In this section I give an application of the techniques presented in sections 

2 and 3 to stochastic equilibrium analysis. 
In the usual temporary equilibrium framework [Grandmont (1977)] there 

is a compact subset DcRm of endogenous variables and a compact subset E 
CR” of exogenous variables. The state space for the Markov equilibrium 
process is X= E x D. The evolution of the stochastic equilibrium process is 
determined by an upper hemi-continuous correspondence 4 :,5xX+X and 
by a transition probability $:E x o(E)+[O, 11. The correspondence 4 is the 

equilibrium correspondence, and 4(~,_~,e,) is the set of all possible 
equilibrium states x, that can occur at time t if the state at time t- 1 was 
x,_~ and exogenous random variable e, is realized at time t. The transition 
probability II/ describes the Markovian evolution of the exogenous random 
variable. 

The tradition approach has been to choose a measurable selection f-4, 
and to describe the evolution of equilibrium states by the transition 

probability 

Kf(X, .)=ICI(x).f-l(X, .). 

The problem to be addressed is the existence of a stationary distribution of 
states. Does there exist a selection f from 4 such that K, admits an 
invariant distribution? This question was first addressed by Grandmont and 
Hildenbrand (1974), who showed that if I++ has the Feller property and the 
selection f is continuous, K, satisfies the Feller property, and thus admits an 
invariant distribution. However, the existence of a continuous selection - 
tantamount to the uniqueness of equilibrium in each state - is not often 
satisfied. Theorems 3.1, 3.2 and 2.1 together imply that, under the additional 
assumption that for all XEX, $(x) is atomless, there always exists a selection 
f-4 such that K, admits an invariant probability. 
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The results of the previous section can also be used to solve a problem 

considered by several authors: Blume (1977) Easley (1978), and Knieps 
(1977). The problem is the existence of weakly rational expectations.’ 

Recall that the state space is X=E x D, where D is the set of endogenous 
variables. The endogenous variables are of two types: those that are actions 
of individual agents, and those that are jointly determined by the actions of 
the agents (such as prices). Each agent is determining his optimal action by 
observing current jointly determined and some current exogenous variables, 
and by solving a dynamic programming problem. To solve this problem, 
agents need to have some expectations about those variables they observe. 
Let there be n agents, and let Si be the set of variables that the ith agent 
observes. We assume that agents do not have beliefs about the dynamic 
evolution of the sit, and so the expectations of the ith agent can be 

represented by probability distributions pie M(Si), the set of probability 
distributions on Si. Thus the term ‘weakly’ in the title of the problem. 
However, it does seem plausible that in a stationary equilibrium, agents 
should know the true marginal distribution of si from the invariant 
probability measure. Thus the word ‘rational’. Our problem, then, is to find a 
stationary equilibrium where agents have the correct marginal distribution of 
the observed variables as their expectations. 

This can be studied as a fixed point problem. Give M(S,) the topology of 
weak convergence. Then let M = fly= 1 M (Si), v E M is a vector (vi,. . ., v,,) of 
probabilities on the Si. We derive an equilibrium correspondence 4:X x E 
x M+X, and, because the world is simple, 4 is upper hemi-continuous. See 

Blume (1977), Easley (1978) or Knieps (1977) for details. If we assume that $ 
has atomless range, then K (x,v) is compact, convex and non-empty valued, 
and upper hemi-continuous (Theorem 3.2). 

Let p: M(X)+M be the map such that p(p) is the vector of marginal 
distributions of p on S,, . . ., S”, respectively. The map p is continuous, and so 

the correspondence K (x, p(p)) :X x M(X)+ M (X) is upper hemi-continuous, 
etc. Now define /l:M(X)xM(X)+M(X) such that A(/4 /4 
= SK (X, p (p’))p(dx). Then A is upper hemi-continuous, convex and compact 
and non-empty valued. In particular, its restriction to the diagonal of M(X) 
x M(X) enjoys these properties. By identifying M(X) with the diagonal of 
M(X) x M(X) we have a correspondence A : M (X)+ M (X) which satisfies all 
the conditions of Ky Fan’s Fixed Point Theorem. Thus, there exists a 
PE M(X) such that pcjK (x, p(p))p(dx). In other words, p is a stationary 
equilibrium in which each agent knows the correct one-period distribution of 
his observable variables. 

In earlier work, Blume (1977), Easley (1978) and Knieps (1977) all had to 
choose a continuous f-4. Here we have demonstrated the existence of a 

‘So named by Easley. 
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selection h-4 such that the transition probability constructed from it admits 
a weakly rational expectations equilibrium. The cost of weakening the 
requirements on selections from 4 is only the stronger requirement on $. In 
fact, the development of these techniques was motivated by a study by the 
author of rational expectations when agents are aware of the dynamic 
structure of the economy [Blume (1979)]. In this case, where transition 
probabilities on the Si must be considered, it is clear that non-trivial 
examples admitting continuous selections exist. 
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