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We have previously presented a general cost-accuracy relationship for a 
broad class of kinetic proofreading mechanisms. In this paper we present 
a general matrix method, based upon classical enzyme kinetics, for the 
derivation of the constraint relation that characterizes specific proofread- 
ing mechanisms. For purpose of illustration we present the method in the 
context of a conventional Michaelis-Menten mechanism with side reac- 
tions. We then explore optimization of the general cost function under a 
variety of different constraints that may exist for such a mechanism. In 
this way we are able to contrast different perspectives on the optimization 
of enzyme design. 

1. Introduction 

The specificity traditionally associated with enzyme catalysis is largely 
responsible for the overall accuracy of the recognition processes that occur 
at the molecular level in biological systems. However, there are physical 
limitations to the accuracy that can be achieved in this manner. In some 
cases, this structural specificity is not sufficient to account for the overall 
accuracy (Pauling, 1958; Loftfield & Eigner, 1966; Loftfield & Vanderjagt, 
1972) and other accuracy enhancing mechanisms must be postulated. 

Hopfield (1974) and Ninio (1975) were the first to propose specific kinetic 
mechanisms for proofreading that are capable of enhancing accuracy with 
an expenditure of energy. More recently, we have developed a general 
macroscopic theory of proofreading which, when applied to such kinetic 
proofreading mechanisms, yields an explicit relationship between accuracy 
improvement and energy cost (Savageau & Freter, 1979a; Freter & 
Savageau, 1980). We have show that the cost to achieve a given degree of 
accuracy in a multiple stage mechanism depends in large part upon the 
distribution of proofreading effort and proofreading discrimination among 
the stages, and we derived the general (or unconstrained) distribution that 
minimizes this cost (Freter & Savageau, 1980). 

i To whom all correspondence should be addressed. 
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Specific proofreading mechanisms must operate within specific con- 
straints as well as the general cost-accuracy relation described above. Thus, 
the optimum distribution of proofreading effort for a specific mechanism 
may differ from the general or unconstrained optimum referred to above, 
and the minimum cost of proofreading will be correspondingly greater than 
the general or unconstrained minimum. To go beyond these generalizations, 
each specific mechanism must be examined individually, and for this task 
it will be important to have a general approach that can be applied to a 
wide variety of specific cases. 

In this paper we present a rather general matrix method for obtaining 
the specific constraint relations that characterize particular proofreading 
mechanisms operating in a steady state. Then, for purposes of illustration, 
we analyze the specific law or constraint associated with the kinetic mechan- 
ism originally proposed by Hopfield and Ninio. This is one of the most 
important specific cases to examine because it has become the model most 
used by others in the field (e.g. Ehrenberg & Blomberg, 1980). There are, 
however, other more general models that now can be examined with the 
techniques presented here. 

2. General Description and Cost-Accuracy Relations of the System 

A proofreading system is one that discriminates initially between struc- 
turally similar (correct and incorrect) substrates and then checks 
(repeatedly) in subsequent stages, which again discriminate between correct 
and incorrect intermediates, to improve the accuracy of the output pro- 
duced. Such systems, which might consist of an arbitrary network of 
reactions, can be represented abstractly in the steady state by a branching 
diagram of the form shown in Fig. 1. The state of the system is characterized 

1”’ b, 1”’ b 1”” bn 

$?J- 
x,---+x*-2 -+X” - 

s ’ I1 p, 12 P2 I” P” L+l 

FIG. 1. A proofreading system represented as an abstact branched diagram of an otherwise 
arbitrary network of reactions. S represents a selection system that interacts with correct and 
incorrect substrates. The X’s represent sets of intermediate complexes involving correct 
substrate and the selection system. The Y’s represent the same sets but with incorrect 
substrate. The arrows represent net flux between sets. P, is the macroscopic proofreading 
discrimination ratio and 2, is the macroscopic input discrimination ratio for the ith stage. I,,, 
is the output discrimination ratio. See text for further discussion. 
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by macroscopic fluxes al,. . . , a,,, b,, cl, . . . , c,, d,. These are net fluxes 
taken to be positive in the direction of the arrows. These fluxes also define 
other macroscopic parameters of interest: the initial or input discrimination 
ratio (II) is the ratio of correct to incorrect flux entering the system, 
I, = (aI i- bl)/(cl + dl); the proofreading discrimination ratio of the ith stage 
(Pi, is the fraction of incorrect flux rejected divided by the fraction of 
correct flux rejected in proofreading at the ith stage, P, = (ci/di)/(ai/b,); 
the net error following the ith stage of proofreading (Ei) is the incorrect 
fraction of total flux leaving the ith stage, E, = di/(bi + di); the cost of 
proofreading for the ith stage (Cni) is the ratio of net flux rejected in the 
ith stage of proofreading to net flux leaving the system, Cm< = 
(ai + ci)/(b, + d,,). From these definitions it is clear that the input discrimina- 
tion ratio to the ith stage Zi = (Ui + b,)/(c, + bi) = biml/d,-l is directly related 
to the net error following the (i - 1)st stage 

I; = (1 -Et-,)/E,_, 

and that the total cost of proofreading C, is given by 

(1) 

All these macroscopic parameters of the system are clearly dimensionless 
quantities. The cost of proofreading, however, can often be interpreted in 
“units” of moles ATP for proofreading per mole of output produced (e.g. 
Savageau & Freter, 1979~). Other definitions of discrimination and cost 
could be used, but those given above are conventional ones recognized by 
most authors and they allow results to be expressed in relatively simple form. 

By the use of Kirchhoff’s laws we have derived an explicit relationship 
between cost and accuracy; namely, 

c =;++l)(pl-l)...(P,-l)(l-EJ...(l-E,,)E,...E, 
n I.(I~P,+1)E~-ll[(l-E~)P~E~-(l-E2)E~l -1 (3) 

. . . I(1 - En-i)P,E -(l -E,zE-,I 
or 

c, =- (11+1)(P,-l)...(P,-1) 
(In+1 + 1)[(11P1/12)- 11. . * [KPftlL+1)- 11 

-1. 

When the proofreading effort is optimally distributed 

(4) 

(5) 
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which is equivalent to 

Cl/h + dl) cnI(cn + 4,) 
a1l(a1+ bl) 

=...= 
an/la, + h )’ 

(6) 

Under these conditions the cost of proofreading is 

(II+l)(P,-l)(P*-l)...tP,-l) 
cn = (In+1 + 1)[(11/1,+J’“(PiP2. . . PJ”” - 11” - l* (7) 

Furthermore, since aC,/aPi < 0 and K’,/ali < 0, the cost will be minimum 
when the P values are all at the same maximum and I1 is at its maximum. 

(I* + l)(P - 1)” 
Cnmin= (In+’ + l)[(ll/l”+*)l/nP- 11” -l. (8) 

(See Freter & Savageau, 1980; for additional details concerning this 
section.) 

This general or unconstrained minimum might not be achieved in specific 
cases if the corresponding specific constraints prevent it. In sections 6 and 
7, we shall see the effect of permissive and restrictive constraints on the 
cost of achieving a given degree of accuracy, but first we will develop the 
specific formulation of the Hopfield-Ninio mechanism in terms of classical 
enzyme kinetics. 

3. Specific Enzyme-kinetic Description of the Hopfield-Ninio System 

The it stage version of the Hopfield-Ninio mechanism can be represented 
schematically as in Fig. 2. The determination of fluxes in terms of elementary 
rate constants and concentrations of reactants in steady state is simply a 
problem in classical steady state enzyme kinetics. At this point we need 
only describe the procedure in outline and for that portion of the mechanism 
involving the correct substrate s. (For a more complete discussion of these 
methods and their generality, see Chapter 3 Savageau, 1976.) There will 
be one equation for each intermediate complex: 

Xi=kie.s.ATP+k-ne.s.AMP.PP+k-3X2-(k-i+kZ+k3)X1 

Xi = kZi-lXii-l+ k-zie.s.AMP . PP+ k-,Zi+ljXi+1- fk-(zi-l)+ k2i + kzi+l)Xi 
(9) 

X” =kZn-1Xn-l+k-2ne.s.AMP.PP+k-,2n+l,e.p.AMP.PP 

-(k-an-u + kzn + kzn+lK 
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s+AMP+PP+e 

s+ATP+e ‘I’ ‘I 

I 

k2 k-2 

k3 kz”lk-2’ ‘1 kEnr, 

=x, e -.-cx, Qz=-.=x, e p+AMP+PP+e 

k-1 k-3 k-(zn+l) 

s’+ATP+e p’+AMP+PP+e 

I I 
I 

s’+AMP+PP+e 

FIG. 2. Schematic representation of an adenylate coupled enzymatic reaction involving a 
Michaelis-Menten mechanism with side reactions for proofreading. The symbols are defined 
as follows: ATP, adenosine triphosphate; AMP, adenosine monophosphate; PP, pyrophos- 
phate; e, free enzyme. For the portion of the mechanism involving correct substrate and 
product: s, substrate; p, product; Xi, intermediate enzyme-substrate complexes; kzi+l and 
k- (2,+1j, elementary rate constants for the forward and reverse components of the main 
reactions: kzi and k-zi, elementary rate constants for the forward and reverse components 
of the side reactions. For the portion of the mechanism involving incorrect substrate and 
product, all of these latter symbols are primed. See text for further discussion. 

In steady state, the time derivatives of the intermediates are zero and the 
resulting equations can be written 

[AlXl=~l (10) 
where 

(~I~.s.ATP+ k-ze.s.AMP . PP) XI 

b] =I (k-zie.s.AMP . PP) ; Xl= ii 

(k-2,e.s.AMP. PP+ic;?,+,,e.p.AMP. PP) i 
and 

0 

[A]= (k-t2i-I)+ k2i + k2i+l) 

. . . 0 
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The concentration of each intermediate in steady state can be obtained by 
Cramer’s rule from elementary algebra 

Xi = kle.s.ATPAi/A (11) 

where A is the determinant of the matrix [A] and Ai is identical to A except 
that the ith column has been replaced by (kre..s.ATP)-‘b]. 

The dependencies among the elementary rate constants are related to 
the equilibrium constants of the mechanism by the Haldane relations; 
namely, 

k-lk-3.. . k-m,+u 
klk3.. . kzn+l 

=KIK~...K~,,+~=K,/K, (12) 

and 

k-lk-3.. . k-w&z 
klks.. . kzi-lkzi 

=K,K3... K2i-lK2i = Ka; i=l,2,...,n 

(13) 

where 

K, = ATP,,/(AMP,, . PPe,) 

Ks = peql~eq. 

The corresponding expressions for the portion of the mechanism involv- 
ing incorrect substrate are identical except that all symbols (other than 
ATP, AMP, PP and e) are primed. When one solves for the intermediate 
concentrations in each half of the mechanism they will be a function of e, 
the concentration of free enzyme, which then cancels in all subsequent 
ratios (see section 4). 

The following definitions will be used to relate the two portions of the 
mechanism: 

ratio of equilibrium constants, 
ratio of substrate concentrations, 
ratio of product concentrations, 
ratio of forward rate constants, 
ratio of reverse rate constants, 

L = K,IK,g 
u = s/s’ 
7T =pIpI 
fi = ki/kj 
ri = k-i/k’i. 

(14) 

4. Specific Constraint Relation for the Hopfield-Ninio System 

A comparison of Figs 1 and 2 allows one to relate the general and 
specific descriptions in a straightforward manner. 
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I1 = 
kre.s.ATP - kiKiXi 

k;e.s’.ATP-k;K;X; 

= Ufl 
A’[A - k-iAt] 
A[A’- k’l A;]’ 

= rflf2i-1 
A’[Ai-1 -KZi-iAi] 
A[Ai-I-K;i-i Ai ’ 

i = 2,3, . . . , n, 

I 
k z~+IX - k~n+&n+le.p.AMP. PP 

n+1= 
k k,+rXk - k;,+lK;,+le.p’.AMP. PP 

= fifi,,+lA’[k-ts.ATPA. - KiKz,+ip.AMP . PPA] 
rlA[kLis’.ATPA:,- K;K;,+rp’.AMP . PPA’] ’ 

(15) 

(16) 

(17) 

p, = [kzi+l& - kzi+lK2i+,Xi+,][kifXI - kiiKiie.s’.AMP . PP] 
’ [k*iXi - kziKzie.s.AMP . PP][kii+iXi - kii+lKii+lXi+l] 

= rrIi+iA[kLrATP AI-KiK&AMP. PP A’] 
aflfiiA’[k-IATP Ai-KIKziAMP e PP A]’ 

i= 1,2,. . . , n. 

(18) 

The input and output discrimination ratios and the proofreading discrimi- 
nation ratio of a given stage can be related to one another as follows. For 
the first stage: 

(1% 

Where H1 and Bi are proportional to and have the same sign as the exit 
fluxes al and ci in Fig. 1. 

From equations (15), (18) and (19) one can see that 

Bl = (ATP - K,AMP . PP) - ATP(A - k-rAi)/A (20) 

so that equation (15) can be rewritten 

[(ATP-K,AMP. PP)-Bi] 
I1 = afl[(ATP-K,AMP. PP)-B;]’ (21) 

One can solve equation (19) for B’1, substitute this value into equation 
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(21), and rearrange the resulting expression to give 

Bi = (ATP-K,AMP. PP) (22) 

In a similar fashion, one can obtain the corresponding relationship for 
the ith stage. From equation (18) 

pi = ~ 
UflfziBi’ 

i = 2,3, . . . , n (23) 

where 

Bi = (k-iATPAi -KrKziAMP . PPA)/A, i=2,3 ,...,n. (24) 

Again, Bi is proportional to the exit flux Ui, Equation (16) then can be 
rewritten as 

I, = gflfzi-1 (Bi--l-Kzi-lBi) 
I 

(Bi-1 -K;i-IBI)’ 
i = 2,3, . . . , n. (25) 

rl 

Again, one can solve equation (23) for BI, substitute this value into equation 
(25), and rearrange the resulting expression to give 

Bi = Bi-1 (26) 

and thus 

The output discrimination ratio from the nth stage, which was given in 
equation (17), also can be rewritten by using the relationships in equations 
(23) and (24): 

I 
rflfin+l {&+D -~/(~K,)IKIKz,AMP.PP} n-cl =- 

rl {BL +[l -p’/(s’K:)]K:K&,AMP. PP)’ w3) 

Again, one can solve equation (23) for BL, substitute this value into equation 
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(28) and rearrange the resulting expression to give 

165 

B, = 
K~Ks . . . Kz,-1 

where o-L may be considered the (limiting) output discrimination ratio at 
equilibrium. 

Finally, equating the expressions for B, in equations (27) and (29) yields 
the constraint relation H = 0, where 

*=[l-~l[l-~~d[l-~~~]-~ (30) 
[ l-f’5p 

1 I [ rl12 “’ 
1 _ f2nL 

r2*- ,I”+, 

p 
n 1 

and 

w= K, AMP . PP 
ATP - Ka AMP. PP 

A-l)-2(-&-l)]. (31) 
flLr2n+1 

W contains all the boundary conditions and is fixed by the environment 
and the nature of the reactants, except for the output discrimination ratio 
I,,+r and the ratio of rate constants r2n+l. 

A similar relationship has been developed independently using different 
methods by Ehrenberg 8c Blomberg (1980). 

5. Optimization: General Considerations 

The minimization of cost is to be achieved subject to the specific constraint 
that H = 0. This can be obtained by finding appropriate values of 1, and 
Pi and of the r and f ratios. A number of different methods can be used 
to find stationary states of C, in the region of allowable parameter values, 
but optima also may exist on the boundaries of this region, particularly 
with regard to the r and f ratios. For our purposes the Lagrange method 
is appropriate. Thus, we seek values for Ii and P, that will minimize the 
function 

T=C,,i-AH, (32) 

where A is the conventional Lagrange multiplier. The stationary states are 
given by the solutions of the following equations: 

aT/aIi = 0, aTlaP, =0 and H =O. (33) 
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These solutions are in general a function of the r and f ratios. By choosing 
boundary values for these ratios one can obtain the minimum cost. 

The first of equations (33), which can be written 

and 

( 
IiPj Ij-IPi- --~ 

aT (C,+l) li+1 1i 1 -- 
el,- Ii 

( 
Ii-lpi-1 
--l@l) 

AW ( 
f2i IiPi fZi-2 Ii-lpi-1 - --- ___ 

+li 

hi-t Iii+1 rzi-3 Ii > 

1 -f2i-2 Ii-lpi-1 1 _ f2i &Pi =O 

( 

i = 2,3,. . . , n 
-~ 

I( 
-- 

hi-3 Ii b-1 4+1 > 

(35) 

indicate that the general or unconstrained optimal distribution of proofread- 
ing effort (equation (5)) can only be achieved if 

f2i/r2i-1 =f2i-2/r2i-3 for all i. (36) 

The second of equations (33) can be written 

aT (C + 1) ($-‘) 
aP,=-l) I.Pi 

nw($i 2-k) 

(&-I)tjl-E)(l--$ yj=O 

i = 1,2, . . . , n. (37) 

These 2n equations, together with the constraint H = 0, provide 2n + 1 
relations among the 2n + 1 variables (Ii, P, and A). Although the simul- 
taneous solution of these equations is not obvious, straightforward iterative 
methods can be used successfully to obtain solutions. 

In the following sections we shall assume that (T = 1 and rr = In+l, i.e. 
that the environment maintains equal substrate concentrations and removes 
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products non-selectively?. The selectivity under these conditions is due to 
the system alone. Furthermore, in the cases of interest the substrate and 
product molecules being distinguished are closely related so that LA 1, i.e. 
*KS = KS,. More detailed treatments of the optimization procedure will be 
given for appropriate cases in sections 6 and 7. 

6. Optimization under Permissive Conditions 

As we have discussed elsewhere (Freter & Savageau, 1980), the specific 
constraints imposed by a given system may prevent the general or uncon- 
strained optimum from being reached. This can occur if the specific con- 
straints (1) prevent the unconstrained optimum distribution of proofreading 
effort from being established, (2) prevent the P values from achieving the 
same maximum value, or (3) interfere with the optimization by a combina- 
tion of these two limitations. 

There are several ways that one may view the variation of kinetic design 
for an enzyme. These different perspectives generally reflect a choice made 
on the basis of computational ease or conceptual emphasis and have little 
if anything to do with the manner in which a specific design may be achieved 
in nature. In this section we will consider two examples that illustrate this 
point. 

First, let us consider the situation in which the proofreading and initial 
discrimination ratios have fixed values but the r and f ratios may be varied. 
The optimal distribution of proofreading effort can be obtained by selecting 
the optimum values for 1, subject to the specific constraint that H = 0. 
From equation (30) one can see that varying li directly with r2im1 and 
inversely with rzid3 will leave H unchanged. Therefore, one can vary the 
1; in this manner until 

This minimizes cost. 
Ij =JIi-*Ii+lPt-l/Pi. (38) 

In some cases, the allowable range of the ratios rzi-1 may prevent the 
unconstrained optimum from being reached. These cases will be considered 
further in section 7. 

Now let us consider the variation in enzyme design from another perspec- 
tive; na.mely, the situation in which the r and f ratios are fixed and the P 
and I values are varied. 

t If p and p’ are removed non-selectively from the common terminal pool, then the ratio 
of their rates of removal will be proportional to the ratio of their concentrations. In steady 
state these concentrations cannot be changing with time and therefore the input rate and the 
removal rate must be identical for each product. Thus, ?T = p/p’ = Z,,+r regardless of the 
removal mechanism. In particular, the reactions removing product need not be first order. 
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It can be shown that A is always positivet. Similarly, if ATP is sufficiently 
greater than K,AMP . PP, which is the usual case of interest, it can be 
shown that A-K-iAi, Ai-i-KZ;-rAi, K-is.ATPA,-KIKz,+lp.AMP. 
PPA, all the Bi and the proofreading costs at each stage are non-negative. 
From these results and equations (15-18) we conclude that all of the 
macroscopic parameters I, and P; are non-negative; from equations (20) 
and(25) wesee thatBi r ATP- K,AMP . PPand KzielB, I Biwl. Equations 
(22) and (26) then imply that 

( > l-L!- 
OS Ufl 

( 
l -f2 IlPl I1 

r1 12 > 

(39) 

and 

( 1 -f2i-2Pi-1 

05 f2i-1 > 

( 

1- f2i IiPi Sly 

> 

i = 2,3, . . . , n. (40) 
-- 
r2i-1 li+l 

Furthermore, if m2n+l >IRtl >c~Lr~,,+~, which again is the usual case of 
interest, then equation (29) implies that 

o< l- 
( 

f LP, Cl. 
f 1 2n+l 

(41) 

For H = 0 in equation (30) we see that equations (39) through (41) imply 

OSW<l (42) 

I’ Rewrite A as follows. First, add the elements of the first row to the corresponding elements 
of the second row. Second, add the elements of the new second row to the corresponding 
elements of the third row. Continue in this manner until the nth row has been rewritten. 
These operations leave the value of A unchanged. The resulting determinant has the following 
form: 

+ + - - 0 0 0 0 0 0 . . . . . . 0 0 
+ + + + - - 0 0 0 0 0 0 
-I- -I- + + +. +. .-. .-. 0 0 0 0 

. . . . . . 
‘f ‘f - - 0 0 

+ + + + - - 
+ + + + + + . . . . + + + + + + 

A determinant with this pattern of signs is always positive, as can be shown readily by 
induction (see p. 342 in Savageau, 1976). 
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(43) 

and 

(44) 

For each stage there are two possibilities; either the ratio of factors in 
equations (39) or (40) is a ratio of two positive factors or it is a ratio of 
two negative factors. Only the positive factors lead to a self-consistent 
optimum+. Therefore, maximum limits for I1 and Pi are given by 

II 5 mfl and Pi 5 fztllfz;. (45) 

The least restrictive conditions will be to fix these f ratios at their most 
extreme value so as to maximize the range of I1 and P,. In other words, 

fii+1= PI fzi=llp and fl=p i=1,2,...,n (46) 

and, since L = 1, 

b-1 = p i=l,2 ,...) n+l, (471 

where p is the maximum value for the particular substrates and intermedi- 
ates being considered. Under these conditions equations (4) and (30) can 
be rewritten as 

c, = (I1 + 1)(P1- 1) . . . v?l - 1) 

,,+,+l,(~-l)...(Z-1) 

_ 1 

and 

H= 
(l-$)(l-$)...(l-3) 

(l-2 $)...(l-& 3)- 
- w. 

(48) 

(49) 

+This can be seen by examining the signs of the terms in equations (34) and (37) under 
the condttions in equations (39) through (41) and the condition that all Pi > 1. This latter 
condition is required because an optimum with any Pi < 1 and Ci > 0 would not be a true 
optimum. One could always increase accuracy and decrease the cost of proofreading by 
eliminating the proofreading at such a stage. 
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The apparent cost (Savageau & Freter, 1979~; Freter & Savageau, 1980) 
for the ith stage is 

(Ii+11 pi-l) -1 

cii=(Ii+l+l) I.P. 

( > 
I- 1 
L+l 

(50) 

With Bi ~0 for all i, which implies positive or zero exit fluxes due to 
proofreading at stage i, this cost (and the true cost as well) will be positive 
or zero. The latter condition implies Ii+1 = & and in effect the ith stage is 
eliminated from consideration. Thus, there will be 2” - 1 optimat for 
equations (48) and (49) corresponding to the 2” combinations of zero and 
positive proofreading costs for the n stages. 

Therefore, without loss of generality, we can consider these optima as 
solutions to equations (48) and (49) when II = 1, 2, . . . and every stage has 
a positive cost of proofreading. For this case, equations (34), (35) and (37) 
become 

(cl + 1) 
(?+l) *LV(l-;) 

(Il+l) (~~l)+p(l~~)(l~~ $)=O 
(51) 

(C” + 1) 
Ii 

( IiPi Ii-lpi-1 

> ( 

IjPj Ii-lpi-1 --~ --___ 
> 

( 

Iy* l)[gul) +s ( 1 Ii$-l)(:’ l, ii) = Ii-lpi-1 
:o 

(52) 

(C” + 1) 

(pi-l)(~-l)+~2(l-~~~-~) =O. 
(53) 

If IiPi/li+l# Ii-lpi-l/Ii for any i then equations (52) and (53) together 
imply that Ii-1 = Ii+l. This is impossible under the present conditions 
because Ii-1 # Ii and Ii # Ii+l, and therefore either Ii > Ii+1 or I,-1 > I,. In 
general, the condition Ii > Ii+1 implies that either B; < 0 or Pi < 1, both of 
which are forbidden under the conditions of our analysis. 

+ The optimum corresponding to the condition I, = I2 = = Zn+I, which would have zero 
cost, is forbidden under the conditions we are considering here because H =0 implies 
[l -(Z,+I/u~P,] = W. This last condition implies that f,+I cap, but we already have stated 
that I,,,, > CP (sentence preceding equations (41)). 
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Thus, under the present conditions, the only optimum occurs when 

and from equations (53), this condition implies 

Pi = Pi-r = P for all i. (55) 

Solving the recursive relations in equations (54) yields 

Ii/Ii+* = (Il/~n+l)““* (56) 

By combining equations (51) and the first of equations (53) with equations 
(55) and (56) we obtain a quadratic function in P 

[~(l+~)-(l--j)](+JnP’-[l+(+-)l’“][~b+l~] P 

+I1 
I1 

K > 
1-; +p(1,+1) 1 =o. (57) 

This equation has one positive solution for P when the coefficient of the 
P* term is negative and two positive solutions when this coefficient is 
positive. However, in the latter case the larger value of P is forbidden 
because it exceeds the allowable range for this parameter. The relevant 
solution in either case is 

P=(-B-JB2-4AC)/2A (58) 

where A, B, and C are the coefficients of the polynomial in equation (57). 
Finally, inserting this value of P (as a function of II) into equation (49) 

and setting H = 0 gives an equation only in Ii. Solving for the appropriate 
value of Ii and back substituting into the other equations determines the 
optimum with minimum cost. 

The solutions in this section correspond to the optimum when the specific 
constraint is least restrictive. In each case the optimum occurs when the 
proofreading effort has the distribution of the unconstrained optimum. 
Now let us examine situations in which the specific constraint is more 
restrictive. 

7. Optimization under Restrictive Conditions 

Return now to the optimization described first in section 6. If It and P 
values are at their maximum and fixed, the unconstrained optimal distribu- 
tion of proofreading effort yields the minimum cost. However, in adjusting 



172 M. A. SAVAGEAU AND D. S. LAPOINTE 

the li to achieve this optimum it is necessary that the corresponding ratios 
rzi-1 and ~-3 have a sufficiently wide range of allowable variation. For 
example, if 1, is below its optimum value and rzt.., is below its maximum 
value, they can both be increased (and r2r-3 decreased) to lower cost, while 
maintaining H = 0. However, if rzi-1 reaches its maximum value before I, 
reaches its optimum value, then the unconstrained optimum distribution 
of proofreading effort is not obtained and the corresponding cost will be 
higher. This is illustrated in Fig. 3, where the increase in cost is associated 
with progressively lower maximum values for the appropriate r ratio. This 
example illustrates how the specific constraints may prevent the general 
or unconstrained minimum from being reached because the constraint does 
not permit the optimal distribution of proofreading effort. 

o-5 
1 I I 1 

500 1000 1500 2000 ,2: IO 

FIG. 3. Optimization with restrictions upon the allowable range of values for rz,-i and 
rz,-s. Underconditionsin which Ii, I,,+l, and the Pi are fixed, the minimum cost of proofreading 
is achieved by varying the odd r ratios and the Z, to achieve the optimal distribution of 
proofreading effort. This is the point marked a. When the maximum value of rzi-l or rzi-3 
is restricted- the minimum cost- of proofreading increases. In this example the particular 
uarameter values at the oermissive ootimum are: K-AMP. PP/ATP = lo-“, Z&s/u = 10-s. 
n =2, PI = P2=310,Z1 =‘16,Z,=903,Z,=50,000, r;=r3=r5=j, =f3=fs =2b, r;=r4=f2= 
f4=0,05. For the restrictive optima, all parameters are identical except for 11, rs and Z,. 
They become rl = 20q r3 = 20/a, and Z2 = 903/a, where a is a factor indicating the degree 
to which the maximum value of ri(a < 1) or rs(a > 1) is restricted. Cost is measured in moles 
ATP for proofreading per mole of product formed. See text for further discussion. 

Now consider the optimization from the alternative perspective, that of 
fixed r and f  ratios. In this case, the I and P values are adjusted to give 
minimum cost. As we saw in the previous section, this involves the usual 
Lagrange approach to obtaining stationary states within the allowable range 
of values for the I and P variables. However, there also may be optima 
corresponding to solutions on the boundary of this allowable range. For 
example, let us consider a restriction on the maximum value of Pi. One 
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maximum value for Pi is given in equation (45). However, the constellation 
of k values for the specific mechanism, equation (18), may determine 
another maximum value for Pi that is lower than that given in equation 
(45). If the lower maximum is less than the value of Pi previously required 
to achieve the optimum, then a new optimum with higher cost will be 
achieved on the boundary. This is shown in Fig. 4~. As long as the maximum 
P value is less than fzi+l/fzi, but greater than the P value that gives lowest 
cost under permissive conditions, the same optimum is achieved. As the 
maximum value of P becomes progressively lower, the cost corresponding 
to optimization under the restrictive condition increases. This example 
shows how specific constraints can prevent the unconstrained optimum 
from being reached because the P values are forbidden to have the same 
maximum value. 

FIG. 4. Optimization with restrictions upon the maximum value of Pi and Zi under conditions 
in which the r and f  ratios are fixed. Curve a: if the maximum value of Pi is fzi+Jfzi and 
the system is optimized under permissive conditions an optimum value of Pp” (less than 
fzi+Jfzii is determined. If  the maximum value of Pi is greater than this optimum value but 
less than fzi+l/fzi an identical optimum is obtained. However, if the maximum value of Pi is 
less than P?“, then the cost of proofreading increases. For these restricted optima the value 
of Z, will increase so as to maintain the unrestricted optimal distribution of proofreading 
effort, i.e. Z, will continue to satisfy the relationship Zi = Z~--lZi+lPi-l/Pi. Curve b: if in 

J 

addition to the restriction on the maximum value of Pi there is a restriction on the maximum 
value of Z, that prevents it from re-establishing the above relationship, then the cost of 
proofreading increases at a greater rate. For these examples the parameter values at the 
permissive optima are: K,AMP PP/ATP = lo-“, Kg/p = lo-‘, n = 2, PI = Pz = 1844, I, = 
43,zz = 1470,zj = 50,000, r1= rx = rs =fi =A =fs =50, rz = r,, = fi = f., = 0.02. For the restric- 
tive optima in a PI, Z, and Z, vary according to the maximum value of P2 and Z, = JZ,Z,P,/P,; 
in b PI and Z, vary according to the maximum values of P2 and 12 and Z~#dZIZ~PI/P,. 
Cost is measured in moles ATP for proofreading per mole of product formed. 
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In this last example, the values of the 1; at the optimum under restrictive 
conditions are adjusted to provide the optimal distribution of proofreading 
effort. This requires that the other P values change and that the correspond- 
ing intermediate discrimination li increase. Thus, if there is also a restriction 
imposed by the mechanism, equation (16), on the maximum value of I,, 
then the optimum distribution of proofreading effort may be forbidden as 
well. The effect of this double restriction on cost is shown in Fig. 4b. 

A second example illustrating a restriction on P values and a restriction 
on the optimal distribution of proofreading effort is the following. Consider 
a mechanism for which f2i is restricted to a value greater than the other 
fZi ratios. In comparison to the permissive conditions, this restriction implies 
that Pi will have a value lower than the other P, values because Pi is 
proportional to l/fiP The optimal distribution of proofreading effort also 
will be forbidden because f2ilrzi-r #f2i+Jr2i+r for some i. In Fig. 5 the 
costs at the restrictive optima are shown as a function of the ratio fZi. 

_;y ,\‘: (I 
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FIG. 5. Optimization with restrictions upon the allowable range of values for fzi (and rzi) 
under conditions in which the other r and f  ratios are fixed. When fri = 0.02 the usual 
permissive optimum is reached as indicated by the point marked (1. As fii (and rzi) is 
progressively raised and the system reoptimized, the cost of proofreading increases. This 
increase is due to the combined effect of lowering Pi (which is proportional to l/fzi) and 

Jlure establish the unconstrained distribution of proofreading effort (i.e. I. # 
fiZi-rZi+:ii-r/P). For this example the parameter values at the permissive optimum ire 
identical to those listed in the caption of Fig. 4. Cost is measured in moles ATPfor proofreading 
per mole of product formed. See text for further discussion. 

8. Discussion 

The two principal purposes of this paper are (1) to present a general 
matrix method for the derivation of the steady state constraint relations 
that characterize specific proofreading mechanisms and (2) to show the 
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variety of constraints that a specific mechanism might impose upon the 
optimization. 

Many of the biological systems in which proofreading has been implicated 
are among the most complex enzymatic machinery of the cell, e.g. DNA 
dependent DNA polymerases, DNA dependent RNA polymerases and 
ribosomes. At this time these systems are poorly understood in terms of 
the underlying kinetic mechanisms and it is undoubtedly overly optimistic 
to assume that these mechanisms will turn out to be as simple as the 
“ladder” networks analyzed by most authors. For this reason we have 
found it desirable to develop sufficiently general methods that can be used 
to analyze these systems regardless of the detailed nature of the mechanisms 
that eventually emerge. 

Previously we have derived a general cost-accuracy relationship for 
proofreading systems that can be represented by an abstract branching 
diagram as shown in Fig. 1, but are otherwise mechanism independent 
(Savageau & Freter, 1979~; Freter & Savageau, 1980). In this paper we 
have presented a general matrix method, based upon classical enzyme 
kinetics, for deriving the constraint relation for specific mechanisms. Thus, 
what is general in this paper is the cost-accuracy relationship, equation (4) 
(which is equivalent to the “cost” or “objective” function in conventional 
optimization theory), and the method of deriving the specific constraint 
relation; what is specific is the “ladder” network we have analyzed-with 
specific constraint relation (H = 0) and boundary values for its parameters. 
This specific ladder network, used here only for the purposes of illustrating 
the method, is just one example of the types of proofreading systems that 
can be analyzed by the methods presented here. 

The matrix method of deriving the H constraint has two principal 
advantages. First, it is a straightforward development based upon classical 
enzyme kinetics and is therefore familiar to most investigators. Second, it 
is quite generally applicable to steady state mechanisms whether they 
involve the simple “ladder” structure of the specific mechanism examined 
in this paper or enzymatic mechanisms that involve “bridges” (e.g. 
bimolecular random order mechanisms) or “non-planar” structures (e.g. 
trimolecular random order mechanisms). 

Ehrenberg & Blomberg (1980) have analyzed the ladder network in 
some detail with an approach that involves formulation of an electrical 
analog of the enzymatic mechanism and the use of weli-established methods 
for the series-parallel reduction of the network. Although these methods 
are not well-known among biologists, they were originally developed in 
the 1920’s, particularly by Cauer in Germany, and can be found in most 
elementary texts dealing with network analysis (e.g. see Van Valkenberg, 
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1960). These methods are appropriate for ladder networks, but they cannot 
be used for certain networks such as those involving “bridges” and in 
general those that are “non-planar” (Van Valkenberg, 1960). 

Because our original studies dealt only with the general or unconstrained 
optimization and those of Ehrenberg and Blomberg dealt only with the 
optimization of the ladder network under the least restrictive conditions, 
we have explored several different types of constraints and their effects 
upon the optimization process. The purpose is to show the limitations of 
the perspective from which one views the optimization of enzyme design 
and to show that the specific nature of the assumptions can dramatically 
affect the results that one obtains. 

The primary sequence of amino acids determines the tertiary structure 
and functional properties of an enzyme. The details of the theory that will 
relate changes in the primary sequence, which must be discrete, to changes 
in the tertiary structure and function of an enzyme remain to be revealed. 
These structural changes in general affect a number of the “elementary” 
rate constants, k’s, used to define its mechanism. Although in most cases 
the k’s are undoubtedly dependent parameters, the real constraints among 
them are unknown. For conceptual convenience one often treats these k’s 
as independent. From this perspective, however, one can equally well 
consider ratios of k’s, or other configurations of the k’s that might make 
physiological sense, as the independent parameters. (For a discussion of 
an analogous situation, see pp. 157-159 in Savageau, 1976.) 

We have discussed elsewhere how various molecular design features 
affect the physiological performance of proofreading systems (Savageau & 
Freter, 1979a; Freter & Savageau, 1980). We have also examined the 
relationship between proofreading systems and their “environment” (which 
includes the remainder of the cell) and made the following conjecture 
concerning the evolution of accuracy and proofreading cost: the cost of 
proofreading will decrease until the energy saved by an additional decre- 
ment in proofreading is just equal to the increment in energy waste resulting 
from the concomitant increase in net error (Savageau & Freter, 19796). 
Experimental data concerning proofreading costs (Hopfield et al., 1976; 
Mulvey & Fersht, 1977) and accuracy (Edelmann & Gallant, 1977) were 
used to test this conjecture and the results show remarkable agreement. 

These considerations are important because ultimately it is the physio- 
logical performance of the enzyme within the cell that determines whether 
or not a given kinetic design will have selective value and flourish. For this 
reason we have attempted to express the behavior of the enzyme in terms 
of macroscopic or physiological variables insofar as possible. We have done 

*this by converting a microscopic description involving k’s into a macroscopic 
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description involving r’s, ffs, I’s and Pk. We have also illustrated the effects 
of a variety of constraints upon the magnitudes of these parameters. Some 
constraints relate to important ratios of elementary rate constants (T’S and 
f’s), others relate to important functions of the elementary rate constants 
(I‘s and P’s). In each instance, optimization under the more restrictive 
conditions leads to a cost of proofreading that is greater than that found 
under the less restrictive conditions. 

The important point here is that in no case is the general cost-accuracy 
relation changed or violated; what determines the different costs are the 
specific conditions or constraints under which the optimization is performed. 
We have explored a number of these specific constraints to show that the 
degree to which the cost of proofreading approaches the general or uncon- 
strained minimum depends upon the severity of the constraints imposed. 

This work was supported in part by a grant to M.A.S. from the National Science 
Foundation. D.S.L. were supported in part by an NIH Postdoctoral Training Grant 
(5 T32 GM 07 123 07) to the University of Michigan. 
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