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INTRODUCTION 

In an earlier paper @mouse, 1980), I described an extension of the 
classical mode1 of chemostat dynamics (Monod, 1949), which extension 
allows one to deal with competion for multiple limiting substrates. The object 
of the present paper is similarly to extend a simple chemostat mode1 of 
predation (Tsuchiya et al., 1972) to the case of multiple predators and 
multiple prey, both. underpinned by multiple limiting substrates. I shall also 
extend the model to multiple trophic layers, and shall indicate the changes 
necessary to deal with trophic-layer “leap-frogging.” In keeping with the 
strategy of the earlier paper, I shall translate the input parameters of the 
continuous flow chemostat system into comparable parameters of a modified 
predation analogue of the sort described by Schoener (1973, 1974). This 
latter type of description, basically an extension of the classic Lotka 
(1925)-Volterra (1926) predation model, is more familiar to the population 
biologist. The present treatment may be viewed as a particularization of a 
more general formulation by Levin et al., (1977), who did not specify the 
manner in which multiple substrates and multiple prey were to be utilized. It 
is an alternative to models proposed by Jost et al., (1973), who deal with a 
different sort of multiple-substrate utilization. There are three questions of 
primary interest: (1) How do the parameters of the modified predation mode1 
relate to those of the chemostat system? (2) What are the parametric 
conditions for the existence and stability of various possible steady states, 
and how do these translate into comparable statements about the chemostat 
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128 PETER E. SMOUSE 

system? (3) What may one say about the relative numbers of genotypes 
(species) maintained in the various trophic layers at equilibrium? I shall 
attempt to answer each of these questions in turn. 

MULTIPLE SUBSTRATES AND PREY 

A brief recap of the multiple-substrates, multiple-genotypes model of the 
earlier paper (Smouse, 1980) will facilitate later developments. Consider a 
series of (prey) genotypes (G,: i= l,..., Z), whose respective masses in the 
culture vessel are denoted by (Mi: i = I,..., Z). These genotypes subsist on and 
compete for a set of limiting substrates (Sj: j = Z + l,..., .Z), any combination 
of which is limiting for the growth of any of the Gi. These substrates are 
thus alternatives, e.g., different carbon sources, different nitrogen sources, 
etc.; all other substrates are assumed to be present in considerable excess, 
and are ignored. The reservoir concentrations of these limiting substrates 
(determined by the investigator) are denoted by (Rj: j = Z + l,..., J), while the 
culture vessel concentrations (variable) are given by (Cj: j = Z + l,..., J). The 
convention of sequentially numbering genotypes and substrates will avoid 
confusion below. 

The dynamics of the Z genotypic components and the (J - Z) substrate 
components are described by Smouse (1980) as 

&i=C (pij-YuD)Mi=Chij=C 
i 

j ($$f-D)Mi 

= (x S,c,-O) @;‘iiy i = l,..., I, 
j 

Cj = (Rj - Cj)D - C PijlijMiv j=z+ l,...,J. 
i 

The term pij is the instantaneous growth rate of Gi on Sj, and Yij is the 
proportion of the total growth of Gi which may be attributed to Sj ; clearly, 
xi yi, = 1. The parameter V, is the corresponding maximum achievable 
growth rate; K, is the “half-maximum ” substrate concentration, i.e., that Cj 
such that pij = Vij/2; 8, = (V, - D)/Kij is a convenient transform, perhaps 
best viewed as a standardized growth measure. The parameter ;1, measures 
the number of units of Sj required to produce one unit of G,, an inverse 
measure of conversion efficiency. The term Qi = [ 1 + z K,;‘C,] changes 
with the state of the system, but conveniently cancels from much of what 
follows. The parameter D is the volumetric dilution rate of the chemostat 
system, and is under experimental control. 
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In addition to (l), a set of “state” equations may also be described. These 
take the form 

Cl + C Aij~Qtj 1 [ = Rj - Cj - C TijMi D z 0, 
i I 1 j=z+ l,...,J, (2) 

where Zij = &y,. Equations (2) describe the residual amounts of substrate 
in the culture vessel, measured either directly or in terms of biomass 
equivalents. If initially the M, - 0 and the Cj - Rj, Eqs. (2) begin and 
remain nearly zero. This is the usual case for chemostat cultures 
(Waldon, 1975). Substitution of (2) into (1) yields the approximate Lotka 
(1925)-Volterra (1926) form 

nii = a, - ~&,vMi, #;‘Mi, 
i ’ I 

a,= 1 OijRj-D 
i 

), 
(3) 

i, i’ = l,..., I. 

The approximation arises from the fact that the $, are not constants. The 
conditions for the existence of the various steady states may be described in 
terms of the usual Lotka-Volterra conditions on the a- and P-parameters. 
Stability conditions also involve the #,-measures (cf. Strobeck, 1973). 

A detailed exposition of this model may be found in the earlier paper 
(Smouse, 1980), but one feature is particularly worth mentioning here. The 
matrix B of /?-coefficients is crucial to these existence and stability 
arguments. This matrix B may be partitioned into (.Z - Z) separate matrices 
Bj, one for each substrate; the matrix B, is defined by 

1 . . . 1 
Bj = diag(eij} [ 1 : i diag{Zij}, 

1 . . . 1 
(4) 

and is of unit rank only. If we adopt the conventions that any two substrates 
perceived identically by the genotypes are the same and that any two 
genotypes having identical perceptions of the substrates are the same, then 
the matrix B is of rank H = min(Z, .Z - I), although of order I. A minimal 
condition for the existence of an Z-genotype mix is that the B matrix be of 
full rank (Strobeck, 1973). Thus, we must have Z < H for all Z genotypes to 
persist; this is a necessary, but not sufficient condition. One cannot maintain 
more genotypes than substrates, given that the population is limited by these 
substrates. 
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SIMPLE PREDATION 

One predator, one prey, one substrate. It is convenient to begin with the 
simple model of Tsuchiya et al., (1972). Consider a single predator (G,), 
whose limiting substrate is the single prey (G,). This latter is assumed to be 
dependent on a single growth limiting substrate (S,). A schematic is 
provided in Fig. la. In the present notation, the dynamic and state equations 
are 

nil = (p12 - D)M, = Vl2M2 --D M,=(Q%fz-D)~;‘M1, 
K1261 I 

where 4, = [ 1 + K;21M,], B,, = (V,z - D)/K12 and & = [ 1 + K;3’C,]. The 
definitions of all the other terms are obvious. Substitution of C, from the 
state equation into the &f, equation (5) yields a modified predation model 

b 

FIG. 1. Simple predation schematics: (a)M, = mass of the predator, M, = mass of the 
prey, C, = concentration of the single limiting substrate; (b)M, and M, as in (a), C, and 
C, = concentration of alternate limiting substrates. 



CHEMOSTAT PREDATION MODELS 131 

(cf. Canale, 1969, 1970; Schoener, 1973, 1974). In the present notation, this 
model takes the form 

fi, = L-1 + P&f21 MI 3 
a2 = ia* -P*,M, -P&f21 M*, 

with the a- and P-coefficients given by 

(6) 

a,=D, V23R3 a2=----D, 
K2342 

a,,=+ B,, = L(b,, -I- P22). 
12 I 

Two features are of immediate interest. First, the self-damping term for the 
prey (-Pz2Mi) is not present in the classical predation model (Gause, 1934), 
but is intrinsic in this situation, since the prey is itself utilizing an 
exhaustable resource (S,). Second, the model is not really a quadratic 
differential system, since the a- and P-coefficients depend on C, and M,, 
which are themselves variable. It is nevertheless convenient to write the 
model in this form. 

One predator, one prey, multiple substrates. The first generalization of 
the model is to allow for multiple substrates (Sj: j = 3,..., J) underpinning the 
prey organism. A schematic for two substrates is presented in Figure lb. In 
the more general case, the system (5) is replaced by the analogous set 

ll;I, = (p12 - D)M, = V,2M2 
p-D M,=(6,2M2-D)qh;1M,, 

K1291 1 
1 )I j (8) 

Cj = (Rj - Cj)D -/L2jA2jM2 3 j = 3,..., J, 

ldj f A2j(nj2j + Y2jk12niI>l 

= [Rj-Cj-~2j(M2tL,2M,)]D~0, j=3 ,..., J, 

where $i = [ 1 + KF~~M~] and d2 = [ 1 + cj Ks’Cj]. We are led again to the 
predator-prey model (6), but now with a- and P-coefficients defined by 

a,=D, V2jRj a,=V-- 
7 K2j42 

D, 

(9) 

P2l = n,2m2 + P22). 
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The essence of the model is contained in the criteria for existence and 
stability of the various steady-state solutions to (6). Local stability may be 
evaluated in the usual Liapunov fashion (Canale, 1969, 1970). The criteria 
for existence and stability of the three potential steady states are listed below. 
[The stability conditions are obtained as illustrated in the Appendix.] 

Case I. 

ti1=o=fi2, cj = Rj, j = 3,..., J. 

Exists is: Always. 

Stable if: a, = c 0,R, - D) < 0 (Washout conditions). 
i 

Case II. 

it&=o, a =a,= (C&Rj-D) 
2 P22 y& e,,r,, ’ T eJJ= D- 

Exists if: a2 = c B,R, - D > 0 (Growth conditions). 
J 

Stable if: 0 < <C. QRj - D> 
c, B2jT,j = 2 < D&z’ = 2 - 

Case III. 

fi = azP12-ad322 
1 

P12PZL 

=A,’ c “J*-e’ - DB;2’ , 
J U 1 

fizLa,= P 12 

cy; =Dt’,’ 7$=0,,7 RjA;j” . 

Exists if: 2 = Ccj e2,Rj - D) c, e2jr2j > 0 < 00,’ = ff I 

Stable if: z = (CJ e2jRj - D, c, e2jr2j > De,’ = z > 0. 

With a single substrate, the subscript (j) takes only the value “3,” and one 
may drop the summations over (j) in the above. 

The three solution sets are mutually exclusive as regards stability. Under 
washout conditions, the null solution (Case I) is stable; under growth 
conditions, either Case II or Case III is stable. Unless the prey are more 
dense in the presence of the predator than in its absence, a highly unlikely 
situation, Case III is stable. Limit cycles are not inherent in this model, due 
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to the self-damping term (-/Z&M:). The Kolmogorov Theorem (cf. May, 
1973) guarantees the existence of either a stable equilibrium or a stable limit 
cycle under certain parametric conditions, but these conditions are only 
satisfied by Case III. (See also Canale 1969, 1970.) 

One predator, multiple prey, multiple substrates. The next generalization 
is the multiple prey case. Denote the predator by (G,), the several prey by 
(Gi: i = 2 ,..., I), and the substrates by (Sj: j = I + l,..., J). A schematic for 
two prey and two substrates is presented as Figure 2. In keeping with the 
analogous competition models (Smouse, 1980)), it is convenient to view 
these prey as alternate substrates for the predator. The system is described 
by 

i 

A&=C 
ASivLiM 

D + - 

j Ku41 ’ )I Mi=CLfij, i = 2,..., I, 
j 

cj = (R/ - Cj)D - )J P,jlijMiv j=I+ l,...,J, 
i (10) 

[ 
Cj + x lij(tiij + YijA]ik]i) 

i I 

Rj-Cj-CTij(Mi+T,iM,) DzO, 
i 1 j = I + l,..., J. 

Here 4, = [ 1 + xi K,‘Mi] and pi = [l + CjK,‘Cj]. All the other 
parameters have obvious definitions. It should come as no surprise that we 
are led directly to the modified predation model 

nil = -a, + CPli”* Ml7 
[ i I 

Ai= [ ai-pi,M*-CPii!MiC Mi, 
i’ I 

(11) 
i, i’ = 2 ,..., I, 

with the a- and /I-coefficients defined by 

a,=D, 

i = 2,..., I, 
(12) 

pi, =I,iPl,+Cr,i,j3ii,, i, i’= 2 ,..., I. 
i ’ 
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FIG. 2. One predator, two prey, two substrate model: M, = mass of the predator, M, and 
M, = masses of the two prey, C, and C, = concentrations of the alternate limiting substrates. 

There are (2’ - 1) solution sets for (12); we cannot have persistence of 
only the predator. An exhaustive treatment of all of these possibilities is 
beyond the scope of this paper. [The reader interested in the general features 
of local and global stability analysis is referred to Gilpin (1974) and Goh 
(1977).] The seven solution sets of the one predator, two prey model should 
convey the general flavor of the situation, however, and are therefore 
presented below. 

Case I. 

I);li=O, i = l,..., 3, cj = R,, j = 4,..., J. 

Exists if: Always. 

Stable if: 

Case II. 

A?, =o, 

Exists if: 

Stable if: 

Case III. 

A, =o, 

(p32j~i-D) = a2 ( 0 > a3 = c 8,,Rj -D (Washout). 
i j 

a =a,= Cj’,jRj-D 
2 P22 Cj '2jr2j ' 

ni,=O, 1: S,~j= D. 
j 

(2: @zjRj - D) = a2 > 0 (Growth). 
i 

Aa2=o, A =CQ= C.e3jRj--D 
3 P33 

C 6,Cj= D. 
Cj 03jr3j ’ j 
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Exists if: 

Case IV. 

A&=0, - 012 P33 - a3 p23 a3 P12 - a2 B32 - 

M2=~22~33-~23~32'o'~22~33-~23~32=M31 

~t12j~j=D=~~3j~j. 
i j 

Exists if: 
( 
xeeuRj-D 

) 
=a,>O<a,= 

( 
xeURj-D . 

j i ) 

Stableif: ~>~>O<~<~, P22b33 >P23P32, 
23 33 22 32 

A, 8,' + A, eL21 < De;21e;31. 

Case V. 

ni = a2 PI2 - aI P22 1 
I 

Pl2P2, =z 

A, = a, = DO,‘, 
P 12 

Exists if: x 8,,R, - D 
j 

= a2 > 0 < De,’ = f!-. 

a2PJl -a3P2, xj’iaRj -D 
StableiS: p22p3, -p2, p32 > z=DK2’ ( c,e,r2j =z. 

[Note that 0, = (J + KL2’fi2) = V,,/(V,2 - D).] 

Case VI. 

ni = a3P13-alP33 1 
I 

P13P3, =z 
ii12=o, 

A, = a, = De,‘, 
P 13 

Exists if: =a,>OcDfl;l=f$. 
13 
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c. B,jRj - D 
c. e,jr,j 

[Note that 4, = (1 +K;31A?,) = V,,/(V,, -D).] 

Case VII. 

a2 = b& Pj3 - P13 tad -Ma3 Pzl - a2 P3d1 det B-‘, 
fi3 = blCa22 A1 -P2, P3A -/Ma2 A1 - a3 Pdl det B-‘, 

detB = [P12(P21 Pg3 -Pdh,) +P13(Pz2P31 -P21P32)1~ 
Cj = Rj - r&Q, + r12 A,) - r,j(fi, + I’1 3 Al), j = 4,..., J. 

Exists if: I@, , ii?, , h?f, > 0. 

> 0 < detB . filfiZti’,. 

It can be shown that if Case VII exists and is stable, Cases IV, V and VI 
are unstable. If Case VII exists, but is unstable, then Cases IV, V and VI are 
stable. Cases II and V cannot both be stable, nor can Cases III and VI. 
Moreover, Case VI cannot be jointly stable with Cases II or III. Case I is 
stable only under generalized washout conditions. 

It is instructive to examine these various solution sets when only a single 
substrate (S,) is present. Cases I-III itte possible, as are Cases V and VI. 
Case IV cannot exist, however, because 

(/3** PI3 - /& &*) = 2 . e - e . s = 0. (13) 

Note, however, that even if (13) is zero, the full (3 X 3) matrix B is of 
rank 3, because it may be partitioned as two separate matrices B = B, + Bt. 
The matrix B, is given by 

and is of rank 2, while the matrix Bz is given by 

0 I 0 0 
_----__-- l----- 

r12h2 + r13 Pz3 I A2 h3 
I 

’ 
(15) 

wb2 +r,A I A2 Pj3 
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and is of the same rank as B,, i.e., unity. Thus, Case VII may be stable, even 
though Case IV is not. The presence of a predator may stabilize an otherwise 
unstable pair of prey. 

In the more general case of one predator, multiple prey, multiple 
substrates, the matrix B is of rank (.Z - Z + 2), since B = B I + cj Bj*, with B, 
of rank 2 and each of the (J - Z) matrices BT of rank 1. Thus, if NJ = (J - I) 
is the number of substrates, the maximum number of prey is N, = (I - 1) < 
NJ + 1, I shall generalize this statement in the next section. 

Multiple predators, multiple prey, multiple substrates. Now, consider a 
set of predators (G,: h = I,..., H), a set of prey (Gi: i = H + l,..., Z), and a set 
of substrates (Sj: j = Z + l,..., .Z). The system is described by 

i = H + l,..., I, 

dj = (Rj - Cj)D - x PijJ+ijMi, j = z + l,..., J. 
I (16) 

= Rj - Cj - C Z-g 
i ( 

M, + 1 rhi Mh )I D z 0, j=z+ l,...,.Z. 
h 

Here #h = [ 1 + xi Ki’M,] and di = [ 1 + xi Kij ‘Cj]. We are led directly to 
the generalized predator-prey system 

nib = -ah + c PhiMi Mh, 
[ 

h = l,..., H, 
I 1 

Mi= [ai-$BihMh-F~ii,Mi,]Mi, 
(17) 

i=H+ l,***,Z* 

For the present model, the a- and &coefficients take the obvious forms 

ah = D, phi=*9 
hr h 

p,,p& 
IJ I 

ai=C 
V..R. -J”-D, 

j KijQi 
Pih = Izhi Phi + c rhir Pii’ 

i ’ 

h = l,..., H, i, i’ = H + 1 ,..., I, j=z+ l,...,J. 

(18) 

A complete outcomes analysis is much beyond the purview of this paper, 
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but two points are worth a mention in passing. Let the numbers of predators, 
prey and substrates at equilibrium be denoted by NH, N, and NJ, respec- 
tively. (1) The number of supportable prey is not more than the sum of the 
number of resources and the number of supportable predators, i.e., N, < 
NJ + NH. (2) The number of supportable predators is no greater than the 
number of supportable prey, i.e., NH < N1. Thus, NH < N, < NJ + NH or 0 ,< 
N, - NH < NJ. The first contention is easily established, since the matrix B 
may be partitioned as before, i.e., B = B, + Cj BT. The matrix B, may be 
written as 

where Bhi = {Phi} and Bi, = (1,ij3,i}, and B, is thus of rank R = min(2N,, 
NH + N1). The matrix BJ* takes the form 

where Bj = { VijTi,j/Kij#i} and Bj = {Ci, (r,i, VijTi,j/Kij#i)}. The matrix Bj* 
is clearly of the same rank as Bj, i.e., NJ. Thus, the rank of B is (Nj + 2N,), 
since NH < NI (see below). The total number of supportable genotypes is no 
more than (NJ + 2N,), and since NH of these are predators, it follows that 
N, < NJ + NH. The proof that NH < N, is trivial. The matrix B may now be 
written as B= -_------;----- 

[ 

0 ’ Bhi Bih+Cjfij I LBj 1 (NH) (N,> . (NH) W,) 
The determinant is the sum of many terms, each of which is the product of 
exactly (NH + N1) elements. For a given term, each row and column must be 
represented once and only once. If NH > N,, at least one of the zero elements 
of the (NH x NH) O-matrix must be included in each term of the determinant, 
and the determinant must be zero. We therefore must have NH < N,. Full 
rank of the matrix B is necessary for existence of a complete set of 
components. It is not sufficient. The stability conditions are rather more 
elaborate, and can be obtained in any particular case by recourse to the 
procedures illustrated in the Appendix. 
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FOOD CHAINS AND FOOD WEBS 

The purpose of this section is to indicate very briefly the extensions 
necessary to construct multi-layered food chains and fod webs. An 
exhaustive treatment is unnecessary, because a few examples will illustrate 
the points of interest. 

Multi-layered predation. Consider a set of “super-predators” (G,: f = 
1 ,..., F), which feed on a set of predators (G,: i= H + l,..., I), which feed on 
a set of substrates (S,: j=Z + l,..., J). A schematic for one super-predator, 
one predator, one prey and one substrate is presented in Fig. 3a. Following 
the strategy utilized above, the system may be described by 

Mf M/g = C nihiY 
i 

h 

Mi=Cn;lij, 
i 

V..A.. (22) 
6,=(Rj-Cj)D-~~Mi, 

i KiiQi 

= Rj-Cj--2:ij Mi+Z:Thi Mh+CrfhMf 
i ( 

D~Oo. 
h I f 

Here #f = [ 1 + Ch KG’M~], #h = [ 1 + xi KilMi] and Qi = [ 1 + 21 K,‘Cj]* 
We are led to the three-layered system 

IV&= -cLf+~&,Mh Mf, 
h 1 

kfh = -ah - T phfkff + c PhiMi Mh 7 
i 1 

(23) 

ai-$PifMf-~PihMh-~PiitMi’ Mi3 
h i ’ 1 
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with the a- and /.-coefficients given by 
V..R. 

a*=D=a,, ai = 1 a-D, 

j Kij4i 

Pfh = $3 
fh f 

8,=*, 
fh f 

phi+, 
hi h 

pif = T x rfhrhi’ Pii’? bib = Ahi Phi + 1 rhi’ Pii,, 
I i ’ 

(24) 

Denote the equilibrium numbers of super-predators, predators, prey and 
substrates by NF, NH, N1 and NJ, respectively. Using B-matrix partitions and 
singularity arguments, it can be shown that the existence of an equilibrium 
with all components present requires 

(N,<N,-GN,+N,) or (0 < NH - NF < N,), 

(N,<N,<N,+N,) or @<N,--N,<N.,). 
(25) 

The extension to four or more trophic layers is entirely obvious, as is the 
multi-layered extension of (25). One other point worth noting is that stable 
limit cycles are not inherent in any of these models, because of the self- and 
cross-damping terms within the bottommost (prey) layer. These, in turn, 
depend on the explicit relation between the prey and the renewable resources. 

Facultative predation. The model is very easily modified to allow trophic 
level crossing by one or more organisms. One may construct complicated 
food webs in this fashion. I shall describe here only a pair of simple cases, 
simply to indicate the pattern of the extension. Consider first the one 
predator: one prey case described earlier, but suppose that the predator (G,) 
may bypass the prey (G,) to use the substrates directly. A schematic for the 
single substrate case of “trophic bypass” is presented in Fig. 3b. The system 
is now described by 

Y2j D + ( 

cj = (Rj - C,)D - - v,jlz*jM _ v2ji2jM - 
K,j4l ’ K2j92 2’ 

(26) 

fdj + A2j(“2j + Y2jA12a*2) + Aljtiiljl 
= [R~ - cj - r2j~2 - (r,2r2j + r,j) M,]D z 0. 
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b 

M-C 2 3 

FIG. 3. Trophic layer models: (a) Superpredator model, with M,, M, and M, = masses of 
the superpredator, predator and prey, respectively, and C, = concentration of the limiting 
substrate; (b) Predation model with trophic bypass, with M, and M, = masses of the 
facultative predator and prey, respectively, and C, = concentration of a limiting substrate. 

Note here that 4, = [ 1 + K;2’M,, + xj KG’C,]. One is led to the apparent 
Lotka-Volterra competition model 

M, = [a, -P11M, -PnM21M1, 
M2 = Ia2 -Pz,M, --P*2M*I M*, 

(27) 

where the a- and /I-coefftcients are given by 

a, =r V,jRj --D, \- V2jRj 
7 K,j@, 

--D=q, 
9 K,jQ)z 

/41=x 
vlj(rlj + r12r2j) 7 v2jr2j 

K,j#, ’ +q= P 22) 

i 

Because p12 may be either positive or negative, we really have a mixed 
predation-competition model. The outcomes analysis is more complicated 
than that of either the pure competition model @mouse, 1980) or the simple 
predation model (see above). Sufftce it to say that the predator may persist 
even in the absence of the prey, provided a, > 0 with A, = 0. 

653/20/2-Z 
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Now, consider a two predator, one prey case. Recall that for pure 
predation models, we require NH < N, for the existence of all components 
simultaneously. Suppose, however, that one of the predators (G2) may 
facultatively bypass the prey (G3), and may use the substrate (Cj) layer. The 
altered model is given by 

A& = Vl3M3 -----D M,, 
Kl341 I 

IVY,= w-yzjD]M,+$ [$-I’,DJM* 
23 2 

=A223 +p!i2,, 
i 

Y3j v23A23 M D + ~ 
K23#2 2 

M 
3’ 

cj=(Rj-Cj)D-- - '2jA2jM _ v3jA3jM 

K23#2 ' K3j93 " 

(29) 

[cj + n3j(ni3j + Y3jA13ul + Y3jA23&23) + Iz2jti2jl 

= [Rj- Cj-r3jM3-A13r3jMI - (r23r3j+r2j)M2]DzO* 

Obviously d2 = [ 1 + K&‘M, + xi K5’Cj]. One is led to the model 

u, = I-a, +Pdf3lM,, 

a,-pilMI -xpii,Mi, Mi, I i, i’ = 2, 3. 
(30) 

i ’ 

where the a- and /I-coefficients are given by 

Because pz3 may be either positive or negative, the analysis of steady-states 
for this hybrid model is rather complicated. Although G, may not persist in 
the absence of G,, G, may do so if a2 > 0 with fi, = 0. Morever, both 
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predators may persist with a single prey, and for this case NH > N,. It is 
easily seen how this sort to trophic ‘leap-frogging” may be generalized to 
multi-layered systems. At the cost of rapidly increasing complexity, one may 
model a great variety of trophic structures and food webs. 

DISCUSSION 

The relations (25) relating supportable numers of genotypes (species) in 
different trophic layers have some interesting implications for the evolution 
of ecosystems in the chemostat (or for that matter in nature). Imagine that 
one begins with the array (NF = 0 : NH =0 : N,= 1 : NJ= 1). Since any 
organism is capable of mutating, one might well expect the time sequence 
(0:O:l:l) + (0:i:l:l) --) (0:1:2:1) + (0:2:2:1) + (0:2:3:1) + (1:2:3:1) -+ 
(1:3:3:1)+ (2:3:3:1)+ (2:4:3:1), and so on. When one considers that 
trophic layer crossing is also likely to develop, it would seem that the trophic 
pyramid could (in principle) build on its own complexity. That a certain 
amount of this sort of thing can actually occur in the chemostat is attested 
by the bacteria:phage experiments of Horne (1971) and Chao et al. (1977). 
The phenomenon is real. Moreover, its theoretical justification is not a 
special feature of the models considered here. Levin et al. (1977) come to the 
same conclusion, using a rather more general (and less specific) model than 
that employed here: the result itself would appear to be robust to details of 
the model. Why is it, then, that one normally finds (NF < NH < N, < NJ)? To 
begin with, the statement (25) is rather weak; this claim rests on the non- 
singularity of the B-matrix. Full rank for B is necessary but not sufficient to 
guarantee either the existence or the stability of a particular mixed 
equilibrium. The additional specifications required to guarantee existence and 
stability of complex steady states become ever more restrictive on the 
parameter space as the number of components is increased. Moreover, local 
stability for a particular community (all that is being assessed with the B- 
matrix) does not imply global stability for that same equilibrium (cf. 
Richardson and Smouse, 1975; Goh, 1977). It is not uncommon for such 
models to admit of several locally stable equilibria, most of which will 
involve only small numbers of upper trophic level components. One might 
conjecture that the domains of local attraction for such side-solutions would 
generally be larger than those of more elaborate (and more exquisitely 
balanced) equilibria. In any case, communities must generally evolve from 
the bottom-up, and most communities may never escape the domains of 
attraction for the simpler side-solutions. 

Although not an inherent feature of the models proposed, it is also clear 
that the energetic conversion efficiency between adjacent layers is low, i.e., 
the l-values are quite large. For the upper trophic layers, the available 



144 PETER E.SMOUSE 

energy is minimal, and population sizes will be correspondingly small. Under 
such circumstances, the stability of the whole assemblage is vulnerable to 
stochastic perturbation (cf. Bartlett, 1957; Leslie and Gower, 1958; Goh, 
1976; Chesson, 1978). The periodicities introduced by lag phenomena are 
real features of layered systems (eg. Cunningham, 1954; Wangersky and 
Cunningham, 1957; Luckinbill, 1973; May and Oster, 1976; Wangersky, 
1978), and exacerbate the stochastic instabilities. Considering all of these 
features, it is not surprising that most trophic pyramids are relatively flat. 
One should expect not only that (NF < NH < NI < NJ) but that the 
inequalities will be large under most circumstances. 

Finally, a few words are in order about the utility of translating the more 
information-rich chemostat models into the quadratic Lotka-Volterra 
analogues used here. All too often, the parameters of these latter models are 
simply invoked. It is useful (indeed chastening) to obtain an appreciation of 
just how much information these a- and P-“parameters” actually subsume. 
This comment notwithstanding, it is useful to make the translation. A 
comparison of models (22) or (26), for example, with their analogues (23) 
and (27), should convince the reader that some condensation of information 
is desirable. The numbers of parameters in the full chemostat models are 
simply overwhelming. Except in fairly simple cases, the task of estimating all 
of these parameters is prohibitive, even with so powerful an experimental 
tool as the chemostat. For simple predation (or host-parasite) systems, 
chemostats and chemostat theory of the general sort propounded here have 
already proven their utility (cf. Horne, 1971; Tsuchiya et al., 1972; 
Luckinbill, 1973; Drake and Tsuchiya, 1976, 1977; Chao etal., 1977; 
Levin et al., 1977). It seems probable that this sort of work may be 
profitably (but modestly) extended to multiple substrates and to an 
additional trophic layer or two. For really elaborate communities, however, 
the models will remain purely theoretical tools. It seems clear that for a 
general treatment of complicated systems, we may have to turn to the sort of 
generalized network analysis proposed by Levins (1974) or to linearized 
systems theory. That being the case, we must be prepared to sacrifice 
exquisite detail by means of some “judicious condensation” of information. 
The translation into classic Lotka-Volterra form is just such a condensation. 
The a- and P-parameters are a convenient and useful visualization, but 
should never be taken too literally. 

SUMMARY 

Models are presented for the joint dynamics of predators and prey, main- 
tained in continuous flow chemostat culture. The predators are visualized as 
subsisting on one or more prey organisms, which in turn are visualized as 
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subsisting on one or more substrate resources supplied by the investigator. 
The dynamic equations are translated into an analogous Lotka-Volterra 
predation model, and the criteria for the existence and stability of various 
equilibria are indicated. Denoting the number of different predator organisms 
as NH, the number of different prey organisms by N, and the number of 
different substrates as N,, it is shown that the joint coexistence of all 
components requires 0 <N, - NH < NJ. The model is extended to more 
complex situations by including additional trophic layers and by allowing 
trophic layer “leap-frogging.” The model may always be translated into an 
approximately quadratic differential equation of the Lotka-Volterra type. 
The a- and p-coefficients of these latter are really variables, and become 
quite complex for some of the multi-layered models. 

APPENDIX 

The purpose of this appendix is to illustrate the analysis of stability 
criteria. I shall briefly indicate the strategy for the one predator, one prey, 
one substrate and two predator; one prey, one substrate cases below, 
illustrations which should indicate the general pattern of the other solutions. 

One predator, one prey, one substrate. The text model (5) describing the 
dynamics of M, , M,, and C, , yields the Jacobian 

J,t.,, = -3’nP,* (~23 -D) - Wf, $ . (AlI 
2 

M*$p 
3 

0 -A23p23 
ap,, -D -1&f, - 
ac, 

It is most convenient to extract the characteristic roots of the equivalent 
Jacobian J, = PJ,,P-‘, where the transformation matrix P takes the form 

p= [Ai;, E, 81T 642) 

and the matrix J, takes the form 
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J, = 

(~12 -D) M,$ 
2 

. (A3) 

For Case I (~2, = 0 = A?, , e3 = R j), the eigenequation takes the form 

(-D - w)(,uu,, -D - w)(p,, - D - w) = 0 (-44) 

and local stability requires p12 <D > ,+, with fi, = 0. Now, ,D,, = 0 if 
ni, = 0, and D > ,u,, implies that 

“2 
-= 

P 

(49, -0) < o 

22 e23A23 

WI 

as claimed in the text. Case II (A?, = 0 < fi2, e, < RJ reduces the eigene- 
quation to the form 

(-D-w)(p,,-D-w) p21-D-A23MI+ 
( 

w =o. ) 646) 
3 

For this steady state, @23 -D) = 0, so the third term yields a negative root 
whenever G2 > 0, because ~,B~~/XT~ > 0. If (pi2 -D) < 0, then I$?~ ( Dt?,’ = 
a,/P,,; if i@, > 0, then 8,,R, > D and 

a2 023R3 -D al 
p22= e23A23 < DeL2’ = 8127 647) 

which is the required Liapanov stability condition indicated in the text. For 
Case III (&?, > 0 < A??,, c, < R3), the steady state is stable if D > 0 (which 
it is) and if both roots (w) are negative from 

w=-b&@-=&i, 648) 

where 

GW 
. 
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A bit of manipulation shows that both (a) and (b) are positive (and the roots 
(w) are negative) if the inequality in (A7) is reversed. This is the stability 
condition invoked in the text. 

Two predators, one prey, one substrate. Consider the two-predator, one- 
prey, one-substrate version of text model (16), describing the dynamics of 
M,, M,, M, and C,. The Jacobian of this model is of the form 

Jm = 

where 

- (P,3-D) 0 M ' - %3 
af, 

o 

0 (,uz3-D) k&s 0 
3 

-1213 PI3 -A3 P23 (a) 

0 0 -A34 P34 

(a) = (p,, - D) - Al3 2 - A,, 2, 
3 3 

(d)=-D-r134M3$. 
4 

3 (AlO) 

(All) 

Using a transform matrix P, one may evaluate the eigenvalues of the matrix 
J, = PJ,,P-’ instead. The matrix P takes the form 

1 0 0 0 

A3Y34 A’ &3?34 A1 A34 ‘: 8 1 I . 
The stability conditions for all cases are of the usual Lotka-Volterra sort 

to be derived from text model (17). I shall comment here only on the steady 
state (ti,, A,, fi, > 0, C4 < R4). This particular steady state reduces (AlO) 
to the form 0 0 + 0 

JEoo+' i 1 MC ---+' 

oo-- 

(‘413) 

Every element of det J,, is multiplied by one or more of the zeros in the first 
two rows of (A13); J,, is thus singular, so that the usual Liapanov 
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treatment does not apply. Further investigation indicates that there can be no 
(I@~, A,, a, > 0, e4 < R4) solution to text model (16). This situation is as 
indicated in the text, and follows from the B-matrix singularity arguments. It 
develops that B is singular iff J,, is singular. No more predators may persist 
than prey. 

Other models may be investigated in analogous fashion. As the number of 
components to the system increases, the translation to Lotka-Volterra 
stability conditions becomes more tedious and less useful, but should always 
be possible. 

ACKNOWLEDGMENTS 

I would particularly like to thank Dr. Patricia Mall and Dr. Curtis Strobeck, whose myriad 
suggestions greatly improved the paper. The responsibility for the formulation presented as 
well as for any errors of omission or commission, remains my own. 

REFERENCES 

BARTLETT, M. S. 1957. On theoretical models for competitive and predatory biological 
systems, Biometrika 44, 27-42. 

CANALE, R. P. 1969. Predator-prey relationships in a model for the activated process, 
Biotech. Bioeng. 11, 887-907. 

CANALE, R. P. 1970. An analysis of models describing predator-prey interaction, Biotech. 
Bioeng. 12, 353-378. 

CHAO, L., LEVIN, B. R., AND STEWART, F. M. 1977. A complex community in a simple 
habitat: an experimental study with bacteria and phage, Ecology 58, 369-378. 

CHESSON, P. 1978. Predator-prey theory and variability, Ann. Rev. Ecol. Syst. 9, 323-347. 
CUNNINGHAM, W. J. 1954. A non-linear differential-difference equation of growth, Proc. Nat. 

Acad. Sci. USA 40, 708-713. 
DRAKE, J. F., AND TSUCHIKA, H. M. 1976. Predation on Escherichia coli by Colpoda stein& 

Appl. Em. Microbial. 31, 870-874. 
DRAKE, J. F., AND TSUCHIKA H. M. 1977. Growth kinetics of Colpoda steinii on Escherichia 

coli, Appl. Env. Microbial. 34, 18-22. 
GAUSE, G. F. 1934. “The Struggle for Existence,” Williams & Wilkins, Baltimore. 
GILPIN, M. E. 1974. A Liapunov function for competition communities, J. Theor. Biol. 44, 

3548. 
GOH, B. S. 1976. Nonvulnerability of ecosystems in unpredictable environments, Theor. Pop. 

Biol. 10, 83-95. 
GOH, B. S. 1977. Global stability in manespecies systems, Amer. Natur. 1 II, 135-143. 
HORNE, M. T. 1971. Coevolution of Escherichia coli and bacteriophages in chemostat culture, 

Science 168, 992-993. 
JOST, J. L., DRAKE, J. F., TSUCHIKA, H. M., AND FREDRICKSON, A. G. 1973. Microbial food 

chains and food webs, J. Theor. Biol. 41, 461-484. 
LESLIE, P. H., AND GOWER, J. C. 1958. The properties of a stochastic model for two 

competing species, Biometrika 45, 3 16-330. 



CHEMOSTAT PREDATION MODELS 149 

LEVIN, B. R., STEWART, F. M., AND CHAO, L. 1977. Resource limited growth, competition 
and predation: a model and experimental studies with bacteria and bacteriophage, Amer. 
Natur. 111, 3-24. 

LEVINS, R. 1974. The qualitative analysis of partially specified systems, Ann. N. I’. Acad. Sci. 
231, 123-138. 

LOTKA, A. 1925. “Elements of Physical Biology,” Williams & Wilkins, Baltimore. 
LUCKINBILL, L. S. 1973. Coexistence in laboratory populations of Paramecium aurelia and its 

predator Didinium nasutum, Ecology 54, 1320-1327. 
MAY. R. M. 1973. Limit cycles in predator-prey communities, Science 177, 900-902. 
MAY, R. M., AND OSTER, G. F. 1976. Bifurcations and dynamic complexity in simple 

ecological models, Amer. Natur. 110, 573-579. 
MONOD, J. 1949. The growth of bacterial cultures, Ann. Rev. Microbial. 3, 371-394. 
RICHARDSON, R. H., AND SMOUSE, P. E. 1975. Ecological specialization of Hawaiian 

Drosophila. II. The community matrix, ecological complementation, and phyletic species 
packing, Oecologia 22, 1-13. 

SCHOENER. T. W. 1973. Population growth regulated by intraspecific competition for energy 
or time: Some simple representations, Theor. Pop. Biol. 4, 56-85. 

SCHOENER, T. W. 1974. Competition and the form of habitat shift, Theor. Pop. Biol. 6, 
265-307. 

SMOUSE, P. E. 1980. Mathematical models for continuous culture growth dynamics of mixed 
populations subsisting on a heterogeneous resource base. I. Simple competition, Theor. 
Pop. Biol. 17, 16-36. 

STROBECK, C. 1973. N species competition, Ecology 54, 65Ck654. 
TSUCHIYA, H. M., DRAKE, J. F., JOST, J. L., AND FREDERICKSON, A. G. 1972. Predator-prey 

interactions of Dictyostelium discoides and Escherichia coli in continuous cultures, J. Bact. 
110, 1147-l 153. 

VOLTERRA, V. 1926. “La Lutte Pour La Vie,” Gauthier-Villars, Paris. 
WALDON. M. G. 1975. Competition models, Amer. Natur. 109, 487-489. 
WANGERSKY. P. J. 1978. Lotka-Volterra population models, Ann. Rev. Ecol. Syst. 9, 

189-2 18. 
WANGERSKY, P. J., AND CUNNINGHAM, W. J. 1957. Time lag in prey-predator population 

models, Ecology 38, 136-139. 


