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The development of a spermatozoon (sperm) from a spermatid involves a complex process of dif- 
ferentiation during which a variety of new gene products appear. It has been generally assumed that no 
genetic transcription occurs after meiosis and, if this were so, that all the new sperm proteins would 
have to be transcribed from stored messenger RNA. However, the biochemical evidence suggests that 
there is no abrupt change in the rate of RNA synthesis during meiosis and that qualitative changes in 
RNA synthesis, to the extent that they are known, favor the likelihood of continuing messenger RNA 
synthesis. Experimental analyses of distorted transmission ratios of t-alleles and unbalanced chromo- 
somal states in males also suggest that genes are expressed in haploid nuclei after meiosis. It is prob- 
able that spermatozoa are functionally equivalent in most respects because of intercellular bridges that 
create a continuous cytoplasm between developing spermatozoa, facilitating an exchange of most post- 
meiotic gene products. Plasma membrane proteins which are potential antigens might not be shared 
across the intercellular bridges but the evidence to date for haploid expression of sperm antigens is 
poor. 

INTRODUCTION 

Over the last several decades a number of papers have purported to show haploid ex- 

pression of sperm antigens. If the phenomenon were true, it might provide a way for 

selecting spermatozoa of particular genotypes for breeding purposes, e.g. if H-Y antigen 

was expressed only on Y-bearing sperm, it should be possible to separate X- and Y-bearing 
sperm on this basis. However, these reports have met many objections. In what follows 
we will try to provide a perspective on these objections. By way of introduction, we 
describe the relevant genetic mechanisms. The two chief causes of departures from Men- 

delian genotypic ratios at the time of fertilization are meiotic segregation distortion, i.e. 
the lack of random chromosomal segregation, and gametic selection, i.e. an unequal com- 

petition between gametes which differ in their haploid genome. Gametic selection is most 

simply explained by invoking gene expression after meiosis since this can result in pheno- 
typic differences which could influence gamete function. Non-Mendelian ratios occasion- 

ally occur in a variety of organisms. In plants, where one male pronucleus is activated dur- 
ing pollen formation, the occurrence of distorted transmission ratios is common, e.g. the 
sugary locus in maize (Brink and Burnham, 1927). As would be expected, the haploid 
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pollen tube nucleus is involved in RNA synthesis (Stanley and Linskins, 1974). A well- 
studied example of non-Mendelian segregation is segregation distortion in Drosophila 
(reviewed in Zimmering et al., 1970) but there is no definitive evidence for post-meiotic 
RNA transcription (Kettaneh and Hartl, 1976). There is also one very clear example 
(t-alleles; Gluecksohn-Waelsch and Erickson, 1970; Bennett, 1975), and several sugges- 
tive examples, of non-Mendelian ratios in mammals. 

Gametic neutrality, which is almost universally observed, could be maintained in spite 
of post-meiotic gene expression by the sharing of post-meiotically expressed gene prod- 
ucts among gametes. The fact that spermatozoal differentiation occurs in cells which par- 
tially share their cytoplasm (a quasi-syncytium) in mammals may provide an explanation 
for gametic equality as well as for successful fertilization by gametes which do not con- 
tain genes thought to be expressed post-meiotically (Erickson, 1973). As spermatozoa 
are highly differentiated cells, with many distinctive organelles and isoenzymes, it is ob- 
vious that a large number of genes must be involved in their development. The high fre- 
quency of intercellular cytoplasmic bridges between spermatocytes and between sperma- 
tids would facilitate equal sharing of messenger RNAs and proteins,.while allowing excep- 
tional spermatozoa with unbalanced chromosomal complements to receive gene products 
necessary for their development. 

We hypothesize (1) that some genes are transcribed after meiosis in haploid, i.e. in 
genetically different, cells and (2) that the intercellular bridges do not always result in 
functionally equivalent sperm such that haploid expression of antigens would be possible. 
Recent advances in the biochemistry, immunology and genetics of spermatogenesis which 
illuminate these hypotheses will be discussed. We will review the evidence that RNA is 
transcribed after meiosis and that this RNA may include messenger RNA. We will discuss 
details of t-allele segregation distortion which argue strongly that the genotype of sperma- 
tozoa alters their function. We shall review the data on haploid expression of sperm anti- 
gens and information from other mammalian systems which suggests that haploid expres- 
sion may be an occasional occurrence. Other aspects of spermatogenesis have been 
reviewed (Bishop, 1968; Fechheimer, 1970; Fritz, 1973; Turkington and Majumder, 
1974; Bellve, 1979; Fawcett, 1979); Beatty's (1970) review on the genetics of spermato- 
zoa has not been surpassed. 

MORPHOLOGY OF MAMMALIAN SPERMATOGENESIS 

Spermatogenesis is defined as the series of cellular events which result in the produc- 
tion of spermatozoa. Male germ cells (gonocytes) increase in number by mitosis during 
early male development. At puberty they assume a position along the basement mem- 
brane of the seminiferous tubule. Their histological appearance is modified when in this 
new position and, in this new guise, they are termed spermatogonia. Spermatogonial 
mitoses increase in number with an increase in luteinizing hormone and follicle stimu- 
lating hormones at puberty (reviewed in Midgely et al., 1978). The committed spermato. 
gonium then undergoes a clonal expansion, marked by a series of mitoses with incom- 
plete cytokinesis, resulting in cytoplasmic bridges, approximately 1 tam in diameter 
(Fawcett, 1972; Fig. 1). This clonal expansion typically results in 32 spermatocytes and 
four times as many spermatids but deviations from these numbers have been reported. 
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Fig. 1. Electron micrograph of an intercellular bridge between two spermatids from a rat testis. Bound- 
aries of the bridge are continuous with the plasma membranes of the connected cells and are associ- 
ated with electron-dense substance. (× 35,000). Courtesy of Dr. B. Gondos. 

The number of mitoses involved in the clonal expansion and the percentage of spontane- 
ously degenerating cells is not precisely known in any one mammalian species and varies 
between species. As many as 22 interconnected spermatocytes and as many as 74 inter- 
connected spermatids have been counted in serial sections in rats (Moens and Go, 1972). 
Only linear, branching arrays of interconnected ceils have been found in these studies; 
rings of ceils, which would require fusion as their explanation, have not been detected 
(Moens and Go, 1972). These intercellular bridges seem to be maintained by specialized 
plasma membrane or submembrane structures (Dym and Fawcett, 1971; Beams and 
Kessel, 1976). The fate of these bridges during spermiogenesis (the differentiation of a 
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spermatozoon from a spermatid) is less well known, but the spermatozoa are not inter- 
connected after their release into the seminiferous tubule. The intercellular bridges have 
been postulated to synchronize spermatogenic development (Schleiermacher and 
Schmidt, 1973). We believe that the cytoplasmic syncytia created by the intercellular 
bridges can provide for gametic neutrality despite post-meiotic gene expression. 

The initial cellular product of the spermatogonial mitotic expansion, the spermato- 
cyte, initially resembles a spermatogonium, but it slowly increases in size as it undergoes 
DNA replication and extensive RNA and protein synthesis (Monesi, 1962). The configura- 
tion of the chromosomes provides the criteria for identifying the various stages of meiotic 
prophase (leptotene, zygotene, pachytene, diplotene, and diakinesis). It is important to 
note that the spermatocyte seems to undergo its maximal synthetic activity at the pachy- 
tene stage when loops similar to those in oocyte lampbrush chromosomes have been 
noted (Monesi, 1965). The reductional meiotic division is rapidly followed by the second, 
equational, division resulting in a round cell, the spermatid, which then slowly undergoes 
differentiation to form a spermatozoon. The sequence of cellular stages and the accom- 
panying macromolecular syntheses are summarized in Fig. 2. 

DNA SYNTHESIS DURING SPERMATOGENESIS 

Although the last major DNA synthesis occurs in pre-leptotene spermatocytes (Monesi, 
1965; Kofman-Alfaro and Chandley, 1970), a low level of DNA synthesis occurs during 
meiotic prophase (Meistrich et al., 1975) which may be related to alterations in gene 
expression. Alternatively, this DNA synthesis might be involved in repair and/or meiotic 
pairing (Smyth and Stern, 1973). DNA polymerase activity declines to low levels during 
spermiogenesis, but does not decline further during sperm maturation (Daentl et al., 
1977; Hecht et al., 1979). Thymidine and thymiditate kinase activities are also present 
in sperm (Daentl et al., 1977). The DNA polymerase activity present in spermatozoa has 
been thought to be mitochondrial in origin (Hecht, 1974) although histochemical and 
other techniques demonstrate a nuclear location (Chevaillier and Phillipe, 1976) with a 
ribonuclease sensitivity (Witkin and Bendich, 1977). Thus, the enzymes necessary for 
gene amplification, an important mechanism of gene expression in oogenesis, are pres- 
ent. The time of the increased DNA methylation, noted for many specific nucleotide 
sequences in sperm DNA (Kaputa and Sneider, 1979), is not known. 

RNA SYNTHESIS DURING SPERMATOGENESIS 

A large number of studies on the rates and kinds of RNA synthesis during spermato- 
genesis are relevant to the possibility of post-meiotic transcription. Histological studies 
using pyronin as the stain show little change in the amount of cytoplasmic RNA during 
the clonal expansion of spermatogonia (Daled, 1951). It was originally believed that lit- 
tle RNA was transcribed after meiosis since early mouse spermatids exposed to short 
pulses of [aH]uridine showed only a very small peak of uridine incorporation when exam- 
ined by autoradiography (Monesi, 1967). More recent quantitative autoradiographic 
studies showed, however, that the rate of RNA synthesis per cell decreased only 4-fold 
during meiosis in ram testis, i.e. the RNA synthesis/DNA ratio was essentially unchanged 
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(Loir, 1972). Furthermore, studies on mouse testicular cells separated by the Staput 
technique (a unit gravity sedimentation method capable of separating the cells of the 
various spermatogenic stages into populations that are roughly 70% pure populations 
- Lam et al., 1970; Meistrich et al., 1973) show that there are high rates of RNA syn- 
thesis in post-meiotic cell stages (Meistrich, 1972). In fact, in one study the highest 
level of [3H]uridine incorporation per cell was in early spermatids (Lee and Dixon, 
1972). DNA-dependent, RNA polymerase has been shown to be active in early sperma- 
tids (Moore, 1971). These studies all depend on the incorporation of exogenous [aH]uri- 
dine into RNA. If the intracellular uridine pool size was greatly decreased in post-meiotic 
cells, added [3H]uridine would more quickly radiolabel the pool and label would be 
incorporated into RNA more rapidly, inflating the apparent rate of RNA synthesis dur- 
ing short pulses. However, pool size estimates indicate that the intracellular uridine pool 
is increasing, rather than decreasing, after meiosis (Geremia et al., 1977). Thus, although 
there appears to be significant RNA transcription after meiosis, the question is whether 
or not this includes messenger RNA (mRNA) synthesis. 

In most cells about half of the newly synthesized RNA is ribosomal RNA (Harpold 
et al., 1979). Thus, a preliminary question focuses on whether or not ribosomal RNA 
synthesis is altered in post-meiotic cells. Three methods have been used to explore this 
question: (1) visualization of transcription units in identifiable cells, (2) characteriza- 
tion of newly synthesized (pulse-labelled) RNA from cells at different stages separated by 
differences in sedimentation velocity, and (3) studies on the time of synthesis of the ribo- 
somal RNA which is found in spermatozoa. Kierszenbaum and Tres (1974a, b, 1975) 
have used whole-mount electron microscopic techniques, which allow direct visualization 
of the transcription process, on the spread chromosomes in combination with light and 
electron microscopic autoradiographic techniques, to compare RNA transcription in pre- 
meiotic and post-meiotic cells. RNA transcription in spermatocytes appears by these tech- 
niques to include both ribosomal precursor and heterogeneous nuclear RNA, but nucleo- 
lus-like, ribosomal RNA transcription patterns were not found after meiosis. Newly 
synthesized RNA from separated spermatogenic cells was thought to include ribosomal 
RNA when characterized by sucrose gradient centrifugation (Geremia et al., 1978), while 
electrophoresis of newly synthesized RNA suggested that ribosomal RNA synthesis 
decreased markedly in post-meiotic cells (Erickson et al., 1980a). Another group has 
fourrd post-meiotic expression of ribosomal RNA cistrons using staining techniques 
(Schmid et al., 1977). However, this technique depends on the binding of silver by 
chromatin proteins (Bloom and Goodpasture, 1976) which are, of course, greatly altered 
during this stage of spermatogenesis. Studies on the time of synthesis of ribosomal RNA 
found in maturing mouse spermatozoa suggest that its synthesis is pre-meiotic (Betlach 
and Erickson, 1976). 

Whether or not ribosomal RNA synthesis decreases significantly after meiosis, there is 
abundant evidence that heterogeneous nuclear RNA, considered to be the precursor of 
mRNA, is synthesized after meiosis. Early studies considered all the rapidly-labelled 
nuclear RNA of Chinese hamster testis to be the product of late pachytene RNA synthe- 
sis (Muramatsu et al., 1968) - heterogeneous short-lived RNA of 45-80 S with a high 
AU/GC ratio similar to that of liver extranucleolar nuclear RNA was found. It is true 
that isolated rat primary spermatocytes largely synthesize heterogeneous RNA which is 
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rapidly turned over (Grootegoed et al., 1977) but a variety of studies show that synthe- 
sis of heterogeneous RNA and RNA containing poly(A) tracts clearly continues in sper- 
matids. Transcriptional patterns characteristic of heterogeneous nuclear RNA synthe- 
sis are found in spermatids (Kierszenbaum and Tres, 1974a, b, 1975). Sucrose gradient 
and electrophoretic characterization of newly synthesized RNA from spermatids dem- 
onstrate heterogeneous presumptive mRNA (Geremia et al., 1978; Erickson et al., 
1980a). Some of this new RNA from spermatids is poly(A)-containing, whether deter- 
mined with poly(U)-Sepharose (Geremia et al., 1978) or oligo(dT) cellulose (Erickson 
et al., 1980a). Similar results have been found for amphibian spermatogenesis (Kalt, 
1979). Recent experiments using functional assays for mRNA (in vitro translation of spe- 
cific proteins) have shown that mRNA for protamine-like histone and phosphoglycerate 
kinase-2 (see below) increase after meiosis (Erickson et al., 1980c). This result is most 
easily explained by postulating post-meiotic transcription of these messages. 

A specific intraceUular organeUe, the chromatoid body, may be involved in the utiliza- 
tion of post-meiotic mRNA. This body appears during pachytene (Fawcett et al., 1970) 
but becomes prominent cytologically in early spermatids where it shows rapid movements 
between the nucleus and Golgi apparatus (Parvinen and Jokelainen, 1974). It incorpo- 
rates [3H]uridine, but only after a 14-h delay, which suggests that the RNA has to be 
transported from the nucleus (Soderstrom and Parvinen, 1976). Actinomycin D 
treatment results in depletion of putative RNA in the chromatoid body of spermatids 
after a 12-h interval, further suggesting that the chromatoid body contains post-meioti- 
cally synthesized RNA (Parvinen et al., 1978). Alternatively, the chromatoid body may 
be formed by the extrusion of nucleolar components (Comings and Okada, 1972). 

The questions these data raise are relevant to early mammalian development, not just 
spermatogenesis. If all the mRNA synthesis during spermatogenesis is pre-meiotic, then 
spermatogenic post-meiotic protein synthesis must occur through 'stored' mRNA. How- 
ever, stored mRNA has not yet been generally found in mammals at any stage. Unlike 
the situation in sea urchin and amphibian embryos, the mammalian embryo does not 
seem to use many mRNAs synthesized during oogenesis. RNA synthesis commences 
almost with fertilization and expression of the paternal genome can be detected very 
early, at the 8-ceU stage (Wudl and Chapman, 1976; Epstein, 1975). In later mamma- 
lian embryogenesis, messages for proteins characteristic of differentiated states have been 
found to be accumulated briefly prior to translation. For instance, the mRNA for myo- 
sin appears in cytoplasm some hours before its translation (Buckingham et al., 1974). 
The synthesis of some sperm specific proteins, such as the protamine-like histone, does 
not begin until more than a hundred hours after meiosis. Thtis, the question as to whether 
'stored' mRNA is used for spermatogenic post-meiotic protein synthesis and differen- 
tiation is important. 

SPERMATOGENIC PROTEIN SYNTHESIS 

It is widely accepted that there is active post-meiotic translation during spermatogene- 
sis. A moderate level of pre-meiotic protein synthesis has been demonstrated autoradio- 
graphically in early spermatocytes; this synthesis increases further and then decreases 
prior to the meiotic divisions, in parallel withnew RNA synthesis (Monesi, 1967; see 
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Fig. 2). After meiosis, autoradiography shows a peak of arginine incorporation late in 
spermiogenesis which most likely represents incorporation into protamine-llke histone 
(Monesi, 1967). 

Post-meiotic changes in protein composition of spermatozoa have been followed in 
many ways. For example, there is indirect evidence for changes in nuclear proteins as 
spermatogenesis proceeds. In the Bovidae, Fuelgen staining of nuclei decreases until the 
late spermatid stage, indicative of decreased accessibility of DNA to the stain (absorp- 
tion at 265 nm remains constant, implying no change in the actual nucleic acid content 
of the nuclei). The Sakaguchi methyl green histochemical reaction, which is specific for 
protein-bound arginine, also increases until the late spermatid stage. There is some con- 
tinuation of both these changes as the sperm progresses through the male reproductive 
tract, as has been found in rabbits, and with in vitro aging of bovine spermatozoa (Gled- 
hill et al., 1966; Bouters et al., 1967; Salisbury et al., 1961). Amino acid analyses of pro- 
tein hydrolysates have shown that the amino acid composition of bovine spermatozoa 
changes with passage through the epididymides so that some protein synthesis may con- 
tinue in vivo in maturing spermatozoa (I_avon et al., 1971), although selective degrada. 
tion of proteins could also explain some of these changes. 

There is evidence for the post-meiotic synthesis of several sperm-specific enzymes and 
antigens. Among the sperm-specific enzyme with this potential are lactate dehydrogenase- 
X (LDH-X) (Blanco and Zinkham, 1963), hexokinase (Katzen, 1967; Sosa et al., 1972), 
a cyclic nucleotide phosphodiesterase (Christiansen et al., 1972), non-specific esterase 
(Meizel et al., 1971), an autosomally-coded phosphoglycerate kinase (Cooper et al., 1971; 
VandeBerg and Blohm, 1977), sperm hyaluronidase (Mancini et al., 1964; Borders and 
Rafferty, 1968), the acrosomal proteinase, acrosin (Stambaugh and Buckley, 1969), and 
testicular cytochrome c (Hennig, 1975; Kim, 1980). A number of other enzymes have not 
yet been shown to have spermatogenic.specific isoenzymes but major changes in their 
activities serve as markers for various stages of spermatogenesis: sorbitol dehydrogenase 
(Bishop, 1967), carnitine acetyltransferase (Vernon et al., 1971), a-glycerophosphate 
dehydrogenase (Posalaky, 1965), and succinic dehydrogenase (Ito, 1966). These changes 
in synthesis may require post-meiotic expression of regulatory proteins. 

The developmental onset of enzyme activity during spermatogenesis is often instruc- 
tive. For example, LDH-X activity is first found in 19-day-old male mice, which is when 
late pachytene spermatocytes are first observed (Goldberg and Hawtrey, 1968). Radio- 
pulse immunoprecipitation experiments performed on fractionated cells show lhat 
synthesis continues post-meiotically, with about half of the total synthesized in sperma- 
tids (Meistrich et al., 1977). Recent data suggests that the sperm-specific hexokinase also 
first appears during pachytene (Brock, 1975) while spermatozoal phosphoglycerate kinase 
does not appear until after meiosis (VandeBerg et al., 1976; Erickson et al., 1979b; 
Kramer and Erickson, 1981a). Studies on testicular hyaluronidase and immunohistolog- 
ical localization of 3 guinea pig spermatozoal autoantigens demonstrated that these pro- 
teins first appear in spermatids or, possibly, secondary spermatocytes (Males and Turking- 
ton, 1970; Radu and Voisin, 1975). In mice, the Ia antigen of spermatozoa makes its 
appearance at pachytene, as may also the H-2 D and K antigens (Fellous et al., 1976; 
Erickson, 1977a, b). 

Protamine-like histones have been documented in a variety of mammals (Bloch, 1969; 
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Calvin, 1976). Evidence for synthesis in late spermatids also exists in parallel with that 
evidence for lower vertebrates (Lam and Bruce, 1971; Bellve et al., 1975; Hatz et al., 
1975). A variety of meiotic histones, which replace the usual somatic histones until them- 
selves replaced by protamine-like histones, have also been identified (Kistler and Geroch, 
1975; Shires et al., 1975; Grimes et al., 1975). It is possible that these meiotic histones 
are 'pre-protamines' (Goldberg et al., 1977). Other proteins involved in the rearrangement 
of sperm chromatin may exist and may also be synthesized late in spermiogenesis: post- 
meiotic synthesis of non-histone, phenol-soluble acidic chromatin protein(s) has been sug- 
gested (Pipkin, 1975). 

Another approach to the number of post-meiotically synthesized proteins involves 
electrophoretic analyses of newly synthesized proteins in separated spermatogenic cells 
or spermatozoa at various time intervals after labelling. One-dimensional gel electro- 
phoretic analysis of sperm proteins demonstrated that insoluble sperm head proteins were 
synthesized in mid-spermatids in parallel with the synthesis of protamine-like histone 
(O'Brien and Bellve, 1980). Two-dimensional gel analyses of separated, spermatogenic 
cells by one group showed 11 spots unique to post-meiotic stages (Boitani et al., 1980), 
while our group found 10 cytoplasmic proteins specific to early spermatids, 1 cytoplas- 
mic protein specific to late spermatids, 7 membrane proteins specific to early spermatids 
and 6 membrane proteins specific to late spermatids - a total of 24 post-meiotic appear- 
ing proteins (Kramer and Erickson, 1981b). These are, of course, minimal estimates. 

t-ALLELE TRANSMISSION RATIO DISTORTION 

Of the genetic variants in a variety of organisms which result in non-Mendelian ratios, 
perhaps the most interesting are mutations at the t-region of the mouse. In addition to 
unorthodox features of genetic transmission, t-alleles have remarkable effects on early 
embryonic development and differentiation (Gluecksohn-Waelsch and Erickson, 1970; 
Bennett, 1975; Erickson et al., 1980b). The tail, from which the 'T' derives, has served 
as the indicator phenotype for mutations with more profound effects. The dominant 
T (brachyury) mutation causes a short tail in the heterozygous state. A large number of 
recessive mutations, t n, interact with T to produce taillessness in compound heterozy- 
gotes (T/tn). Such tailless mice are maintained via a balanced lethal system with the two 
homozygous types eliminated prenatally (both TIT and tn/t n are embryonic lethals). 
Males (but not females) heterozygous for a t-allele transmit it to many more of their prog- 
eny than the 50% dictated by Mendel's laws. Many t-alleles recently recovered from wild 
populations have segregation ratios of greater than 0.95, while laboratory populations are 
usually characterized by lower ratios. The ratios vary considerably between individual 
males carrying a particular t-allele as well as between different t-alleles (Braden, 1972); 
there are low distorters as well. However, it is now quite apparent that low (Dunn and 
Bennett, 1968) is a t-allele without T-interacting, lethal, or crossover suppression effects 
(Lyon and Mason, 1977). However, males which are compound heterozygotes for two 
different t-alleles which complement each other (for viability) are sterile. 

Most of the known physiological effects of t-alleles can be interpreted by postulating 
that the gene product functions at cell surfaces; thus it has been suggested that the t-allele 
gene product might be detected as a cell surface antigen (Gluecksohn-Waelsch and Erick- 



204 

son, 1971). A cell surface antigen determined by t-alleles might be less translocatable 
across intercellular bridges than a cytosol protein, and haploid gene expression could 
result in non-equivalent gametes and thus transmission ratio distortion (Erickson, 1978). 
If a putative t-antigen was not translocatable across the intercellular bridges, it should not 
be an essential component of spermatozoa, since it has been shown that spermatozoa 
deficient for the entire wild-type chromosomal T-region can successfully fertilize eggs 
(Lyon et al., 1972). 

Evidence for the presence of an altered sperm-associated antigen determined by a dom- 
inant T allele was found subsequently with a mouse antiserum raised against spermatozoa 
from mice heterozygous for T (Bennett et al., 1972). However, the relevance of this sper- 
matozoal antigen to the physiology of the T-region is questionable as T is silent in terms 
of sperm function. Further studies claimed partially distinctive antigens associated with 
several different recessive t-alleles, and produced evidence compatible with post-meiotic 
expression of a putative t-antigen in differentially viable t and wild-type spermatozoa 
(Yanagisawa et al., 1974a, b). Studies of anti-spermatozoal antibodies to spermatozoa 
from animals bearing various t-alleles, and analysis of the cross-reacting components, sug- 
gested that a complex antigenic system might be involved (Artzt and Bennett, 1977). 
Recent extensive experiments have been unable to confirm the existence of putative 
t-antigens on spermatozoa (Goodfellow et al., 1979; Gable et al., 1979). 

Transmission ratio distortion can be accounted for by two different mechanisms, 
either unequal numbers of two kinds of spermatozoa or equal numbers of functionally 
different spermatozoa are produced. Selective cell death during spermatogenesis could be 
hypothesized to be involved in the generation of unequal numbers of functionally differ- 
ent spermatozoa. In such an hypothesis, unequal numbers of spermatozoa could result 
because some chromosomes preferentially segregate to cytoplasm that is destined to die 
(a hypothesis for segregation distorter in D r o s o p h i l a  - Peacock and Erickson, 1965). 
However, there is a deficiency of only about 13% of the cells expected on the basis of 
mouse spermatogenic kinetics, and these include pre- and post-meiotic cells (Oakberg, 
1956a, b). Thus, non-Mendelian ratios of the magnitude seen with t-alleles cannot be 
explained by this mechanism. 

Alternatively, there is evidence which suggests that the transmission ratio distortion 
controlled by t-alleles involves functional differences between spermatozoa bearing dif- 
ferent t-alleles. Delayed mating, in which fertilization occurs as soon as the spermatozoa 
reach- the fallopian tube, compared to normal mating which requires that sperm remain 
in the female reproductive tract for several hours before fertilization, nullifies the trans- 
mission ratio distortion in the case of several t-alleles (Braden, 1958; Yanagisawa et al., 
1961 ; Erickson, 1973; Fig. 3). The fact that the t-allele effect can be altered by changing 
the time of insemination relative to ovulation suggests that there are two classes of sper- 
matozoa with unequal physiological characteristics, which could arise as the result of 
haploid gene expression. The transmission ratio distortions for the t 6 and t 12 alleles found 
with in vitro fertilization were similar to those found with delayed mating (McGrath and 
I-Ifllman, 1980, 1981). If verified for other t-alleles, this result would suggest that it is 
the physiological environment rather than the time element which is crucial. 

The delayed mating experiments suggest that t-allele effects on transmission ratios 
could be mediated through alterations in spermatozoal metabolism, perhaps with sec- 
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Fig. 3. Delayed mating compared to standard mating. In standard mating, the male is continuously 
caged with the female which becomes receptive at the time of ovulation (about 24.00 hours) Since the 
eggs do not reach the fertilization site in the Fallopian tube until 7 or 8 h later, fertilization occurs 
after a 7 or 8 h sojourn by the spermatozoa in the female tract. With late mating, the male is not put 
into the cage until 08.00 hours, the eggs are already at the fertilization site, and fertilization occurs in 
about an hour. 

ondary effects on sperm motility. These alterations could be related to the lethality of  
homozygous embryos, cause sterility in complemented males, and be beneficial in sperm 
in the presence of  a wild-type allele. There is some evidence to suggest that t-bearing 
sperm differ in their ability to maintain motility (Yanagisawa, 1965; Katz et al., 1979). 
Ginsberg and Hillman (i  974) found an inverse relationship between the transmission ratio 
and the NADH/NAD ratio of  particular t-spermatozoa (from heterozygotes) while a 
direct correlation of  transmission ratios with oxygen uptake was found. These results 
extend morphologic observations of  early lipid accumulations and altered ATP turnover 
in several lethal t n homozygotes (Hillman et al., 1970; Naclijcka and Hillman, 1975a, b; 
Ginsberg and Hillman, 1975). These metabolic defects could reside in mitochondria 
(Blake, 1977), under nuclear genome control, and, since mitochondria should be less 
likely to pass through the intercellular bridges connecting spermatids, the products of  
gene expression involving mitochondria might also not be shared by adjacent spermato- 
cytes or spermatids. This hypothesis is further strengthened by the fact that mitochon- 
dria take on an enlarged role in the energy metabolism of sperm. Enzymes which are nor- 
maUy cytoplasmic are found to be purified with mitochondria (lactate dehydrogenase; De 
Domenech et al., 1970), localized in the midpiece histochemically (a-glycerophosphate 
dehydrogenase; Posalaky, 1965) or unusually difficult to solubilize (hexokinase; Harrison, 
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1971 ; glucose-6-phosphate dehydrogenase; Sarkar et al., 1977). 
A further unifying hypothesis to explain the multiple effects of t-alleles might predict 

that antigens determined or controlled by some portion of the T-region are related to 
membrane transport, hormone receptors, adenylate cyclase or other membrane features 
affecting intraceUular metabolism. This hypothesis gains some credence from the fact that 
Meruelo and Edidin (1975) have detected H-2 determined differences in hepatic cAMP 
levels due to altered glucagon binding (Lafuse and Edidin, 1980). The possibility that H-2 
and T are functionally related has been suggested because of their linkage disequilibrium 
(Snell, 1968; Hammerberg and Klein, 1975). Neither H-2 nor the T-region seems to have 
an effect on spermatozoal cAMP levels (Erickson et al., 1979a) measured under physio- 
logical conditions, although differences have been reported (Nadijcka and Hillman, 1980) 
in the presence of a phosphodiesterase inhibitor. 

SPERMATOZOA DIFFERING IN CHROMOSOMAL CONTENT 

Evidence for haploid gene expression is not limited to situations involving single genes. 
Spermatozoa differing in their chromosomal content may also be functionally different. 
For example, it is possible that spermatozoa bearing X- or Y-chromosomes express dif- 
ferent phenotypes. Attempts to separate X- and Y-bearing spermatozoa by physical meth- 
ods which do not depend on sperm motility (i.e. the sperm are passive) and those in 
which sperm motility plays a part (active) must be distinguished. It is frequently assumed 
that the difference in weight and/or density between an X- and a Y-chromosome would 
be large enough to allow passive separation. The slight difference in DNA content (about 
3% (Sumner et al., 1971), which represents about 1% difference in total weight), is un- 
likely to allow passive physical separation of sperm (Roberts, 1972). In one study it was 
impossible to separate diploid spermatozoa more than slightly from haploid spermatozoa 
by density centrifugation (Beatty and Fechheimer, 1972). Thus, if X- and Y-bearing sper- 
matozoa are separable by physical techniques, it may not be because of the slight differ- 
ence in DNA content but because of differential gene expression in the two types of 
sperm. 

A separation of X- and Y-bearing sperm under conditions in which each ciliary beat 
could provide a fractional separation based on the difference in DNA content, i.e. sperma- 
tozoal-active separation, is theoretically possible. In this case each ciliary motion provides 
a 'theoretical plate' for magnifying the minute difference in weight due to the difference 
between an X- and a Y-chromosome. Again, claims for successful spermatozoal-active sep- 
arations may be interpreted in terms of differences in gene expression, as well as by dif- 
ferences in DNA content. 

Recent data on the possibility of separating X- and Y-bearing spermatozoa have largely 
depended on staining a fluorescent body (F-body) believed to represent the Y-chromo- 
some in fixed spermatozoa (Badow and Vosa, 1970). This technique is only readily per- 
formed on human spermatozoa. The size of the spermatozoa affects the ease of detecting 
an F-body (Roberts and Goodall, 1976) but the technique seems well validated (Sumner 
and Robinson, 1976). Rodents and rabbits are more typical organisms for reproductive 
studies but evaluating separations by staining for F-bodies in human sperm is considerably 
easier than evaluation by artificial insemination with separated spermatozoal fractions in 
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these animals. Using F-body quantitation, a number of investigators have reported that 
Y-bearing spermatozoa migrate more rapidly in cervical mucus (Rohde et al., 1973; 
Goodall and Roberts, 1976; Beck et al., 1976), in a laminar flow set-up in semen extender 
(Bhattacharya et al., 1977) or in albumin gradients (Ericsson et al., 1973; David et al., 
1977). However, two groups have presented negative data on X-and Y-sperm separation 
using the latter technique (Evans et al., 1975; Ross et al., 1975). The well known slight 
excess of males at birth is also seen early in pregnancy (Yamamoto et al., 1977), suggest- 
ing that this ratio is the result of preferential fertility rather than preferential mortality. 

In summary, the many observations of preferential fertilization by Y-chromosome 
bearing sperm may be more readily explained by post-meiotic gene expression than by the 
very small difference in amount of DNA in Y- and X-bearing spermatozoa. 

It is a general observation that males, both plant and animal, who are carriers of 
balanced translocations do not transmit the unbalanced state to their offspring nearly as 
frequently as do female balanced carriers (Hamerton, 1971; Sears, 1953). This result 
could be due to a difference in meiotic segregation in the two sexes or to a deficiency in 
fertilizing ability of sperm with unbalanced chromosomal constitution, i.e. post-meiotic 
gene expression in sperm. It is difficult to study meiosis in man but there have been a 
number of studies in other mammals which suggest that both mechanisms are at work in 
some species. In mice, where decreased transmission of translocations by the male occurs, 
meiotic nondisjunction was found to be markedly lower in the male than in the female 
according to one report (Oshimura and Tagaki, 1975). Furthermore, it has been reported 
that aneuploid sperm produced a significant number of aneuploid zygotes which died 
early in embryogenesis (Ford, 1972; Gropp, 1971). While these experiments did not pro- 
vide evidence for post-meiotic gene expression, decreased transmission of radiation- 
induced deficiencies in male but not in female mice, seems to be explained by selective 
fertilization and not by differential nondisjunction in the male (Russell and Russell, 
1960). In sheep, meiotic studies show a significant number of aneuploid secondary sper- 
matocytes while aneuploid zygotes are not found (Chapman and Bruere, 1975). It there- 
fore appears that aneuploid spermatocytes may preferentially degenerate or produce non- 
functional sperm and, thus, are influenced by their genetic content. 

ANTIGENS ON SPERMATOZOA 

Considering this background, what is the evidence for haploid expression of sperm 
antigens? Since the intercellular bridges connecting post-meiotic cells might limit sharing 
of membrane components (because of the membrane specializations which maintain 
them), we believe that cell surface antigens found on spermatozoa could show haploid 
expression. It is a moot point whether or not the human A, B, O and rhesus blood group 
antigens are expressed on spermatozoa. Thus, it is not surprising that there is even greater 
disagreement on whether or not there is haploid expression of such antigens. Gullbring 
(1957) reported the separation of blood group A spermatozoa from those bearing blood 
group B in AB individuals by agglutination. These results were apparently confirmed by 
a variation of this technique (Popivanov and Vulchanov, 1962) and by immunofluores- 
cence (Shahani and Southham, 1962; Kerek, 1964) but not by electrophoresis of anti- 
body-treated spermatozoa (Ackerman, 1969). This discrepancy might be explained by the 
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fact that a number of investigators have been able to fred A or B substance on spermato- 
zoa of secretors (individuals whose exocrine gland secretions contain soluble blood group 
substances) but not on the spematozoa of non-secretors. Spermatozoa from an O non- 
secretor can adsorb A or B substance from the seminal plasma of a secretor (Edwards et 
al., 1964; Boettcher, 1965; Parish et al., 1967; Rangnekar and Rao, 1970). Thus, ABO 
substance is adsorbed and could not show haploid expression. Detailed studies on the 
location of blood group glycosyl-transferases in the testis will be needed before the con- 
troversies concerning haploid expression of blood group antigens are solved. 

Similar controversy surrounds the question of haploid expression of histocompatibil- 
ity antigens on spermatozoa. It is not clear in all systems whether or not histocompati- 
bility antigens are even expressed on spermatozoa, or whether they are simply adsorbed 
from seminal plasma. This is a problem encountered in studies of ejaculated human 
sperm, since seminal plasma does contain HLA antigens (Singal et al., 1971; Singal and 
Berry, 1972). It is not a problem for the studies of H-2 antigens of mice since they are 
studied on spermatozoa from epididymides and ducti deferentes. The strongest evidence 
for the direct expression of histocompatibility-related antigens on spermatozoa comes 
from studies on the development of Ia antigen expression during spermatogenesis. The 
genes determining these antigens map within the H-2 complex. Using mutant mice with 
germ-cell deficient testes, it was found that Ia antigens are not expressed on spermato- 
gonia or testicular somatic ceils but are expressed on primary spermatocytes and on cells 
at later stages of spermatogenesis (Fellous et al., 1976; Erickson, 1977a, b). 

Most of the evidence, however, is against haploid expression of H-2 antigens (Gold- 
berg et al., 1970; Erickson, 1972; Johnson and Edidin, 1972). The original suggestion of 
haploid expression of histocompatibility antigens depended on the finding that a mix- 
ture of antibodies to each parental haplotype had an additive cytotoxic action on sper- 
matozoa of heterozygous individuals (Fellous and Dausset, 1970). It seems equally possi- 
ble, or perhaps more likely, that more sperm are killed when both anti-parental sera are 
used because more antibody molecules attach to the spermatozoa which are expressing 
both sets of parental antigens (Kerek and Afzelius, 1972; Fellous and Dausset, 1973). 
Recent reports that two classes of spermatozoa, each expressing only one parental HLA 
haplotype, may be separated in ejaculates of HLA heterozygous males (by treatment with 
antibody to one haplotype and complement, followed by removal of the dead spermato- 
zoa on nylon wool columns) would seem to indicate haploid gene expression but need 
verification. The separated spermatozoa have then been typed for cis antigens (confirmed 
by family studies; Arnaiz-Villena and Festenstein, 1976) or used in a blast transformation 
test to demonstrate haploid expression of HLA-D (Halim and Festenstein, 1975, 1978). 
In the latter case it is quite possible that antibody blockage of mixed lymphocyte culture 
stimulating sites, independent of their haploid or diploid expression, was being detected. 
On the other hand, perhaps a difference in the mode of expression of the antigens on 
spermatozoa could turn out to be the first major difference in the HLA histocompatibil- 
ity complex of man and the H-2 histocompatibility complex of mouse. However, the 
putative HLA-D has very different properties on sperm than on lymphocytes (Levis and 
Dattner, 1979) and some workers find no more stimulation by allogeneic than autologous 
spermatozoa (Kurpisz and Szymezynski, 1979). 

There has been a report that the percentage of males in mice can be decreased from 
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53.4% to 45.4% by treatment of sperm with antibody to the male-specific H-Y antigen 
(Bennett and Boyse, 1973), which might suggest that haploid expression of the H-Y anti- 
gen has taken place. Another paper presented a similar result using anti-cock sperm anti- 
body on rabbit sperm (Hancock, 1978); however, the controls had an unexplained excess 
of males. F-body-positive human spermatozoa are preferentially stained by the lectin 
phytohaemagglutinin, which suggests haploid expression of some glycoprotein on 
Y-bearing sperm (Hegde et al., 1981). These observations need to be verified. 

CONCLUSIONS 

Although there is strong evidence for post-meiotic RNA synthesis during mammalian 
spermatogenesis, definitive proof of haploid gene expression of antigens or other markers 
is lacking. Transmission ratio distortion in t-allele-bearing males provides evidence for 
post-meiotic gene expression since delayed mating experiments argue strongly that there 
are similar numbers of functionally different spermatozoa in ejaculates of males carrying 
moderately distorting t-alleles. Other possible examples of transmission ratio distortion 
involve differences in chromosomal content of, or antigens on, sperm. In these instances, 
gene products from only one, or a few, loci could determine functional differences in the 
spermatozoa, the products of most other loci being equilibrated through the intercellular 
bridges. Thus, post-meiotic transcription of a number of loci may occur but the intercel- 
lular bridges connecting spermatids would usually maintain gametic equivalence. Mem- 
brane components such as cell surface antigens are likely candidates for the demonstra- 
tion of haploid gene expression since the membrane specialization of the intercellular 
bridges would probably prevent lateral movement from one spermatid to another. 

The fact that transmission ratio distortion has not been found in females can be 
explained by differences in the timing and physiology of gametogenesis in the two sexes. 
In contrast to spermatogenesis, where post-meiotic differentiation is extensive, the post- 
meiotic interval is very short in the maturation of the egg, in the higher vertebrates typi- 
caUy a matter of only a few hours. Thus, it is not surprising that there is a need for post- 
meiotic gene expression during spermatogenesis but not during oogenesis. 
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