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The evaluation of a screening program in which only screen positives are tested with more 
definitive diagnostic procedures requires the estimation of prevalence so that the number of 
screen negatives who are actually diseased can also be estimated. Methodology for 
incorporating an assessment of the variability of the prevalence rate between as well as 
within subpopulations is presented and illustrated. The procedure described leads to a 
negative binomial probability distribution on the number of diseased individuals who were 
missed by the combined screening-diagnostic protocol. 

1. INTRODUCTION 

The design of health screening programs commonly leads to follow-up of 
individuals who are positive with more definitive diagnostic procedures but to 
no additional information on those who are negative. Thus in the notation 
presented in Table I, a and b, the frequencies of individuals who are diseased 
and nondiseased among screen positives, are known but for screen negatives 
only c + d, the total number, is known. Separate frequencies c and d are 
needed for the evaluation of such a program. 

Grant (I) discusses the evaluation of a screening program when all the 
frequencies in the table are known. He also mentions the problem of obtaining 
c and d separately and suggests that the prevalence (a + c) be estimated from a 
sampling study, from data from other studies, or from the “best possible 
guess,” where such a guess might be obtained from expert opinion through use 
of the Delphi technique. The observed frequency a would then be subtracted 
from the estimated prevalence to estimate c, the number of diseased persons 
missed by the screening program. 

The uncertainty about the prevalence is not taken into account in the 
evaluation methodology presented previously. For instance, Grant assumes 
that the national prevalence rate of 5% holds for the n = 547 children tested in 
a pure-tone hearing screening study, which leads to an estimated prevalence 
frequency of 27. The observed a is 20, so the estimated value of c is 7. He 
also observed b = 103 and c + d = 424. If the prevalence rate were 6% instead 
of 5% for this group, the estimated values of a + c and c would be 33 and 13, 
respectively. Thus, a slightly higher prevalence, such as might be reasonable 
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TABLE I 

NOTATION FOR FREQUENCIES FROM A SCREENING PROGRAM 

Screening 
results 

Diagnosis 

Diseased Nondiseased Total 

Positive a 
Negative C 

Total a+c 

b 

d 

c+d 

a+b 

c+d 

a+b+c+d 

for a group selected for screening, can lead to nearly doubling the estimated 
value of c. This in turn would change the estimated underreferral rate 
(c/[n - (a + b)]) in his example from 0.02 to 0.04. 

The purpose of this note is to present methodology for incorporating the 
inherent variability of the prevalence rate into the evaluation of a screening 
program. 

2. MODELANDMETHODOLOGY 

To emphasize that the prevalence rate will vary about the national rate 
among smaller groups of people screened, denote the number of diseased 
persons in the group screened by the random variable X and denote the number 
of false negatives in the screened group by Y = X - a. For any sample of 
individuals screened from a homogeneous subpopulation, the distribution of X 
for the subpopulation can reasonably assumed to be Poisson. The distribution 
of means for such subpopulations can be represented by a gamma distribution. 
Compounding the conditional Poisson distribution with a gamma distribution 
leads to an unconditional negative binomial distribution for X, with probability 
function 

gtx; a, PI = u-(x + 4/u-(x + W4lHlAl + P)I”WU + ma, 
x = O,l, . . . ; a, p > 0. [l] 

This distribution has mean E(X) = a//3, which could be specified on the basis 
of a national rate, and variance V(x) = E(X) [( 1 + p)//3], which would reflect 
variation among as well as within subpopulations. 

In order to determine the distribution of Y, assume that the distribution of 
a conditional upon X and p is binomial, where p represents the probability 
that a diseased individual will be found positive with the combination of a 
screening examination and follow-up with the diagnostic procedure; that is,p is 
the sensitivity of the combined screening-diagnostic procedure. We will 
assume that p is specified. This is reasonable since the uncertainty about p is 
usually of smaller magnitude than the uncertainty about the prevalence in the 
sample screened. The analysis would usually be repeated for several values of 
p to investigate the sensitivity of the evaluation of the screening procedure to 
the specification of p. 
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Once the screening program is carried out and a is observed, the 
distribution of Y, the number of undetected diseased individuals, is negative 
binomial with parameters cx and p in [l] replaced by LY* = a + (Y and 
P*=(P+PMl-- 1 p , respectively (see Appendix). The mean of this dis- 
tribution, E(Y) = (~*/p*, can be used as a point estimate of c. Percentiles 
of the conditional negative binomial distribution of Y can be used to form an 
interval estimate of c. Such an interval would be useful in deciding whether or 
not there are enough diseased individuals in the group screened to warrant 
screening again. The fact that the distribution of Y is in the same negative 
binomial family as X means that the same type of analysis could be applied to 
subsequent periods of screening. The conditional distribution of Y can also be 
used to construct probability statements on quantities calculated Corn c such as 
the underreferral proportion c/[n - (a + b)]. 

When too little information is available about X to specify its mean and 
variance, (Y and p may be set equal to zero in the calculation of the parameters 
for the conditional negative binomial distribution of Y. This choice of 
parameters to represent a lack of information about X for this model is 
discussed by Hunter and GrifEths (2) in the context of the estimation of 
population size for insects. The methodology described here may also be 
applied to removal sampling over several periods in the animal sampling 
context described by Hayne (3)) Moran (4)) and Zippin (5) conditional upon p . 

3. EXAMPLES 

For the example from Grant introduced earlier, E(X) would be taken to be 27 
in accord with the national prevalence rate. The lack of information specific to 
the population being screened would be reflected by taking V(x) large, say, 
equal to 3 times its mean. This corresponds to specifications of 13.5 and 0.5 for 
(Y and /3, respectively. To facilitate comparisons with Grant’s results, take 
p = 0.74, which is his estimate of the sensitivity of the screening procedure, 
although ideally p would be determined independently of the data on the 
program under evaluation. After observing that a = 20, the distribution of Y 
conditional upon a would have mean and variance 7.0 and 8.49, re- 
spectively. The mean of 7 agrees with Grant’s estimate because we chose p to 
coincide with his data. However, a 95% probability interval for Y with a 
variance of 8.49 would extend from 3 through 14 inclusively. The 
corresponding interval for the underreferral rate would extend from 0.007 
through 0.003. If V(X) had been taken even larger, say, either 10 or 28 times 
E(X), these intervals would still have had nearly as high a probability of 
holding, namely, 0.93. Intervals like these add greatly to an assessment of the 
screening program since they show that the underreferral rate could easily 
extend to twice its point estimate of 0.017. They were calculated utilizing tables 
of the binomial distribution (6) and the relationship between the positive and 
negative binomial distribution as described, for instance, in Raiffa and Schlaifer 
(7). 
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As another example, consider the evaluation of a screening program for 
breast cancer for asymptomatic women, For purposes of illustration, suppose 
that 1000 women were to be screened. Suppose experience with similar groups 
of women in other breast cancer detection centers indicates that the rate of 
breast cancer will be between 0.002 and 0.010. A reasonable choice for a! and p 
is (Y = 20 and j3 = 4, which gives a distribution with mean 0.0050 and standard 
deviation 0.0025 for the breast cancer rate and which leads to a probability of 
0.916 for the rate (X/n) in the interval between 0.002 and 0.010. Suppose also 
that the screening procedure will be a combination of mammography and 
clinical examination and that screen positives will be followed with a biopsy. 
Assume that the sensitivity of the entire sequence of procedures if 0.9 (=p). 
Now suppose that all 1000 women are screened in this manner and that 7 (= a) 
women are found to have breast cancer. This leads to posterior parameters 
for the negative binomial distribution of a + (Y = 7 + 20 = 27 and 
(p + /3)/( 1 - p) = (0.9 + 4)/O. 1 = 49. The conditional mean of Y, which 
could be taken as a point estimate, is 0.55. Its conditional variance is 0.56, 
which leads to standard deviation of 0.75. Since the expected number of false 
negatives (Y) is less than one, the posterior probability of one or more missed 
cases capable of detection, that is, the p( Y L 1)) is of interest. The probability 
is 0.420. Also P( Y 2 2) = 0.107 and P( Y B 3) = 0.020. These probabilities are 
quite sensitive to the choice ofp. For instance, ifp had been chosen to be 0.8 
instead of 0.9, the corresponding probabilities would have been 0.625, 0.264, 
and 0.084, respectively. Although the negative binomial distribution was used 
in these evaluations, the Poisson distribution could have been used since the 
conditional variance of Y is only slightly larger than the mean and the negative 
binomial distribution approaches the Poisson as its variance decreases to its 
mean. 

The probabilities calculated for this example could be easily converted into 
probability statements on the underreferral rate by dividing the limits on Y by 
the number of negative screens. More important, the probabilities of at least 
one, two, and three missed cases could be used, with information on cost- 
benefit ratios, to determine whether or not to rescreen the women who were 
negative on the first screen. 

APPENDIX: CONDITIONAL DISTRIBUTION OF Y 

Conditional upon the observed a, the probability function for X is 

a T(x + a) (1 - p)‘“-“‘[l/(1 + p)]“/(x - a)!, x=a,u + 1,. . . ) PI 
wheref(a]x, p) is binomial and g(x; a, p) is given by [l]. Since Y is the number 
of subjects remaining after removing a patients for~treatment who were found 
to be positive by both the screening and diagnostic tests, Y = X - a once a is 
observed. It follows from [2] that the probability function for Y conditional 
upon a is 
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W(Yl4 cc UY + a + 4 Kl -PM1 + PWlUY + l), Y = 071, . . . . 131 

Comparison of [3] with [l] shows that the distribution of Y conditional upon a is 

negative binomial with parameters (Y and p [l] replaced by (Y* = u + cx and p* = 
(p + p)/( 1 - p), respectively. 
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