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Abstract: By expanding the Bargmann-Segal integral transform of norm and overlap kernels in
appropriately SU(3) coupled Bargmann space functions, the calculation of norm and overlap
matrix elements in a cluster model basis is reduced to purely algebraic techniques involving the
algebra of SU(3) recoupling transformations. This technique has been further developed to make
calculations possible for systems of two heavy fragments other than closed-shell nuclei. In one
application of the method, analytic expressions are given for the norms of binary fragment systems
in which a light fragment of mass number f, f < 4, is combined with a heavy fragment of mass
number A4-f, with 4-f < 24. The A-f fragment nuclei with different p- and sd-shell structure
illustrate somewhat different problems in the recoupling technique. In a second application,
spectroscopic amplitudes are calculated for the most important open channels of the '2C+'2C
resonances. Eigenvalues and eigenvectors of the antisymmetrizer are evaluated in a “molecular basis”
of the '2C+ '2C system, in which each '2C nucleus is assumed to have SU(3) symmetry (04) with
internal rotational excitations of 0%, 2% and 4*. Reduced width amplitudes are calculated connecting
such normalized, fully antisymmetrized molecular basis states to exit channels which include:
o+ 2°Ne with 2°Ne internal functions of (80) SU(3) symmetry, (K = 0% band), and (82) SU(3)
symmetry, (K = 2~ band); 1°0+®Be; and >*Na+p or >*Mg+n fragments with 2>Na or 23Mg
excitations in K = % and 4 rotational bands of SU(3) symmetry (83).

1. Introduction

In recent years refinements in the resonating group method ! ~?) have made possible
a sound microscopic treatment of a number of nuclear reaction and structure prob-
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lems. However, detailed applications to bound-state, scattering, and reaction prob-
lems have been limited mainly to very light nuclear systems >~7) or to scattering
problems involving closed-shell nuclei such as a, 1°0, and °Ca [refs. >~ 1%)]. Many
of the recent advances have been made possible by the introduction of integral
transform techniques ! ~2!) and the closely related complex generator coordinate
technique ®) which have reduced the computational effort in the calculation of
resonating group kernels. Nevertheless, the evaluation of resonating group kernels
in an angular momentum coupled basis has proved difficult for reaction problems
involving heavy fragments other than closed-shell nuclei. By exploiting the SU(3)
symmetry properties of the relative motion and internal harmonic oscillator functions
of a cluster basis it may be possible to handle resonating group calculations involving
heavy fragments other than closed-shell nuclei. This is true in particular if the cluster
functions are expanded in an SU(3) coupled basis in which SU(3) recoupling tech-
niques can be used to advantage, and in which the details of the coupling of channel
spins to relative motion angular momenta can be avoided till the very final step of a
calculation. Of the many integral transforms used in microscopic nuclear cluster-
model calculations, the Bargmann-Segal (BS) transform 22) is ideally suited to the
exploitation of SU(3) recoupling techniques since oscillator functions have very
simple properties in Bargmann space. The combination of the BS integral transform
with SU(3) recoupling techniques can greatly reduce the computational difficulties in
the calculation of resonating group kernels 23). The potential of this technique has
been illustrated with a few examples in ref. *4). Details of the technique have also been
demonstrated with the calculation of the norms for cluster systems made up of a
heavy fragment and an a-particle 2°-2%) for states of arbitrarily high oscillator
excitation in the relative motion degree of freedom. A very similar technique has
recently also been used by Fujiwara and Horiuchi ?7) in their generator coordinate
theory of norm kernels with applications to 12C+«, 12C+ !0 and '®*O+a+a. In
their treatment the complex generator coordinate R corresponds to the Bargmann-
space K variable of refs. 23726),

It is the purpose of the present work to expand the combined BS transform and
SU(3) recoupling technique to facilitate calculations involving nuclear systems made
up of at least two heavy fragments which are not closed-shell nuclei. The motivation
comes partly from attempts to understand the fine structure of the so-called '2C+!2C
molecular resonances in terms of a sound, fully microscopic description. Although a
fully microscopic multi-channel resonating group calculation for this challenging
problem is perhaps still not quite within reach, the techniques have now been de-
veloped to a stage where it is possible to calculate all the spectroscopic amplitudes
needed for the determination of the strength functions for the breakup of a specific
12C 4 12C quasi-bound state into various channels. The most important open chan-
nels involve '2C+!2C, ®Be+ %0, a+?°Ne, 2*Na+p, and >*Mg+n structures.
Spectroscopic amplitudes are needed for heavy fragments in specific excited states.
In the o+ *°Ne breakup, e.g., specific states of the 0%, 2*, 4%, 6*, 8* ground-state



148 K. T. Hecht et al. | Spectroscopic amplitudes

rotational band of 2°Ne as well as the K = 2~ band with band head at 4.97 MeV
are important to an understanding of the experimentally determined strength func-
tions 28 ~33), The important channels for this problem involve two-cluster systems.
For this reason further developments are made in the BS transform technique to
facilitate the calculation of norm and overlap matrix elements for such cluster systems
made up of two fragments. Norm and overlap matrix elements are particularly simple
in the approximation in which particles in different fragments are described by os-
cillator functions of the same . In this approximation norm and overlap kernels
are SU(3) scalars *%), leading to considerable simplification. For the 4 = 24 system,
e.g., the equal length parameter oscillator approximation should be very good. The
generalization needed for the calculation of the interaction kernels and cluster systems
with fragments involving oscillator functions of different size are reserved for a future
study. (A detailed discussion of the interaction kernel problem for simple 3- and 4-
cluster systems can be found in ref. 24)).

The method, (outlined in sects. 2 and 3), involves two basic steps:

(i) the calculation of the BS transform of the norm or overlap kernels and

(ii) the expansion of this transform in terms of suitably SU(3) coupled Bargmann
space functions. The coefficients in these expansions give the numerical values of the
norm or overlap elements. The method thus reduces the calculation of complicated
multidimensional integrals to purely algebraic techniques involving the algebra of
SU(3) recoupling transformations.

Two variants of the basic calculational technique have been developed. In the
first, BS transforms are calculated directly for the full A-particle system of arbitrary
space symmetry characterized by full 4-columned Young tableaux. In this method the
BS transforms are expressed in terms of a few structure and exchange coefficients
which have to be evaluated for each case; but norm and overlap matrix elements are
given in terms of one simple, universal formula. This method is particularly useful
for lighter systems. It is illustrated in detail, in sect. 4, by the A = 12 system built
from two °Li fragments which can couple to space symmetries [4422], [4431] and
[444]. As a further illustration overlap matrix elements with the x+®Be cluster
system are also included. In heavier systems this method becomes somewhat cumber-
some since the total number of structure and exchange coefficients needed for the
calculation of norm and overlap matrix elements can become large. In a second vari-
ant of the general method, the BS transforms are therefore first calculated for n-par-
ticle subsystems of orbital symmetries characterized by single-columned Young
tableaux (totally antisymmetric space symmetries). The Bargmann space transforms
for the full A-particle system are then built from these by suitable combinations of
these “single-column” functions. The calculation of the “single-column” BS trans-
forms is quite simple. A fairly extensive compilation is given in appendix C. The
method has the disadvantage that the final form of the analytic expressions for norm
and overlap matrix elements now varies from case to case since different combinations
of SU(3) recoupling transformations are now needed for each specific-case.
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Two specific applications are given of this technique. In the first, (sect. 5), analytic
expressions are given for the norms of binary-fragment cluster systems in which a
light fragment of mass number f, f < 4, has Os internal excitation only. This light
fragment is combined with a heavy fragment of mass number 4 —f, with A—f < 24,
where for simplicity it is assumed that the heavy fragment is in the state of highest
possible space symmetry and highest possible SU(3) (oscillator quanta} symmetry.
This is a useful example since the 5cases, 4 S A—f<8,8< A-fS12,12 5 4-f
$16,16 £ A—f < 20 and 20 £ A—f £ 24 illustrate somewhat different problems
in the recoupling technique,

A second application, (sect. 6), gives the spectroscopic amplitudes for the most
important open channels for the 2C+ '2C “molecular resonances”. Under the as-
sumption that the most important fine structure components of these resonances are
related to “molecular states”, the !2C+ !2C channels are restricted to the !2C bands
of SU(3) symmetry (Ax) = (04). That is, the excitation of each !2C nucleus is restricted
to the 0%, 2%, 4, (Au) = (04) rotational band of !2C. The other channels to be in-
cluded are '°O+®Be(0*, 2%, 4*), o+ 2°Ne, including the states of the ground-state
K = 0% band of 2°Ne in the SU(3) approximation (Ay) = (80), and the K = 2~ band
of 2°Ne, (band head at 4.97 MeV) which should be approximated extremely well by
the SU(3) quantum numbers (1) = (82); and finally, the **Na+p and 23Mg+n
channels where the excited states of the A = 23 nuclei are approximated as members
of (Au) = (83) rotational bands.

To facilitate the discussion, a number of useful properties of SU(3) recoupling
coefficients are collected for easy reference in appendix A. (Some of the notation
pertaining to SU(3) is carefully defined in this appendix.) To keep the algebraic mani-
pulations of SU(3) coupled Bargmann space functions to a minimum a number of
subsidiary formulae involving these functions are collected in appendix B together
with a few sample derivations of such formulae.

2. Formulation of the problem; the '2C + '2C resonances

In resonating group calculations, in general, and in the 2C+ '2C problem, in
particular, all state vectors are expanded in properly antisymmetrized cluster func-
tions with different fragment decompositions in different channels.

2.1. THE SU(3) COUPLED CLUSTER BASIS

To calculate matrix elements in a cluster function basis by the combination of BS
integral transform and SU(3) recoupling techniques, it is important to expand the
cluster functions in an SU(3) coupled oscillator basis. For a 2-cluster function, e.g.,
made up of fragments of mass numbers f and 4 —f the wave functions are to be ex-
panded in

d[[déf)(ifﬂf)aéA_f)(lA ~tia "’]"“"""x(R)‘QO)]?“’. n
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Here, & is the antisymmetrization operator, & = (A!)™!' Y (—1)°PP, where the
sum extends over all permutations P. The internal wave functions, ¢, of the two frag-
ments are assumed to have good SU(3) (oscillator quanta) symmetry, given by the
Elliott >*) quantum numbers (4,4,) and (4, _ ;u,_ ). The ¢ are functions of f — 1 and
A—f—1 internal coordinate vectors and include the full spin and isospin dependence
of the cluster functions. They are assumed to have good SU(4) and hence good space
symmetry, but the SU(4) quantum numbers are suppressed. To be more precise, for
economy of notation, it will be assumed that each fragment spin-isospin function is an
SU(4) scalar with S, = T, = 0,S,_, = T,_, = 0, as in the *2C+ >C cluster system.
The square brackets denote SU(3) coupling. (If the fragment spin-isospin functions
are not SU(4) scalars, the square bracket is interpreted to include the SU(4) coupling
of the internal functions, ¢). If the product (A,p,) x (4,- ;14— ;) is not free of outer
multiplicity, a multiplicity label p must be included with (4,u,) (see appendix A). The
resultant coupled function of SU(3) symmetry (Ay) is characterized by the subgroup
labels a. These can be chosen in any convenient basis, e.g. the kJM basis *®) which
includes the angular momentum quantum numbers JM,; or a cartesian oscillator
basis, or the closely related U(1) x SU(2) subgroup basis, labeled by the Elliott in-
trinsic quantum numbers ¢AM ,. The relative motion function is an oscillator func-
tion in the relative coordinate vector

R= - [A%f]t(%[rﬁ +r,]> + [ﬂ?ﬁ[rﬁﬁ +r,,]>, )

where the single-particle position vectors, and hence R, are dimensionless variables.
Each dimensionless r; is equal to the physical single-particle coordinate vector
(measured in cm or fm) divided by [#/mw]?. The equal length parameter approxi-
mation is made; that is the same w is used for particles in fragments fand 4 — f.

A basis, in which the fragment spins, I, I ,_ , channel spins I, and orbital angular
momenta L, are good quantum numbers, can be expanded in these SU(3)-coupled
cluster functions by means of SU(3) > R(3) reduced (double-barred) Wigner coef-
ficients 36)

A Ad-spa-
o ((4’5:,’1‘;’) x ¢¢ A H ))Ic X XiQO))JMJ

= Z Z <(j'fuf)xf1f; (AA—f“A—f)K'A—fIA —f”('lcuc)’cclc>p

(Acede (Auyx
p

X (Aol (QOLI|(Ap)ed >
X d[[(b(lﬂlﬂ X d)(lA -sha —f)](lcuc)p X X(QO)]S.'I‘;&J- (3)

The round brackets now denote ordinary angular momentum coupling. (Fragment
spin-isospin functions are again assumed to be SU(4) scalars.) The SU(3) coupled
form, eq. (1) has a number of important advantages.

(i) The complications associated with the details of the angular momentum cou-
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pling can be avoided till the very last step of a calculation. Matrix elements in the
SU(3) coupled basis can be expressed solely in terms of (subgroup label-independent)
Racah or recoupling coefficients. Dependence on fragment and channel spins can
be introduced in the last step of a calculation by means of eq. (3).

(ii) Norm and overlap matrix elements for several channels are handled at once in
the SU(3) coupled basis. All members of SU(3) bands of (A,x,) and (4,_ ;p,_ /) are
included in one common formula.

(iii) Since the .« operator is an SU(3) scalar, its matrix elements are diagonal in
(2w, and the eigenfunctions of the norm and overlap kernels are the SU(3) coupled
functions of eq. (1) or linear combinations of such functions with the same final (Ay).
This important point was first stressed by Horiuchi *#) and is very useful in identifying
the Pauli-forbidden components of the cluster basis. This point can be illustrated by
the 12C+ 12C cluster decomposition of the 4 = 24 system. With !2C internal func-
tions of SU(3) symmetry (A u;) = (04), (A4- p,-;) = (04), the possible channel
internal SU(3) quantum numbers are (4 .4,) = (08), (16), (24), (32) and (40). For such a
system of two identical fragments, however, the symmetrically coupled internal
functions with A + u, = even, (44,) = (08), (24), (40), can couple only with relative
motion functions of even @, (and hence even L), and have positive parity; whereas
the antisymmetrically coupled internal functions with A+ u, = odd, (4.u,) = (16),
(32) couple only with relative motion functions of odd Q and have negative parity.
(The o operator destroys functions with 4.+ u.+Q = odd.) The dominant compo-
nents of the quasi-bound sub-Coulomb resonant states of this system can be expected
to have large overlaps with shell-model states of 2hw oscillator excitation. Hence
cluster states with Q = 14 = [Q(minimum Pauli-allowed)+2] are of particular
interest. The possible (4.x,), (Ax) combinations of such states are listed in table 1.
There are 14 possible 0™ states in this space. In an ((I,1,)I.L)0* angular-momentum
coupled basis these correspond to the (I,I,) combinations: (00), (22), (44) with
1, = 0;(02), (24), (22), (44) with I, = 2; (04), (24), (22), (44) with I, = 4, (24), (44) with
I, = 6; and (44) I, = 8; all with I, = L, where only symmetrically coupled (I,1,)

TABLE 1
Possible SU(3) quantum numbers for the >C+'2C cluster functions with Q = 14, (2hw oscillator
excitations)

(Aen) ()

(14, 8) (M

08 12,6 11,5 10, 4

@ a3y a26 ALy a0y ¢y @ &)

(16,4) (15,3) a3, 1) (11,2
(29 (4.5 (13, 4) (12, 6) (11, 5) (14,2) (12,3) (10,9 (93) (82 (12.0) (10,1)
(40) (18,0) (16, 1) (14,2) (12,3) (10,9

1
Pauli-forbidden
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are possible. Seven of the 14 0" states are completely Pauli forbidden. The norm ma-
trix has 7 zero eigenvalues. In the ((I,1,)I.L)0* basis, however, the determination of
the 7 Pauli-forbidden vectors involves the diagonalization of a 14 x 14 matrix. In the
SU(3) coupled basis states with J* = 0* occur only in representations with A = even,
u = even. Of these, the five 0* states with (iu) = (18, 0), (16, 4), (14, 8), (12, 6)* can be
identified at once as completely Pauli-forbidden since the A = 24 shell-model space
of 2hw oscillator excitation has no states of these high SU(3) symmetries. In addition,
it can be seen that there is only one 2hw shell-model excitation of SU(3) symmetry
(14, 2) in the A = 24 nucleus, the shell-model state |s*p**[sd®(82)pf>(60)](14, 2)0* ).
One linear combination of states with (4.u,) = (24), (40) and (Ay) = (14, 2) must
therefore be Pauli forbidden. The identification of this Pauli-forbidden state, however,
is now part of a 2-dimensional (rather than a 14-dimensional) eigenvalue problem.
The 7 Pauli-allowed states with Q = 14 and J™ = 0* have SU(3) quantum numbers
(14, 2), (12, 0), (10, 4)2, (82)?, (60). Of the 40 possible states with Q = 14, J* = 2+, 20
are completely Pauli forbidden; and of the 57 states with Q = 14, J* = 4% 31 are
completely Pauli forbidden.

2.2. THE '*C+'*C RESONANCES

Much of the motivation for the development of the techniques of this investigation
comes from an attempt to understand the socalled molecular resonances *7) in the
12C 4+ 12C reactions in terms of such a microscopic description of this system. Al-
though a large number of theoretical studies of these resonances seems to confirm
the usefulness of the quasi-molecular picture, an interpretation of the gross structure
behavior of these resonances may be possible without invoking a model of molecular
pocket resonances 38 ~4%), Evidence for the nuclear molecular picture must thus be
sought in the fine structure of these resonances. The large number of closely spaced,
narrow fine structure components are the distinctive feature of the '2C+ !2C res-
onances. A simpler fine structure is observed in the 0 + 10 resonances, for exam-
ple. In the language of the SU(3) coupled cluster basis, this may be related to the
much richer number of possible (4 u,), (Au) values in the *2C+*2C system. Most
recent theoretical interpretations make use of some variant of the Imanishi-Nogami
model #!), based on an internal excitation of the *2C nuclei 2~ 4*). The band crossing
model of Kondo et al.*?), in particular, reproduces some of the fine structure observed
in particular exit channels. As recently pointed out by Berger and Gogny, none of the
theoretical models account for all of the key features of these resonances *°), and
none of the models are sufficiently microscopic to be capable of examining the large
amount of recent experimental information which is now furnishing strength functions
to many different exit channels.

Although a fully microscopic multi-channel resonating group calculation for this
challenging problem is perhaps not yet within reach, it may be possible to gain some
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understanding of the resonance fine structure in terms of predicted spectroscopic
amplitudes for the various observed exit channels. Since specific exit channels often
exhibit markedly different strength factors for different fine structure components of
the excitation functions, it may be possible to gain an understanding of the structure
of specific quasi-bound states of the !2C + !2C system from a knowledge of such spec-
troscopic amplitudes.

For the closely spaced narrow resonances of the *2C+ !2C reactions we assume
that the T-matrix can be approximated in terms of a few partial width amplitudes
r: by

i3
T, = exp (id,+id, )Z D 8“ @)

where the entrance channel ¢ consists of '>C+!2C with I, =1, _, = 0. The exit
channels ¢’ to be included are:

(i) *C+"*Cwith I, =0,2,4;1,_, = 0,2, 4. The *2C nuclei can be in states of
their internal rotational excitations, that is in their ground-state rotational bands
with (A,u,) = (04);

(i) 2+ 2°Ne with I, = 07,2%,4%,6"%,8", with the 2°Ne excitations in the ground-
state K = 0 band described in the SU(3) approximation (4,_,.u,_ ) = (80); or
with I, = 27,37, ..., again within the SU(3) approximation which describes these
members of this K = 2~ band in terms of a pure (A,_ ;p,_ ) = (82);

(i) '°O+*Bewith I§, = 0%,2%,4% ;(1,.4,) = (40);

(iv) **Na+p and 23Mg+n with I* = 3% 3* I* . and {*, 3%, 3%, . .; where
these rotational bands are approximated as members of pure (4,_ ,.u,_,) = (83)
x; = 2 and { bands.

The quasi-bound states |v) are to be built from the states |i> which have the SU(3)
quantum numbers of the *2C+ '2C molecular states

\[[$(12C)°D x @1 2C)OV]Aeke) x (RY VT, D, )

with k = p, u—2,..., 0 or 1. Although all calculations are carried out as algebraic
functions of Q so that '2C+ *2C relative motion functions of complicated shape can
be accommodated, the dominant components of the quasi-bound states can be ex-
pected to have large overlaps with shell-model states of 2hw oscillator excitation.
These are the states with Q = 14 enumerated in table 1. In first approximation
therefore the basis set for the quasi-bound states for the sub-Coulomb resonances
is chosen to be the set |i) consisting of the Pauli-allowed (normalized) eigenvectors
of the states (5), with Q = 14. The expansion coefficients, {(A.u)Au)li>, which give
the eigenvectors of the operator, 1.7, in the *2C + '2C cluster basis, are calculated in
sect. 6.

Since the observed resonances of the same J” value fall within an energy interval
of ~ 2 MeV, and since individual fine structure components may correspond to
quasi-bound states of very similar structure, the penetrability factors associated with
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the partial width amplitudes (I'2,.I'} ) can be expected to be approximately indepen-
dent of v. The relative magnitudes of the ('}, I'} ) for different v’s can thus be expected
to be proportional to the relative magnitudes of the corresponding spectroscopic
amplitudes (4,..4,,), and it may be possible to gain an understanding of the experi-
mentally determined strength functions in terms of the spectroscopic amplitudes,
A, = {v|c)>. These can be calculated in terms of overlap matrix elements of the type
to be discussed in this work.

Some calculations of '2C+ !2C norm kernels and overlap kernels with the 1°0O +
8Be and ?°Ne+a channels have previously been made by Tohsaki-Suzuki*?).
Results are given in a coordinate representation. The emphasis in the present in-
vestigation is on spectroscopic amplitudes for specific ?C+ !2C molecular states,
|i> and the many open exit channels |¢'). Such amplitudes can be calculated in terms
of the overlap matrix elements evaluated in sect. 6. The solution of the quasi-bound
state eigenvalue problem and the details of the coupling of the quasi-bound states to
the continuum states will be left to a subsequent investigation. In the present work,
the emphasis is on development of the techniques necessary for calculating the needed
norm and overlap matrix elements,

3. Formulation of the technique
3.1. OVERLAP MATRIX ELEMENTS AND RESONATING GROUP KERNELS

In the SU(3) coupled basis of eq. (1), resonating group kernels and spectroscopic
amplitudes of the type discussed above can all be evaluated in terms of matrix ele-
ments of the following general type

<[[¢(lfuf) % ¢(/1A -rha —f)](/lcuc) % X(R)(QO)](&M)X(RC.mA)(OO)'(Od
% |[[¢U-f'uf') X ¢(/1A -f'ia -f')](/l'cu'c) % X(R)(Q’O)]‘(z;"’”ull)X(Rc.m.)(00)>’ (6)

where @ = H (a hamiltonian), or ¢ = 1 (the unit operator). The Dirac bracket nota-
tion implies integration over all spatial coordinates and a summation over all spin
and isospin coordinates. A c.m. oscillator function with Ohw excitation, [SU(3)
quantum numbers (00)], has been added so that the spatial integration can be carried
out over all single-particle coordinates r,, i = 1,..., A on an equal footing. R and R
are functions of r; given by eq. (2), with cluster decomposition f, A— f for R, and
[, A—f’ for R.

With the use of SU(3) coupled functions it is natural to expand the relative motion
functions in an oscillator basis. It may, however, be useful to relate the matrix elements
(6) to the usual norm and interaction kernels which are part of the standard notation
of resonating group calculations. (For economy of notation, let us for this subsection
assume that (A;u;) = (A4_;u,-,) = (00) and that ' =f). A resonating group
function can then be written in terms of the cluster functions

Y= d¢f¢A—fF(R)X(Rc.m.)' (7a)
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The relative motion function, F(R), of arbitrary shape can be expanded in J-functions
in terms of the parameter coordinate '), R’,

FR) = fﬂ’é(R—R’)F (R), (7b)
to yield
IZEANES J de”dR’F(R”)*Ji’ (R", R")F(R), (8a)

where the kernels, #(R”, R’), are defined by
AR, R) = {$;$,- SR-RVYR. . )IOA ), HR—R)R.,)>. (8b)

An expansion of F(R) in oscillator functions y(R)%? leads to the matrix elements
J\J\dRHdRrX( ”)(I?Afl))*«—x/‘(ku, R’)X(R’)(LQ'IA({)')

= {ds4- ;ARGPAR, )OO \P ;b4 AR ED AR 1)), (93)
which are of the type of eq. (6). If 0 is an SU(3) scalar operator, (e.g. ¢ = 1), then

X(R'R) =3 A LARPORRIE == 2L+l

P,R"-R). (9b)
Here, A, is the value of the matrix element (9a), with Q' = 9, LM’ = LM. [Note
that this is independent of L, M when ¢ is an SU(3) scalar operator.] The Z(R")2? are
normalized radial harmonic oscillator functions, with Q = 2N+ L; and P,(cos «)
is a Legendre polynomial of the angle between the unit vectors R”, R'. The generaliza-
tion of eq. (9b) for fragments with internal functions [ x ¢“A - Gend s
given in sect. 6, see egs. (109a-b).

3.2. THE BARGMANN-SEGAL TRANSFORM

The calculation of the complicated multi-dimensional integrals implied by eq. (6)
can be reduced to a purely algebraic problem by the introduction of the BS trans-
form 227 24) of the operators (.o¢. For this purpose, however, it is advantageous to
separate the spin-isospin and orbital integrations by standard techniques. The SU(4)
symmetries of the various cluster fragments can be coupled by standard unitary group
technology 48:4%), and the problem can be reduced to one of evaluating orbital in-
tegrals. In the orbital integrals the antisymmetrizer, &/, must be replaced by aYoung
operator, Y, built from products of symmetrizers, determined by the row structure of
the Young tableaux, and antisymmetrizers, determined by the column structure of the
tableaux which characterize the full space symmetry of the A-particle functions.
Either the symmetric or antisymmetric form 3°) of Y can be used since the details of
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the subgroup labeling of the permutation group are unimportant for our purposes.
The BS transform of the operator @'Y can then be introduced by

i=1

H(k, k*) —jdr1 JdrA I] Ak, ry)oyY l_[ Akt r) (10)

The A(k,,r;), [and A(k;,r)], are the kernel functions for the BS transform, here
initially expressed in single-particle coordinates,

Alk;, 1)) = l—[ A(ki,a X )s (11a)

a=x,y,z

where
Alk,, x) = n~texp { — k2 —4x? +./2k x}. (11b)

The 1-dimensional BS transform is a unitary integral transform from #*(R) to a
space of square integrable analytic functions with the measure

dg(k,) = n~* e”***d Re (k,)d Im (k,), (12)
in the complex k, space; with
F(k,) = j ) dx A(k,, x)y(x), (13)
and inverse -
Y(x) = J dgk )A*(k,, x)F(k,). (14)

In the present application, the harmonic oscillator generating function property of
A is of prime importance

Al ) = Y 20K/, (15)
n=0

where x,(x) is a normalized 1-dimensional harmonic oscillator function, and k%/,/n!
is the corresponding Bargmann space transform. The 3-dimensional Bargmann space
function,
Kx Ky ke

= Yoo E (16)

NURIN SN AN

is the BS transform of the 3-dimensional oscillator function x(r)€%. It has SU(3)
irreducible tensor character (Q0) with Q = n +n +n,, and subgroup labels, « =
n.nnn,, here given in a cartesian oscillator basis. Note that in this case n.nn, are
equivalent to the Elliott intrinsic labels with ¢ = 2n,—n,—n,, M, = }(n,—n,), since
A = 42Q—¢) is a redundant label with (Ju) = (QO), i.e. with u = 0. A linear com-
bination of (16) gives the Bargmann space polynomials P{%? in an angular momentum

P92 =
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basis, (« = LM, k = redundant quantum number in this case). The corresponding
function of k* has SU(3) irreducible character (0Q)
MO0 = kxnx xny joans — P(k*0D)_, (1)1 t+Ma an
(3 / x. / y‘\/nz‘ EA—MA 4

where the phase factor associated with complex conjugation 3°) is absorbed in the
definition of the subgroup label &.

In single-particle coordinates the BS transforms of the operators can be evaluated
by straightforward integrations. For O = 1, and Y=Y ¢,P,

P

A

H(k, k*) = Y cpexp { 3. (k;" Pk¥)}, (18)
P i=1

where, for the transposition P = (12), e.g.: Pk¥ = k¥, Pk¥ = k*. Implicitly, all

oscillator matrix elements are contained in such transforms. Specific matrix elements

can be extracted by expansions of the exponentials or by differentiations with respect

to the k;,, k¥; variables, making use of the property
1

\/ I:akn A(Ela xl,):l. = Xn(xl,)* '(19)

To gain the integrals needed for a nuclear cluster or reaction problem, it is necessary
to introduce cluster internal and relative coordinate vectors. For a binary cluster
decomposition into fragments of masses f and 4 —f such coordinates can be intro-

=1 n=2 =1 n=3 £=1 n=4

) oLH

=1 n=%

a)

“

=2 n=4

Fig. 1. Cluster coordinates for binary fragment systems; (a) (1 +n)-particle systems, (b) (/4 n)-particle
systems. Fragment internal coordinates are denoted by a subscript, R, R,, .. ., the coordinate R (without
subscript) is the relative coordinate vector of the two fragments.
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duced by the orthogonal transformation 0,

¥, = Z ()—ivﬁv’ Ei = Z Giva (20)

where the first 4—2 coordinates R; and their Bargmann space transforms K, refer
to the f—1 and A~ f —1 internal coordinates of fragments f and A— f, while the
remaining two are the relative coordinate vector R, eq. (2), and the c.m. vector R, ,, .
For examples, see fig. 1. Similarly, for the cluster decomposition into fragments f*
and 4 - f’, coordinates R, can be introduced by a different orthonormal transforma-
tion O,;

F = Z OiaRw k:" = Z OiaK:' (21)
Using the orthogonality of O (and similarly of 0)

4 4
A(k;, r)= n 344 exp { Z ("'%Ki ’ Ki_%ﬁi ) Ri+\/jKi ’ Ei)}, (22)
=1

i=1
and the BS transform of the operator @'Y can be written

A A

H(R, K*) = J dry...|dr, [T AR, R)OY [] AKKY, R), 23)

i=1 j=1

where both the R; and R; would have to be considered as functions of ry, ..., r if
one were to attempt a direct evaluation of the 34-dimensional integral,
An SU(3) coupled Bargmann space function can be defined by

[P (K 1)“‘210) x P (Kz)(on)]yw = Z (Q,0)a,(Q,0)a,)(Awa> P(K 1)&?‘0)1) (K;),i?’o’, (24)

X2

where the subgroup labels in the full SU(3) coupling coefficient can be chosen in any
convenient basis. A product of two A-functions can then be expanded 2% 2%) by

A(K‘I,RI)A(KZ,RZ) — Z Z [P(Kl)(on) % P(K‘z)(on)];lu)
@122 (Apa

. [X( R1 )leO) X X(Ez)(QZO)];Aﬂ)*- (25)

This is the key to the evaluation of the matrix elements of @Y in an SU(3) coupled
cluster basis, when generalized to the appropriate number of products of A-functions.

Since oscillator excitations associated with most of the internal degrees of freedom
of the fragments are restricted to Os states, most of the A(K,, K;) and A(K?*, R)) expan-
sions can be frozen in their zeroth-order (unit) terms. For a cluster system with 2
heavy fragments the oscillator excitations of a few additional internal degrees of
freedom are fixed in their lowest Pauli-allowed (shell-model) values, while oscillator
excitations associated with the relative motion degree of freedom, R, can be arbitrarily
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high. For the 12C+ !2C cluster system, e.g., (see fig. 1b)

HA(KI,R)— L XXX

(Aette) Q (An) @
x [[[P(KI)MO) x p(Kz)(40)](04) X [ P(K3)(40) x P( K4)(40)]w(04)](1cuc) x P(K)(QO)];M)
X [[[X(El)(40) % X(ﬁz)(40)](04) X [X(Rs)(m) x X(R4)(40)](04)](Acuc) % X(R)(QO)];}"‘)*
(26)

+ terms leading to Pauli-forbidden excitations + terms leading to internal excitations
of the !2C fragments

z Z Z 2 [[P(K (lﬂ‘f) X P(K )().A ~-fha —f)](}.cuc) x P(K)(Qo)]g“)

(Aepe) @ (Ap) a

X [[AR,, .. Y4 x Y(R,, .. JAa-rma-n]Gewd o ((RYQOGw*

where the last shorthand notation can be used for any binary fragment decomposition
involving internal degrees of freedom R,,R,,...; R, R,, ,,...; with Bargmann space
transforms K, K,;...;K,K,,,...;and a single degree of freedom R (without index)
with Bargmann space transform K, describing the relative motion of the two frag-
ments. [ Inthe 12C+ !2C system the internal K-space functions can in fact be expressed
in terms of functions of the two pseudovectors [K, x K,] and [K; x K, ], see eq. (B.5).].
In general, the BS transform of the operator @Y can be expanded by

HK K%)= ¥ Y [[PK,,.. )% x P(K,,.. )0 -ska -9 ket

(Aen QA (Aepc)Q' (A7 p" e’
X PARYCOTSOIPRY, .. o7 > P(K, . Ja =i =100k x PR OIS
X <[[X(R1, .. .)(i.fuf) X X(Ri, .. ,)(1,4 ~fha ~f)](lcuc) X X(ﬁ)(QO)]g-u)'@ Yl[[X(Rp . l)(l]'pf')
X X(RJ’ .o ,)U'A —f'ha ’-f')]()"c“;:') X X(R)(Q’o)]y;:’“”)>. (27)

If the operator ¢ is the hamiltonian, it is useful to imagine that @ has been expanded
in terms of SU(3) irreducible tensor operators and to write eq. (27) in terms of the SU(3)
reduced matrix elements of such operators. Examples of this technique have been
given in ref. 24). If O is the unit operator, (or any SU(3) scalar operator), the matrix
elements of eq. (27) must be diagonal in (Au) and « and be independent of o. Making
use of this property and the relation

PUR x PRI = ; L & PR PR (28)

with d(4p) = the dimension of the representation (Au), see eq. (A.6); the BS transform
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of the unit operator can be written

HEK K= Y Y Y [dap]

(Aeito)Q (Acpe)Q’ (Aw)

X [[[P(Kp .. _)(Afuf) % P(K,-, . ‘)(/1.4 —fha —[)]u»cl‘c) % P(K)(QO)](M)

% [[P(KT’ .. _)(uf'i-f') X P(K}‘, . .)(l‘A ~f'Aa —f')](u’cl’c) X P(K*)(OQ’)](’“D]%O&

% <[[X(R1, .. ')(}fﬂf) % X(ﬁi: . _)(AA -fla —f)](lcuc) % X(R)(QO)]LM),

X YI[[X(Rp . .)(lf'llf’) X X(Rp .. .)(/1,4 ~r'ha —f')](/léu'c) % X(R)(Q'O)];Au)>‘ (29)

The coefficients of the SU(3) coupled K-space functions with specific (4,u,),
(G- pla- g (Aepte), (QO), (Appip), (Ag— prity— ) (Aptl), (Q'0); and (Au) are the orbital
parts of the desired norm or overlap matrix elements.

The calculation of norm or overlap matrix elements can thus be accomplished by
two basic steps;

(i) the BS transform of the unit operator is expressed in terms of the appropriate
Bargmann space variables K, K, K¥, and K*; and

(i) these functions are then expanded in terms of the appropriately SU(3) coupled
K-space functions. The coefficient of the

(AW IPK,, .. ) x ... ]%#) x P(K)YCO)4 x [[PK¥,.. ) x .. ]0
1% P(K*)(OQ’)](M)]BOOOO) (30)

term gives the numerical value of the desired norm or overlap matrix element. The
usefulness of this technique has recently also been exploited by Fujiwara and Ho-
riuchi 27). In its use of the generating function property of A(K, R), it is akin in philos-
ophy to that used earlier by Suzuki ') and Horiuchi 34).

[It should perhaps also be noted that both the operator Y and the separate frag-
ment internal functions P(K,. .)*#?, P(K,, .. .)*4 -t#4 -0 must be properly normalized.
In the detailed application of the technique these normalizations are included during
the process of calculation. Thus, norms tend to unity for separated fragments, i.e. in
the limit Q — 00.]

3.3. CALCULATION OF H(K, K*)

In single-particle k-space coordinates the BS transform of the operator 1- Y has
the simple form of eq. (18). In principle, the transformation to the appropriate Barg-
mann space variables K, ..., K% is straightforward. In practice, it is complicated
because of the large number of terms in the expansion of the Young operator, even
though this can be drastically reduced by using a double coset decomposition 32)
for Y. The transformation from k; — K;, k¥ — K¥ does not change the simple gaussian
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form of H, and
H(K,K*) = Y agexp {3, o, {BXK;- KD}, (31)
[ i

where, in place of a sum over A! permutation operators, the f-sum has been restricted
to a sum over double coset generators with weighting coefficients a;. For a cluster
system of two heavy fragments, each consisting of several subunits with Os internal
excitation, the number of terms in the f-sum is still much too large for practical pur-
poses, so that a more indirect method will be used for the evaluation of H(K, K*).

The general form of eq. (31) is its most important feature. The SU(3) scalar character
of H(K, K*) follows from

(R, K5) = J3LPR) x PR IS0, ()
and its iteration
(K, K3y = n![d(n, ) [ P(K)" x P(K} V]G5 (33)

Of the many internal degrees of freedom most are restricted to Os states, and ex-
pansions of the exponentials of the corresponding K;, K¥ are frozen in their zeroth-
order unit terms. Only a few internal degrees of freedom carry oscillator excitations,
and these carry excitations fixed in their lowest Pauli-allowed values, limiting the
expansion of the exponentials in these K; variables to specific (small) values. Only
the oscillator excitations associated with the relative motion Bargmann space vari-
ables K, K* (without index) are completely unrestricted. It is thus useful to factor
H(K, K*) into three types of terms:
(i) Terms carrying internal excitations only:

exp {Z oK K¥)}. (34)

When expanded, these exponentials lead only to terms of the form
[PK,,K,,.. ) ") x P(K¥, K%, .. )* )50, (35)

where we have used the SU(3) (00) character of (34). The representations (4'y) are
limited to a few possibilities since the number of oscillator quanta associated with
(4') must be smaller than those associated with both (4,u,) and (A1)

C.

(i) Cross terms involving both internal and relative motion degrees of freedom:
exp {2, [o:o(K;* K*)+0,(K - K]} (36)

When expanded, these exponentials lead to terms of the form
[PK,K,,.. )™ x PK*)*™]GRY - [P(R)Y™ x P(K%, K3,.. YO 100, (37)
The possible integers m and m’ are restricted by the requirements

(A1) x (m0) — (4.u,),

(A1) X (m0) > (A42), (382)
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i.e., the excitations associated with the fragment internal degrees of freedom must
couple to resultant SU(3) symmetries (4 ) and (4.4.). With fragment f = f’, (e.g. in
any norm matrix element), (44,) and (A,u,) must carry the same number of internal
oscillator excitations, and hence m = m’ in this case. For overlap matrix elements
between different cluster decompositions; ie. for f+ f' the difference m—m' is a
fixed integer. For a 12C+ 12C—2°Ne +a overlap matrix element, e.g., the 1>C+!2C
SU(3) representation (4.u.) carries 8+8 = 16 internal oscillator quanta, while the
20Ne + a representation carries 20+ 0 internal oscillator quanta, so that m'—m = 4

in this case. In general
m =m+4. (38b)

(11i) The final factor contains only the relative motion K-space variable and has the
form

exp {go0(PXK - K*)}, (39)

where the coefficient o44(p) is a function of the fragment masses and the index p which
counts the number of particles exchanged between fragments. The term in H(k,, k})
corresponding to the exchange of nucleons a and b can be written, [in single-particle
k-space coordinates; with P = (ab)], as

A A

exp{ Y, (k;" Pk¥)} = exp { ) (k;" k¥)—(k,~k;) (k¥ —k})}. (40)
i=1

i=1

For fragments of mass numbers fand 4 — f, the single-particle k; transform into:

fori=1,...f
_ 1 A~ [fP
=y (o [ e )+

forj= f+1,..,4 (41)
- 1 . [A-11
=g a5 [

while the single-particle k¥, corresponding to a cluster decomposition into fragments
f" and A~ f’, transform into:
fori=1,..., f

* 1 A-fF * f! § *
e[S [T
forj=f'+1,...,4 (42)

* _ 1 J i * A-f * *
= g (L o [ ) -

where the terms abbreviated by + ... stand for the 4 —2 K, and K} associated with
the fragment internal degrees of freedom which can make no contribution to o,
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Without loss of generality, assume thata < b, f’ < f. Then

(k,~k) (k*—k¥)=0+... unlessa< f',b> f 43)
i * *) A K - 1 4
(k,— k) (k*—k¥) = [f(A—-f)f'(A-—f')]*(K KM+ ...ifa< f,b>
while
A "4 El
TR k) = K K2+ [ TR R @)

Terms denoted by +... are associated with internal degrees of freedom and have
already been accounted for in factors (i) and (ii).
For a permutation involving p pairs of nucleons with indices a < f',b > f,

f(A— f)—pA
LfA-NfA-

The full H(K, K*) can be assembled from combinations of products involving factors
of types (i), (ii) and (iii), weighted with as yet undetermined coefficients which can be
functions of m, m', (A'y), and p. Since m—m’ is a fixed integer, m’ can be eliminated as
a redundant variable. The K-space functions P“*? are built from fragment internal
degrees of freedom only. Since these are independent of the number of exchanged
nucleons (p), the (1'y’) dependence of the coefficients can be factored from the p-de-
pendence, and the full function H(K, K*) can be assembled by means of m(A'y) de-
pendent coefficients c,(A'y') and m, p-dependent coefficients D, (p) to yield

Goolp) = 45

— C, '
H *) m(A'pn’)
KK = 2 FamOydim T

fA=1-pAd o
D K- K*
X [Z P} exp {[f(A—f)f’(A—f’)]*( )H
x T PR, K, .. JOPKMOPE OPKE, K, .. Jo)

a, B,y

x P(K,K,,.. )" P(KY, K3%,.. 3, (46)

where factors of type (i) and (ii) have been expanded by means of eq. (28) in terms of the
set of subgroup labels «, f and y. The coupling of the internal functions to resultant
SU(3) symmetries (4.u) and (4,u,) leads to

K K*) = Coma'a'y f(A-f)~pA e
LR PR e e ]

x Y 2 r Lm0 (X phi(Acudo > mO)B; (A wppl(Acpcdocy

a,B,7 (Acite)ac (Acuc)ae
X sl X YA ) (X XA NPR 1, K, . )i
x P(K¥, K%, .. J*9 P(K*)Pm P(R)y ). 47
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For the purpose of evaluating the coefficients the subgroup labels in the full SU(3)
Wigner coefficients are best chosen in terms of the intrinsic basis « = ¢, A,M, , . . ..
The constants »(m(A'u'XA.u.)) are renormalization coefficients associated with the
combination of P(K,,,, ... 2nd are built from the [(Q, +Q,)!/Q,!0,!]* renormaliza-
tion coefficients associated with the coupling of Bargmann space K-functions in the
same variable, [see eq. (B.1)]. The details of this renormalization are unimportant
since the renormalization factors can be absorbed by the as yet unknown coefficients
Cmiawy It 18 most convenient to redefine these in terms of the new coefficients y,,;-,;
where (withm' = m+ 4)

Contae e I AN (A YA g) %[ A }‘”*"/2
[d(mO)d(m O)d( X' 1) ]} = nao[ i+ )1 fa-1)

A m/ 2
X [f’(A—f’)] (48)
With this definition the structure constants y,, ;. have the simplest normalization.

It will now be useful to express the BS transform H(K, K*) in three basic forms:

In form I the internal and relative motion K-space functions are retained in their
uncoupled form with subgroup labels o, 8, o, o, specified in a cartesian oscillator or
intrinsic eAM , basis. This form is the one most closely related to a single-particle
basis, and it is this form which is used for the evaluation of the coefficients y,, ;- and
D,(p)

In form II, H(K, K*) is then given in terms of the basic SU(3) coupled K-space
functions of eq. (30) in which all dependence on subgroup labels has disappeared.
Once the y,;,, and D,(p) are known, this form gives norm and overlap matrix
elements directly since these are merely the coefficients in the expansions in terms
of the SU(3) coupled functions (30). Form II is therefore one of the key results of this
investigation.

In form III, the BS transform is also expanded in terms of SU(3) invariant coupled
functions. The order of the SU(3) coupling is now slightly different. This form is most
useful for the evaluation of the single-column BS transforms, since the SU(3) in-
variants of form III can be expanded most easily in terms of scalar products of the
type (K;- K?).

The combination of eqgs. (46), (47) and (48) leads directly to

Form 1

_ ime | A4
R R el I el

f'(A—f)"PA g }:I (Om) p{ £ \(m + 4, 0)
D K- K* P(K*)™P(K
) [Z ) exp {[f(A - & K] 3 PR,

x Y Y Lm0y (AE)(Apa>{m+4,008; (Al Acpe>

(Actc)ae (Acuelae

xP(K,K,,.. ) 4 P(K}, K%, .. g9, (49)
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where this form of H(K, K*) will be most useful for the evaluation of the coefficients
Ymeirwy @nd D, (p). For binary fragment systems the internal function of symmetry
(A1) is to be built by coupling fragment functions of specific symmetries (4,4,) and
(Aa-shq- ) as in egs. (26) and (27). Similarly for functions of symmetry (A;u).

Alternately, form 1I is achieved as follows. Starting with eq. (46), the exponentials
are first expanded in powers of (K- K*)2~™ Four 9-(1y) transformations involving
recouplings

[[(m0) x (0m)}°® x [(Q ~m, 0) x (0, @ —m)]°®]°®
— [[(m0) x (2 —m, 0% x (02)]*,
[L0m0) x (0m')]®% < [(A ) x (' XY} — [[(m0) x ()]*9 x (i 4p)]
[[(Q0) x (0Q)1°% x [(X.4) x (£.4)] V]
- [[(Q0) x ()] ™ x [(0Q) x (4] *¥],
[[(Q—m,0)x (mO)]‘QO’ x [(m+4,0)x (l’u’)](““ﬂ’]““’
- [[(@—m, 0)x (m+4,0)]2* 49 x [(m0) x (A')]*+]*),

then lead to the expansion of H(K, K*) which is in the basic form of eq. (29), needed
for the direct evaluation of the norm or overlap matrix elements. Some of the technical
details of SU(3) recoupling transformations are discussed in appendix A. The first
three transformations, each with three (00) representations, are given in terms of triv-
ial SU(3) dimension factors, [eq. (A.16)]. The 4th transformation is a bona fide
9-(Ay) transformation made up of multiplicity-free SU(3) couplings only. A number
of renormalizations of K-space functions are needed, see egs. (B.1) and (47); and phase
factors are introduced by a change in the order of some SU(3) couplings, see eq.
(A.3b). With these factors the BS transform can be put into the basic form:
Form 11

. A (m+ 4)/2 A m/2
mex = L own £ | 5] el

f(A4-f)-pA Q""‘}[Q!(Q+A)!]*
D Ly " 77
X(Acuc%zu;) { 2 Dulp) [[f A-NruA-r )]*] (Q—m)!

(Q@-m,0) (m0) (Q0)
X Y (= 1prAer st Bra l(m+4,0) (X)) (A | [dAw]?

o Q+4,0) (Au) (Ap)
x [[P(Kn Kz, .. .)(}-cﬂc) X p(K)(Q+A,0)]U-u) X [P(K’f, K’;, .. .)(I"cA’c) X P(K*)(OQ)]("}')]E)OOO&

(50)
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Comparison with eq. (29) gives the matrix element

(LTt X G g Nettd X Q-+ 4, G VI )
X (Ag— gt )N Aepe) x (Q0))(Ap)ocy
l: A :|(m+A)/2|: A ]m/z [Ql@+a)]} (= 1A+ Aetuetdetue
f(A=f) (Q@—m)!

fA-f
(Q—m,0) (m0) (QO)

i (A-f)—pA e
S el o i il o
p=0 ©@+4,0) (Au) (A

An alternate form, involving an expansion in terms of SU(3) Racah or 6-(iu) coef-
ficients, (see appendix A), gives

<[4 )} (A sty f)](j'c”c) x(Q+4,0)](2)al Y
X LA g tar) X (A = g tta— p))(Acte) X (Q0) J(Ap)or

POV d(QO)d(lc#c)]* [ A ](ww[ A ]/
= (=@t Atutdctuc | 2 T el o
=D [ d(Ap) mazu')y'"‘“’ f4-1) f(A=1)

[QUQ+ )T {f’ [ (4= f)—pd ]Q-'"}
% amoxo—m 2 P | FFa= 1 a-r

X Y [dA WY PUAeptXp ANA 1 NOm+ A); (mO) - _ 5 (eh?) - p)

= Y Ymaw)
m(A'w')

p=0

(7u")e
x U((QOX0Q —m)(A" /"N Om+ 4); (m0)_ _; (0@ + 4) )
x U((Q + 4, ONAuNQO)pcAc); (Ap) - — 5 (A1 )p ). (52)

For the special case ' = f, (equal fragment decomposition in bra and ket), this is
in the form of eq. (27) of ref. %), with (A u,) = (A,u.), 4 = 0. Once the structure and
exchange coefficients y,, ., and D, (p) have been evaluated, norm and overlap matrix
elements follow at once from this simple, universal formula. In ref. ) the Y
are tabulated for a few simple examples, («+ heavy fragment cluster norms). The
method used there for the evaluation of the y,,;, is rather indirect, making use of
shell-model techniques. A more direct method will be developed in this work.

Before proceeding, it will be useful to exhibit one more form of the BS transform
H(K, K*). With a somewhat different recoupling path, eq. (46) leads to:

Form 111

HK K* Z | A 4 A (m+ 4)/2 A Im/2
(KK = 2 Jmawolmim+4)1] [f(A—f)] [f’(A—f’)J

S (A — f)—
x[ Dm(p)exp{ f1a—f)-pA K 'K*)}]

=0 [fAa-Nfa-Mek
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X Z (— 1)i-c+uc+l'c+u’c Z (— 1)3-”+n” [d(’lul“‘”)d(}'c“c):r

(ReptNAep?) (A u'yp d(m0)
X U((Acu X AYA" 1 KOm+ 4); (m0)._ _ 5 (44 - p)
x [[P(K,, K,,.. )% x P(K*, K¥%,.. #eta @
X [p(K)(m+A.0) X p(K*)(Om)](u"l")](oooog'

This is the generalization of egs. (15) and (23) of ref.2%).

In lighter nuclei the y,,;.,, can be calculated directly for the full A-particle system
of arbitrary space symmetry, characterized by full 4-columned Young tableaux. An
example will be given in sect. 4. In heavier nuclei the total number of y,,,,-, needed
for the evaluation of eq. (51) can become somewhat large. In heavier nuclei, therefore,
a variant of the above technique is used. BS transforms are first calculated for [+ n-
particle subsystems of space symmetries characterized by single-columned Young
tableaux, (totally antisymmetric space symmetries). The BS transforms for the full
A-particle system are then built by suitable symmetrized combinations of these
single-column functions. For this reason, as well as for simplicity, the calculation of
the y,, 1, Will be illustrated first by the example of such a “single-column function”.
For an I+ n fragment system with totally antisymmetric spatial wave function, (made
up of neutrons with spin-up only, e.g.), the Y operator is a simple !+ n-particle anti-
symmetrizer, /. The cluster function in the bra and ket sides of the matrix element
will be assumed to consist of fragments of I +n and I+ n’ particles, respectively. Form
I of the BS transform, eq. (49), with K-space functions expressed in a cartesian oscilla-
tor or intrinsic eAM , basis is most useful for the evaluation of the y,,,, With
specific choices for the subgroup labels, o, a, the oscillator excitations carried by the
internal degrees of freedom can be uniquely specified since the fragment SU(3) sym-
metries are uniquely determined by the particle number for totally antisymmetric
states carrying minimum Pauli-allowed excitations. For n = 1, 2, 3, 4; 5 and 6, the
fragment (4,u,) must be (00), (10), (01), (00); (20) and (21). The n = 3 fragment, e.g.
must consist of one Os particle and two p-shell particles, coupled antisymmetrically
to SU(3) symmetry (01). An [+n = 2+ 3-particle cluster system of this type, with
(A = (10), (4,u4,) = (O1), can have (4 4,) = (00) or (11) only. With (Au) = (11) and
@, =AM, =331 eg., this must carry two z-excitations and one x-excitation.
These can be extracted from a BS transform by means of eq. (19) by differentiation
with respect to a k;_, where i is a single-particle index associated with the | = 2
fragment, and further differentiations with respect to k;_ and k,, , where j and m are
single-particle indices associated with the n = 3 fragment.

Using the orthonormality of the P(K,,K,,.. )< in the complex Bargmann
space with integration measure, dg(k;,), given by eq. (12),

j‘ . jn }_;[ dg(Kip)P(Kl’ K,,.. )34 AP(K,, K,, .. 3Oy = G iapOcas (04

X, 9,2
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eq. (49) can be converted to a function of the relative motion K and K* only

.- | TIT] 4R DA K PR, K. oty HOPKY, K3, . )
3 iB o JB 1 R :
ia j

= Jf(K K* ;'clln:) (Aepe) (55)

Except for a trivial overall multiplicative constant, this 5#'(K, K*) is identical with a
function of K and K* obtained by a superposition of the operations

I+n

1 oM. OMis . .
[I,],,[ n, ] R Gickin {Z( 1y® exp[Z(k PEN]

Lin; ! (56)

:L(l 0,K}=0,Ke.m. =0

The above operations involve the following steps:

(a) Differentiation with respect to single-particle k-space coordinates of the BS
transform of the (I+n)-particle antisymmetrizers, eq. (18), with cp, = (—1)"P;
o(P) = parity of P.

(b) Transformation of the resultant functions to functions of K, K,,K,,...,K*,
K?,..., K¥ by means of eq. (20) [see also eqs. (41)], for the k;; and by means of eq.
(21) [see also egs. (42)), for the k. In the k,, particle indices i = 1,..., ! belong to
fragment f,i = I+1,..., I+ntofragment A — f. In the k¥, particle indices j = 1,..., I
belong to fragment f’, j=I+1...,I'+n’ to fragment A— f".

(c) In the last step, K, ,, and all K; and K} describing fragment internal degrees of
freedom are set equal to zero. [K, ,, is the K-space variable for the c.m. degree of
freedom of the whole nucleus. ]

The required superposition of such operations involves the coupling of the I+n-
particle internal functions to fragment and channel SU(3) symmetries (4,), (4,44,),
(A, Gyaip), (A1), and (AL4)). For single-column (totally antisymmetric) functions,
only very simple SU(3) Wigner coefficients are needed, and in many cases a clever
choice of o, and a, can restrict the superposition to a single term (e.g. by selection of a
unique SU(3) coupling path for which all Wigner coefficients are equal to +1). In
connection with the operations defined by eq. (56) it will be useful to define a symbol
of I+n and I' +n’ single-particle indices. E.g., with I =3;n=3;I'= 1,n' = 5:

o 0 o0 o0 ¢ 0
k,, ok, 0k, ok 0Ok% Ok%

0ZX; 0z
F(o Oztxfytz:2) = [a

a 1

X % ok® \/El 6k*2 {Z( 1" exp [ Z (k;- Pk*)]}:l (57)

Ki=0,K]=0,Kc.m. =0

A computer code has been written to calculate the functions of K and K* resulting
from these operations 33). A fairly extensive tabulation of such functions is given in
appendix D.
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3.4. A SPECIFIC EXAMPLE

To illustrate the method in detail the following specific example is chosen: a 4-
particle system characterized by a single-columned Young tableau with cluster de-
composition into fragments with I+n = l'+n" = 143 particles. This 4-particle
system is characterized by SU(3) symmetries

[(hu) X Gt M Actte) = [(Aptty) X (et )J(Aettc) = [(00) x (O1)}(O1).

For this simple system there are only two possible values of the indices m(A'w):

@) m=0, (X)=01=(An)= (L))

(i) m=1, (A)=©10).
Except for an overall multiplicative constant which can be absorbed by the coeffi-
cients y,;.,,, the function (K, K¥) A< (o) defined by eq. (55), with a, = o, =
&AM, =143 [SU(3) highest weight for (4.) = (01)] is identical with the single
F-function

Fi (g:g:fx')‘

That is

A A _
. am! D - K- K*
o2 [f(A—f)]m 2. D) e"p{ Pia=n) )H
X Y <mOY; (X WION 45<(mO)B; (X k)pIO1)1 41> PRYFOP(R*KE™

. 8.7
= Yoco1) [Z Dy(p)exp { -p Eﬁjﬁ (K- K*)}] P(R)SsoP(K*)5ne
)
A _
Y110 [g D,(p)exp { e K- K*)}]

x {<(10)200; (10)~ 1 £ J01)1 § £>2 P(K)S Q(P(K)L)
+<(10)— 14 4;(10)200101)1 $ H2 PRI, ,(PKYY, )%

A o A . _
=41 _ K- K* LA * L
{ “"( =1 ))[I+f(A~f)(K’K’+K"K")]} ©8)

where the value of the F-function has been read from table 9, (appendix D). The
needed P are: P(K)§s3 = 1, P(K)yq) = K., P(K)'?,, = K,. The two non-trivial
SU(3) Wigner coefficients have absolute value ,/3. With these, eq. (58) leads at once
to the determination of the y,;.,, and D,(p).

D Yoon =1, Dy0) =1, Dy(1) = -1,

) yya0=2 D) =0, D)= -1
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The evaluation of the coefficients y,; ., and D,(p) through the functions #(K,
K*){eko- 13 thus makes use of the specific construction of fragment internal func-
tions in an intrinsic or cartesian oscillator basis. Once these coefficients have been
evaluated, however, it is vital to make use of one of the SU(3) invariant (SU(3)
coupled) forms of H(K, K*). For present purposes form III is to be preferred. In the
application of form III to the present simple example the only non-trivial U-coef-
ficient, (with m = 1, (X'¢) = (10), (A"u”) = (11)), has the value —3; (using egs. (A.8)
and (A.11), e.g.). Eq. (53) leads to

H(K, K*)©D- (0D — enK-K* {(1 —exp[

(K' K*):D \/§[P(K1’ Kz)(on

x P(K¥, K3)" 1600

B A
fa-1

— __i__ ___A_ i K* i K_\©01
? f(A—f)exp[ fa-p* ¥ )]([[P(K"K”

x PKY, K$)1 10 x [PRY1O x PK*)O VOO0
— 1 /BLIP(R,, K.)°) x PUKY, K319 x [P(R) x PK*)OV] ”]a%%)} . (59)

where the internal K, K, associated with the heavier fragment are illustrated in
fig. 1a, and where

P(K,,K,)°Y = [P(K ) x P(K,)'9)°Y = K, = /YK, xK,]. (60)

SU(3) coupled functions of the type appearing in eq. (59) can be expanded in terms of
simple scalar products. A list of such expansions is given as part of appendix B. E.g,,
eq. (B.10) gives

\/g[[P(KI, Kz)(Ol) % P(KT, Kg)(lO)](l 1) X [P(K)(IO) X P(K*)(OI)](“)]%O(%
=(K- KIZXK* : KTz)—%(K' K*)(KIZ K1), (61)

where it is important to note that K , , is a pseudovector, (SU(3) (01) tensor), in applying
€q. (B.10) to this case. Eq. (61) together with eq. (32) transforms eq. (59) to the form

HOVOD — exp n(K - K¥) {(Klz . K’{‘z)<1—exp[— f(AA— 7 (I?-K*):D

K- K*)} (K- K*)K,, KT,)— (K- K, )K* KT:»}-
(62)

A - [_ A
7a-n"PL " 7a-n

This single-column BS transform is now in a form in which it can be combined with
other single-column functions of this type to construct the BS transform for the full
A-particle system. If this 1 + 3-particle single-column transform is to be used in com-
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bination with other singie-column functions, it is important to note that such an H
must contain the mass numbers f and 4 —f of the full A-particle system. The single-
column factors exp 7(K - K*) combine to make the simple factor exp (K - K*) for the
full 4-columned tableau; the only property of n which is needed is X ;s 7 = 1,
see appendix C.

Since such single-column BS transforms are the building blocks for the construc-
tion of many of the full BS transforms of this work, a catalogue of such single-column
BS transforms is given in appendix C in a format similar to that of eq. (62). Such
single-column BS transforms are particularly useful in heavier nuclei. In light nuclei
a direct evaluation of the complete set of y,,, ;. and D, (p) for the full A-particle system
is feasible and, through form II of the full BS transform, leads to the most direct eva-
luation of norm and overlap matrix elements. This method will therefore be illustrated
by a more detailed example.

4. A detailed example: The ®Li+ °Li cluster system

The ®Li+ °Li binary fragment system is chosen to illustrate the direct method for
the evaluation of the full BS transform. Each ¢Li fragment is assumed to have space
symmetry [42] (with S = 1, T = 0), and SU(3) symmetry (Agup) = (20) with I, = 0
or 2. The possible space symmetries of the full 12-particle system are then limited
to [4422], [4431] and [444]. The coupling of the fragment SU(3) symmetries (4,4,)
X(Aq-ghq—g) = (20)x(20) leads to the possibilities (A.u) = (40), (02), (21). The
possible (Au) are listed in table 2. For relative motion functions fixed in their lowest

TABLE 2
Possible (Ap) for the 6Li+°Li cluster functions

(Am) ()
@0)  (Q+4,0) @+2.1 (@2 @-2.3 @-4.9
02) (@2 @-L1 (©Q-2,0)
@n @+2.1 (@2 (©@-2.3) (@+1,0) @-1Y @-32

.si[[(p(fﬁ)“z](zo’ x ¢(€'6)[42](20)]l4’h’h"l(icuc) x x(R)(QO)]““).

Pauli-allowed oscillator excitation, Q = 4, the possible Pauli-allowed (4_p) values
are uniquely determined by the 12-particle space symmetries:

(i) (A1) = (40) for [444] space symmetry since this is the only (4.u.) value for which
the coupling (4.u,) % (40) can give a resultant (Ay) = (04);

(i) (A.u) = (21) for [4431] symmetry since (4.u.) x (40) — (Ay) = (12) is possible
only with (4., = (21); and

(iii) (A.pc) = (02) for [4422] symmetry since (A.,) x (40) — (Ap) = (20) is possible
only with (4.u,) = (02).
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The zeros required for all other (Ay) values for Q = 4 furnish a strong test for the
full Q-dependent expressions for the overlap matrix elements. For Q > 4 all three
(A.p.) values may be possible for some (Au) values. For this cluster system, made up of
two identical fragments, however, 4.+ y.+ Q must be an even integer, as in the case of
the *2C+ !2C system. As a result the norm matrix becomes a 2 x 2 matrix only for
states of positive parity, (even Q), (Ay) = (Q2); with (4_u.) = (40) and (02).

4.1. STATES WITH [4422] SPACE SYMMETRY, (4 u,) = (A1) = (40)

The evaluation of the y,,;,, and D,(p) through the function s#L*42240N0) g
simple, since the choice o, = o, = ¢.AM, = 800, (n.nn, = 400), automatically
selects the states with (4 u.) = (A.u) = (40). The specific construction of such states
involves differentiations with respect to four k;, variables and differentiations with
respect to four k¥, variables. The construction of states with space symmetry [4422]
isillustrated in fig. 2a. In fig. 2, particles associated with the two different ®Lifragments

See
{a} A 472
A
(]

NN

o) AARZ

m(a[u]n
{c) Zﬁz

Fig. 2. The combination of single-column functions for the 6+ 6-particle system.

are illustrated by white and shaded squares. Initially, squares associated with the 1st
and 2nd rows are assumed to represent particles with Os excitations, squares asso-
ciated with the 3rd and 4th rows z-excitations only, making the initial row symme-
trization automatic. The separated columns denote the column antisymmetrizations
associated with the definition of the F(. . ) functions of eq. (57). In general, such col-
umns can couple to several resultant space symmetries. In fig. 2a, however, this
coupling is unique and gives the single state of [4422] symmetry. For example, the
last two columns can couple only to space symmetry [22]. In general, two [17]
symmetries could couple via [12] x [1%] = [1#]+[211]+[22]. States of symmetry
[14] and [211], however, would correspond to states with at least two Os particles
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in the same fragment and in the same column, and would correspond to two Os
particles with identical spin-isospin quantum numbers in the same fragment. Thus

1422008 = [FOR% P LFG )
= exp (K- K*[(1-e')>—e'B2,]%(1~€')?,  (63)

where these F-functions have been read from table 9. We use the shorthand notation
of appendix D: With ' = f:

A - A
e L N L

The symbol = is defined to mean “equal to within an overall multiplicative constant”.
This constant will always be absorbed by the as yet undetermined y,,;.,. For the
general binary fragment system only the p = 0,m = 0, (A'f) = (4.p.) term can make
a contribution to a norm matrix element of a completely separated 2-fragment sys-
tem; (this corresponds to the limit Q — o0). With the F-functions of appendix D the
normalization of eq. (49) automatically leads to y,;_,, = 1. For a system of two
identical fragments both the p = 0 and the p = f(full exchange)m = 0, (') = (A1)
terms make (equal) contributions to the (Q — o0) norm matrix elements. In this
special case, therefore, the product of F-functions must be renormalized by a factor
of 4. For (A.p.) = (A.u.) = (40) the possible m(A'y’) values are given by

m(A'1) = m(d—m,0). (65)

Ill

Thus
2[(1 e 1Bzz]z(l e {(1 e 281(1 _el)4ﬁgz+e2(1 —el)zﬂ:z}‘

A
= Z Ymi4—m, 0 [f(A f)] [ZD (p)e’] ZP(K)("'O’P(K*)@'”’

m=0

x ¥, {(mO)az; (4 —m, 0)y|(40)800){ (m0)B; (4~ m, 0)y|(40)800). ~ (66)

The SU(3) o SU(2) x U(1) coupling rules define «, B and y uniquely in this case:
p=a=¢eAM, =2m00; y=8-2m00. For this unique coupling the SU(3)
Wigner coefficients have the values + 1. With P(K){9, = K7'/\/m!, eq. (66) leads to:
Yma-mo = 0 form=1,3; and y,4_, 0 = 1 for m = 0, 2, 4; with D,(p) given by
simple binomial coefficients. These are tabulated in the first entry of table 3.

4.2. STATES WITH [4431] SPACE SYMMETRY, (4 ¢ ) = (4 x)) = (40)

States of [4431] symmetry can be constructed from the column antisymmetrizers
illustrated in fig. 2b. The coupling of these columns is no longer unique. In particular,
the coupling of the two [13] symmetries corresponding to single column tableaux
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TABLE 3
Coefficients for the ®Li+ °Li norms

[f1=1[4422]  (An) = (40), (Ap) = (40)

m AH) Vi D,(p)

0 (40) 1 H=1)75)
2 (20) 1 (—D?(,%)
4 (00) 1 H=17(,2,)

[f1=1[4422]  (Ap) = (40),(4u) = (02)

m=2 Y0 =1 D,(p) = —%(,:1)(—1)‘,

[f]=1[4422]  (Apo) = (02),(4p) = (02)

m (}"”,) ym(}.’u') Dm(p)

0 (02) 1 A= —GE)+G22)]

1 (11) 6 H=17[G20)—(2))]

2 (20) 2 H=1P[G2D+20(,2,)+(,25)]

[F1=1[4422]  (Ap) = 2D)(A) = (21)

m () Ym(aru) D,(p)
1) 1 =1L -(,3 ]
1 (30) 4 (=1,
(11) :
2 (01) 1 =120, D, )]
3 (10) 4 (—17(,2,)
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TaBLE 3 (continued)

175

[F1=[4431]  (Ap) = (40),(2p) = (40)

m ('1,#,) ym(l'u') Dm(p)

(40) 1 H=1IO—(20)]

(30) 1 2A-17,%,)

(10) 1 2A=1(,2,)

(00) 1 —H{=1¥[G22) = G23)]

P = O

[f1=1[4431] () = (40), (2ep)) = (02)
All Yy = 0

[f1=1[4431]  (An) = (02),(Asd) = (02)

m (A'w) Ymaruny D, (p)
0 (02) 1 H=P[) -]
1 (11) 4 H=1PG2y)

Lf1=1[4431] (A} = D), (Ap) = (21

m @) Ymaw D,(p)

0 21) 1 H=P[)+(2 )]

1 (30) % 1 l)p 3 3
(11) % 5(_ [(p——l)—(p—Z)]
01 4

2 Ezoi 4 11T( - 1)”(pE 2)
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TaBLE 3 (continued)

[f]=[444] (Aepte) = (40),(Acp) = (40)

m FE)  Ymaw D,(p)

0 (40) 1 (=P[R 4,2 )+(22)]

1 (30) 1 6(— 10,2 )—(,22)]

2 (20) 1 = 2= P[(,2)-7G2)+(,2 )]
3 (10) 1 —6(—17°[(,2)—(,2 5]

4 (00) 1 H=1P[(,22)—4(,2 ) +(,24)]
[f] = [444] (Aett) = (40),(Acpr) = (02)

m=2: Y220y = 1 D,(p) = (—l)p(,,fl)

[f] = [444] (Aepte) = (02),(Aep) = (02)

m ('1’”,) ym(}.’u’) Dm(p)
0 (02) 1 H=17(5)
2 (20) 1 —{-17(,%)

[f] = [444] (Aepte) = Q1),(Ap) = (21)

m (Aw) Ymaru)y D,(p)

o @y K= 1P~ 2]
A I A

2 Se e ~H= 171620~ (2)]
3 3 ~¥-17,2)
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with the shadings of fig. 2b is equivalent to the coupling, illustrated by the ket vectors
to be associated with fig, 2b,

/, a /% @ v 3[% > (67a)
1> | 0w = 1 E >+ 1G> (67b)

Such couplings can be effected by symmetric group or SU(4) coupling techniques.
However, the equivalence with simple 2-rowed couplings, illustrated by eq. (67b),
teduces all coupling coefficients needed for fig. 2 to simple SU(2) Wigner coeffi-
cients. The coupling coefficients used in eq. (67b) are (3 11 —$/S0>, with § = 1 and 0
for the first and second symmetries of eq. (67b). The additional columns of length 4
and 2 lead only to unique couplings. The coupling for the bra vectors associated with
fig. 2b are identical to those for the ket vectors. For the unit operator cross terms be-
tween different symmetries must be zero, leading to the simple matrix element relation
illustrated by fig. 2b. From the inverse of this relation, fig. 2b™ 1,

AR (50 = 2P PGP — 1IFQEE PRGOS  (68)
or

HAA—e'y? - L[ ~eN)~e' B, J(1 —e)~[(1 — ')~ e BLT*(1 —e')}
=m§ ym(4 -m, 0)[2 m(p)ep][f(A f) K:’K:m’ (69)

leading at once to the determination of the y, 4  , o, and D, (p). These are listed in table
3.

4.3. STATES WITH {444] SPACE SYMMETRY, (A s ) = (,1:;,;) = (40)

The coupling coefficients associated with fig. 2c are equivalent to {111 —1JS0)
with § = 2, 1,0. The relation, illustrated by fig. 2¢™*, leads to

Ho[(1—e')—e' B, 1* ~6[(1 ~e')* —e' B ][(1 — ') €' B,,]7(1 —¢")
+1[(1-e")? —e! B2 (1~e')?}

- A
= % me-molZ a2 [ Kok )

4.4. MATRIX ELEMENTS WITH () = (40), (A)) = (21); [4422] SPACE SYMMETRY
From the identity of the two SLi fragments, matrix elements of this type must be
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zero. It is instructive to demonstrate this by explicit calculation. The calculation of
H14422E0- 21 | (again using the simplest possible values of a,, ) is achieved by
simple SU(3) couphngs

HIAGR A, = BRI ) +HFCREIFEIS,)
JFE, P50~ PO G PG DT
= FQL5MFGE ) — FGLIIFEOY = 0, (71)

where we have used:

(@) <(10)200:(10)— 135(20)134> = <(10)—144;(10)200/20)1 34> = /4 in com-
bining F(Z:5,)F(Z,q,.) and F(Zi5,.)F(Zig,0),

(ii) the commutativity of products of F-functions, and

(iii) (20)400; (20)1331(21)533> = —<(20)133; (20)400/(21)544> = /3 in combining
F((;z;"‘;_Oz")F((;z;*;_Ox‘) with F(az;*;_Oz‘)F(Ox*; 0:‘)9 and

(iv) the identity of the F-functions in the square bracket of eq. (71) (see appendix D).

4.5. MATRIX ELEMENTS FOR STATES WITH [4422] SPACE SYMMETRY,
(Ap) = (Ap) = (2D

For the states of lower SU(3) symmetries it will be advantageous to use the fact that
the #MAra3ens) for higher SU(3) symmetries are known from earlier steps in the
process of calculation.

By simple SU(3) couplings

VEHFE B FO% %+ FOE RO FFE )P
= Y <(20)400; (20)1331(A p,)55 3> 144220 me. =

(Acpe)
__\/ %[4422](40) +\/1’yf[44221 *1;—_' (72)

Similarly
VAFG 00 F (600 + FloT0 ) F(Gir0: L F B S))?

= R gl (7
Combining egs. (72) and (73) leads to

Y P08, PR, + FGRSEIF GO IF @)’

= %”[4422](544}0;”,(;;); +%‘#[4422](52%1;,’(52;) s (74)
where we have used the result of 4.4, #2021 — ( 44221601 G} can now be
expanded by means of SU(3) Wigner coefficients {(mO)a; (4—m, 0)7/(40)531> in terms
of the KnOwn Yo —m o) and D,(p), calculated for [h] = [4422], (A.p) = (L) =
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(40) in 4.1. Thus eq. (74) can be solved for #144221211- 21 to give

{{t-eh
—3{3l—eY
+<0)1%

- elﬁzz][(l el) el(Bzz + ﬂxx + ﬂzszx)] + ezﬂxzﬁzxﬁfz}(l e
75> ﬂzz
33 (20)400; |(40)55 552218, + 3’ (1 — ') 41, 52./31}

~e'(1—¢")*[¢(20)400; (20)133/(40)

_ 1,0(4422121),(21)
=3 534,544

Z YmawyM

M(lu)

[f(A f)] (2 eDnp)]

x 3, PK)TOPK* ™™ 3 {(mO)es; (X wnl(21)53 52,

where, for (A1) = (4.4,

TABLE 4

CoefTicients for the °Li+ SLi—a+8Be overlaps

179

(75)

= = (21), the m(A') values in the sum are restricted to the

[f] =[444] (Acttda+s = (40), (A 1) 4 6 = (40)

m (') Ymarun D, (p)

0 (40) J3 (=17

1 (30) V3 —2(-1yF [(i)—(,,i V)
2 (20) NE (- 1L - 4,2 l)+(p 2]
3 (10) J3 2~ 1)"[( =221
4 (00) J3 (,22)

[f] = [444] (Actt)ass = (40), (At s+ 6 = (21)

m (ll“’) ym(}.’u') Dm(p)

1 (30) 2 (—17G)

2 (20) NE —(=1P[)~ 2]
3 (10) 2 —(=17(,%y)

[f] = [444] (Acﬂc)4+8 = (40)’ (lcy’c)6+6 = (02)
m=2: Yaaoy =+/3  Dy(p) = (—1F()




180 K. T. Hecht et al. | Spectroscopic amplitudes
possibilities:
m=0, (A@)=Q, m=1  (¥y)=(0),011),
m=2 (Ay)=(0,01, m=3 (A =(0).

With a few simple SU(3) Wigner coefficients, eq. (75) leads at once to y,,;.,, and
D, (p) for these new quantum numbers. (The results are tabulated in table 3).

Exactly the same technique can be used for the overlaps between cluster functions
involving different fragment decompositions (f’ # f). The needed F-functions are
included in appendix D. As an illustration, table 4 gives the coefficients needed to
calculate the overlaps between the cluster functions ®Li+ °Li and «+ 2Be by means
of eq. (51) or (52).

5. Norms for simple binary fragment systems

The BS transform in form 1I leads to a very direct evaluation of norm and overlap
matrix elements. In heavier nuclei, however, the total number of structure and ex-
change coefficients can be large so that the direct method based on eq. (51) can become
somewhat cumbersome. In this case it is easier to calculate the full BS transform for
the A-particle system from suitably symmetrized combinations of single-column
transforms of the type illustrated in sect. 2 with the 1+ 3-particle example. In this
method it is advantageous to express the single-column transforms in terms of scalar
products of K vectors with K* vectors, or [K, x K,] vectors, as in eq. (62). A fairly
complete catalogue of such single-column functions is given in appendix C.

The combination of such single-column functions to construct the full BS trans-
form for the A-particle system of proper space symmetry (4.4,), and (A.u}) is partic-
ularly simple for the case of the binary fragment cluster decomposition for which one
of the fragments has Os internal excitations only; e.g. if the light fragment has mass
number f < 4. In this case (1u,) = (4.u.) is determined solely by the heavy fragment.
There is a single overlap integral which gives the norm of such a cluster function.
For simplicity it will be assumed that the heavy fragment has highest possible space
symmetry and highest possible SU(3) symmetry; but this is not essential.

fe e fyle
SR=ss
1 o
3} 5
iy @v s
¢4 a
a’yzf
a+B o= e
vy+0 = Ac

Fig. 3. Single-column functions for the binary fragment system with 8§ < 4—f < 12.
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The case 8 £ A— f < 12, f < 4, will be chosen as an illustrative example. It will
be assumed that the heavy fragment has space symmetry [h hhy] = [44(4—
f—98)] and SU(3) symmetry (A.p) = (4—pu,, u) with p, = A— f —8. The full BS
transform for this case will in general require a combination of the following single-
column transforms; (see fig. 3 and appendix C):

(1) a 14 3-particle transforms with SU(3) symmetry (01) with internal excitations

specified by the pseudo vector K, ,, eq. (62);

(i) B O+ 3-particle transforms, also with SU(3) quantum numbers (01);

(i) y 1+ 2-particle transforms with internal excitations of SU(3) symmetry (10),

carried by the vector K, ;

{(iv) 6 0+2-particle transforms, also with SU(3) symmetry (10).

S0 = exp (K- K {[“ '),z )~ e'[(K- K*XKy, Kt,)

A
fta-1)

"(K : Kiz)(K* : Kfz)]}a(xxz ' Kfz)ﬁ[(l —91XK1 ‘KPH— el(K.' KTXK1 ' K*)]

A
f4-1)
X(KI.K’;)J}- (76)

The symmetric product of these single-column transforms, S,,,;, with « and B factors
coupled symmetrically to (Oy,), y and 6 factors coupled symmetrically to (4,0), and the
resultant coupled to (4.u.), with K, carrying a (40) excitation, and K, carrying a
(1) excitation, has the desired SU(3) symmetry. But, §,;,; will in general be equal to a
linear combination of several space symmetries, (cf. the discussion of subsects. 4.1,
4.2 and 4.3);

(ia) With f < p_ and y = 0, the 4 single-column functions of S, _ 0, couple uni-
quely to space symmetry [44yu f].

(ib) With f2 u, B =0, the 4 single-column functions of S, o ;- ,.a- 1 couple
uniquely to space symmetry [44fu].

(iia) With f S p,and y = 1

1

- petl~f A,
S(f_. Dige— f+ D 1Ae—1) = EH—_?H{44FC+ if 1]+ L.,,.___H{“ i f]_ (77)

t+2~f
This is the generalization of case (b) of fig. 2, with coefficients
e+ 1= M+ 1= =383 — 1)
Hence
HE#S U™ = (042~ 8- e s+ D10e- = e+ 1= NS fu- roa (78)

Similarly:
(iib) With f = u; and g =1,

HW el =y 12— -1+ 1-paa-n—W+ 1= S, 0t~ pa—p (79
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The only other case possible is:
(iii) f = p, = 2. This is equivalent to the case illustrated by fig. 2c and gives

H¥* = 68,,,0—68 111+ 183002 (80)

To transform H(K, K*) into the desired form, eq. (29), it is useful to expand S,;,,.
Binomial expansions of the « and y factors, followed by expansions of the exponentials,
give

Sups = 2 2 LOGIGZ =D

Q=m+ll,mn p

X (.__A__>l+ml:l_ A :lQ—m" 1 (K . K*)I(K K*)I(K . K*);_c—[
f(4-1 PFa=1 Q@—m—pi DR, - K
(R Ry Ky Kty (R K90 -

The combination of P(K,)*<~ %9 P(K,)!?, ..., to gain the desired final form, eq.
(29), by SU(3) recoupling techniques can be achieved through a few key subsidiary
formulae which are tabulated in subsect. B.2, and derived in subsect. B.4. Eq. (B.7)
gives

_ _ _ Ae—
(K, K*(K- K})'(K, - KPy<' = 3, (1 ((, ’;), (=D} 2 A
in) -
x [[P(KI)U"O) x P(K)(IO)](MD x [P(K’f)(m‘) x P(K*)(OI)](EI)]E)OOO’, (82)
where the phase factor comes from an additional interchange in the order of the (0l) x
(04.) = (p4) coupling, see eq. (A.3b). Similarly, eq. (B.9) gives
(K ’ I—(lz)"(K* ’ Kfz)"(Klz ’ KTz)“‘—"(K' K*)Q_"—I
- G+p+2)!
= ¥ (. —n)iQ@-n—1! :
(A0) ( —h— H)'(/H‘l‘ —n+2)!
x [[P(Klz)(ouc) x P(K)(Q 1,0)](1.;7) x [P(KTZ)(MCO) x P(K*)(O,Q—l)](ﬁf)]gooo)_

[d(Aip]* (83)

The combination of the K-space functions of egs. (82) and (83) by the trivial 9-(Ap)
transformation with three (00) representations, [eq. (A.16)], followed by the 9-(Ay)
transformation

[[P(Kl)(lco) % P(K)(IO)](IAD X [P(Klz)(ouc) X p(K)(Q—l, 0)](717)];111)17

(40) (I0) (Zm -
_ Ou) ©@-10) Tp - [
(Acpc) (j'cﬂc) (QO) (iﬂ)
- - p

o~ l)'] (LPk=

x P( Ku)(ouc)](lcuc) X P(K)(QO)]L’”‘), (84
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and the analogous 9-(Ay) transformation in the K* functions, using (A.19), gives the
desired combinations of SU(3) coupled K-space functions. Transformation to the
[(Af) x (X J(Am)p scheme via (A.16), in the first step, introduces a multiplicity label p
in the most general case. [ The p-dependent phase factor introduced by (A.16) is can-
celed by the p-dependent phase factor of (A.19).]

The combination of all recoupling transformations gives

Py ymyi S — p+n A >l+m
Saps = L 2 L LDGIIG-=X-1) (f(A_f)

Q (Awp t,m,n p

A ~m=l Qr 2 A — i)
- 1Yre +Hi+ T+t Ve 8
) [‘ PRa-nl  @eme i g2V —p
@0 @  @p -]°
=D+ p 201 | () Q0 () —
- - Iy

X (u,—n)@—n—N!

LT
!
X [[ P(K.p Kz)(lcpc) x p(K)(QO)](Au) x [ P(K’f, K;:)(uclc} X P(K*)(OQ)](“”](OOOO’. (85)

Eq. (84) gives the internal functions in the form

[P(K,)*<® x P(K, ;)0 ], (86)
This could also have been transformed to the form
[P(R )% x P(K ;)08 eso

1 Atp4+l) A+ o
] [5““ et "(i+1§nc+)1> /lc!lj:!)] [PR ) x PR )V10,  (81)

where, with 4.+ p, = 4, eq. (87) has utilized egs. (60), (B.5), (A.11) with 4,5 = 0, and
(B.1). As in the first variant of our method, egs. (76)}-(80) give the BS transform to
within an overall multiplicative constant which must be determined by the proper
normalization of the fragment internal functions. Eq. (85) is expressed in terms of
properly normalized Bargmann space internal functions, P(K,, K,)%<*<. These are
related to the form (86) by

P(Kx, K2 (Acne) [ Al ﬂc:}&[p(ﬁl)uco) x P(K 2)(031031{1,_-;&,,) (88)
The coefficient of the
[dAWTH[PK ,, K )33 x P(RYQO)) x [P(K* K%)#<4e) x P(K*)0Q #4700
term gives the overlap of the full SU(3), SU(4) coupled f +(4 — f) cluster function
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with itself. This overlap is equal to 1/N2, where N is the norm for the SU(3) coupled
cluster function [(4.4,) % (Q0)}(Aw) of space symmetry [44h,h,]. The final result is:

Case 1. For 8 < A—f £ 12, f £4;A— f fragment of [44u J(A.pn) symmetry,
H = A~ f -8

1 o Q A I+m
— m f- l_ me_ 1 n+p
INGRNOONTE ~  2 Com®G o =12 (f(A—f))

A Q—1—-m
g [“”f(A—f)]

1= DY —mUQ — =)~ DA+ p, +2)!
(=B O~ D —n~ QA+ p.—n+2)!

x Z (_l)xc+l+1‘+,7
(D
(400  (10) A —|?
©Ou) (©-L0) (G -

Tl © G | ®%)
- - P
where
for f = u,
[h] = [44u.f], ¢m = ),
[h] = [44p+1f~1], ¢ = (—f+22O D= (= f+ DO,
for f =z .,
[h] = [44fp] cm = TN,
(Al =[44f+1p=1] ¢ p=(f =42 50— (f — s+ D),
for f = p =2,
[#] = [444], Cm = 6N —6(1 )+ 1)) (89b)

For f =4 a similar result, involving 9 U-coefficients, has been given in ref. 2°).
Similarly for:
Case 2. 125 A—f £ 16, f £ 4; A— f fragment of [4°4— ] space symmetry,
(Apt) = ©Op ), with y. = A— f—12;
1 Chyfe Q-
— C#_l f_: _1p+l
INORNQOGAIT ~ &, n Vo= =1 (o 0y
m Q-m (DY — u)! 2
y ( A ) [l-p A } D=\t p+2! g
f4-1) fA-f) pMpe— 1=+ p. —1+2)!
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where

for f £4—p,;

[h] = [4%4—n.f], o=

[h] = [#4~p+1f-1]c; = G—p— f + D)= @~ p.~ f + 1)),

for f 2 4—p,

(] = [474~u], o = (",

(=147 +13-p o= (f 4+ p+D ) =(f 4+ p+ 10479,
for f=p =2

[A] = [4*], ¢ = 6()—6()+ 1(D). (50b)

The SU(3) recoupling transformations for this case have been illustrated in some detail
in ref. ?°) for the special case, f = 4. The two U-coefficients used there, [eq. (31) of
ref. 2%)], have been written explicitly here, through the use of relations (A.13), and
(A.14), after usc of the symmetry properties (A.8), (A.9), (A.10).
The two cases, 4 < A— f £ 8and 16 £ 4~ f < 20, with u, = 0, are very similar.
Case 3a. 4 S A—f <8, f <4, Ap)=0), a=A4A-f—-4

i f
[N({(a0XQOXAuN]* Q@-m)!

A —m | (mO) (@-m,0) ()]
(f(A f))[ flA- f)T (@~m,0) (m0) (a0) ©1

= (- 1)“*‘2*““}: Culp TN = 1P ==

(a0) (Q0) (4
Case3b. 16 S A—f 20, fS 4 (Ap) = (22,0, a= A~ f—16

1 1 t

[N s oxQOKaaT ~ U 2 el D G

x ( A )m+l[1 p—t ]Q-m ! E;am 0)2m 0) Eiqm_o)2 ™0 Efg) 92)

J(4-f) SA-1) (240) (00) )

where, with b == 1 for case 3a., b = 4 for case 3b..
for f £aq,
[h] = [4af], Cm = ()
[h] =[#a+1f~1] ¢, =(a—f+20 ) ~(a—f+ 1)),
for f = q, (93)
[k] = [4#fd], n = (),
[A] = [#*f +1a-1], = (f —a+ 2 H—(f —a+1)3),
for f =a =2,

[k} =[471], € = 6(2) = 6() +1().
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The 9-(Ap) coefficients needed for these cases are equivalent to SU{2) 9-j coefficients,
and, with 4 stretched couplings, have the simple form of eq. (A.22). Norms for the spe-
cial cases 2+ 2°Ne and «+ '2C have also been given by Fujiwara and Horiuchi 7) in
very similar form.

As a last example we give the norm for:

Case 4. 20 A~ f =24, f < 4; (Au) = (8u) with g, = A~ f-20.

1 B o o (“1)p+j+'
= = m""!‘c_mf m 5f_m_1_t!
(N B OO T
A 2m+ 21+t A Q-2m-—2l-t
1—
) (f(A—f)) [ P f(A-f)]
g!_...__.._ 1NQH At ps At gt Astus
X 0=2m_2—p "V

[ (2n—2r+25)12n—28)Q — 2n+2r — 25— p Q= 2n+ 25— )t ] *
(Q—2n+2r-25)(Q—2n+2s)!

X (2m+ 21— 2n+2r = 25— p)2m+ 21— 2n+ 25— p,)!
(2j4+ 2r—28)12j + 25)12u,—~2j—2s~ p5)3(2uc—2j—2r+2s—pt5)?]*
| Qu,—2j— 2r +28)12u,— 2 — 25) (20— 25— ps) ((2n— 2r+ 25— pu)!

[ @m+21—2n+2r—25){2m+ 21— 2n+25)}(8 = 2m — 21+ 2n— 25— u,)! B
x(8~2m—2l+2n—2r+2s— u)!
(8 —2m—21+42n—2r+25))(8 = 2m— 21+ 2n—2s)!
X (2j+2r =25 — u NQ2j+ 25— p,)!

X flpe) Y, U(Ag st A0 )(ApNQO0): (Bu) - 5 (A3s) - p)

[ (8—2m—21+2n—25,0) (2j+25,0) ()]
x| @me2-2m4250) Qu—~2-250) (i)
(80) (2p,,0) (8u)

8=2m—2142n+25-2r,0) (2j+2r—250) (A1)
x| 2m+20—-2n—2s+2r,0) Qu.—2j—2r+2s,0) (A1)

(80) (2u., 0) (Bu) |

@m420-2m+2500 (Q—2n+2r—25,0) (hapts) —]

x ¥ |(2pu,—2j~2s,0) (2n—2r+2s,0) (Asps) —
&

(Aa42) (Q0) (Aaps) =

p ﬁ
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2m+21-2n+2r—25,0) (Q—2n+2s,0) (Aauy) -

2u.—2j—2r+2s,0) (2n—2s,0) (Asps) (94)
(Aa12) (Q0) (A3pa)  —
— p— p’

The ¢, ,, for [4°h'h"] are identical with the c, , for [4>h’'h"] of case 1., see eq. (89b).

TABLE §
The factors f(u )

u, fu)
0 1
4
1 —
5
4
2 _
55
7
3 —_
11
5 . 72
4 A
4-11-13

The f(u,) are given in table 5. They are related to the normalization of the heavy-
fragment internal wave functions,

[P(K,)®% x P(KS)(ZucO)]gs,‘c),

and are related to 44 (n = p ) — (4+ ) particle sd shell fractional parentage coeffi-
cients. [ The inverse of these numbers can be found in tables A.1 through A.4 of ref. *4).]
The first two of the four 9-(Au) coefficients in eq. (94) are equivalent to simple 9-j
coefficients, eq. (A.21).

In the more challenging of these five cases a few bona fide SU(3) 6-(Au) and 9-(Ay)
coefficients are needed for the evaluation of the norms. These are readily available
through the codes of Akiyama and Draayer 3¢).

Norm and overlap matrix elements are particularly simple in all those cases in
which one of the fragments has an internal function of SU(3) symmetry (00), the
second an internal (4 g) with either 4. = 0, or 4, = 0. All such matrix elements can
be evaluated without the use of bona fide SU(3) recoupling coefficients.

There are other examples of this kind. If one of the fragments is a heavier closed
shell nucleus, such as '®O or *°Ca, the second fragment a nucleus with an internal
function with either 4, = 0, or u, = 0, the SU(3) structure of norm and overlap matrix
elements is identical with that of cases 2 and 3 above. Specific examples of this kind,
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needed for the *2C+ '2C resonance problem, (sect. 6), are the norm of the ®Be+ 160
cluster functions, and the overlap between ®Be+ %0 and «+ 2°Ne cluster functions.
These can also be evaluated from single-column functions tabulated in appendix C
and lead to expressions very similar to case 3. In particular:

(a) Norm of ®Be+'0 cluster functions. With a ®Be internal function of SU(3)
symmetry (44} = (40)

1 6
o 1 O (00) SB (40) R (QO) ().p)'d 160 (00) 8B (40)
[ N((40)(QO)( l”))]z <¢( ) [¢( e) XX( ) ]a: I I¢( ) [(ﬁ( e)
X RYCOTM) = (=12 Y Y (N NN~ 1) TP
imn p
0! (n0) (@—n0) (Q0)
*Q=—m)! ), 76" [1-pfl?™"| 4=n0) (n0) (40) (95)

(40) (Q0) ()

(b) Overlap between 8Be+ %0 and a+?°Ne cluster functions. The overlap matrix
elements are given by

(B0 [H(*Be)** x y(RY@T* M| (@) * V[ S(**Ne)* x y(RYCVTH>
ayLysm (=D*™r [oNQ+4)1]?
MZP()()( T (oD
Q@+m—-10) (I-m0) Q%)

8—3p
(16)2< )[ ] @+1-m,0) (4—I+m,0) (80) (96)
4,/10/ | 4/10
Vio ©@+4,0)  (40) (An)

6. Spectroscopic amplitudes for the '2C+ '2C resonances

The 12C 4+ 12C excitation functions are determined by the partial width amplitudes,
I'* and I'},. For given entrance and exit channels, ¢ and ¢/, and quasibound states v
of very similar structure, the relative magnitudes of (I'},I'2,) for different v can be
expected to be proportional to the relative magnitudes of the product of amplitudes,
(A,.A,.). The spectroscopic amplitudes A4,. = {v|c’) can therefore give some mea-
sure of the relative strengths of the excitation functions observed in specific channels
¢'. The quasi-bound states |v) are to be built from a restricted basis }i). The states |i)
are the Pauli-allowed eigenvectors of the '2C+ '2C “molecular states”

o |[[$(12C)° x ¢(12CYOV] Ak x (R VIR D = A A NAwd, 97

withx = u,u—2,...,00r 1. Thesestates, with Q = 14, are the shell-model components
of 2hw oscillator excitation of the 12C+ 2C cluster functions. The states |i) are the
eigenvectors of the operator 1./, (with eigenvalues different from zero), in this re-
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stricted |(A_uXAw)) basis. States|j) with eigenvalue zero are Pauli forbidden. They
are the states which are annihilated by the operator . The states |i>, with

ALy = Ay (A4, #0), (98a)
and
> = 3 WAsNAD (A XA, (98b)
(Acte)

require quantum numbers (Au)kJ M, as well as an index i, for their full specification.
The transformation coefficients {(4.uXAu)li)> are independent of xJM,, and, for
fixed Q and fixed (A,u,), (A4 ;14— ), are specified by the quantum numbers (4.4,),
(Ag). It will be assumed that the quasi-bound states have the form [v) = Y |i><ilv).
Before attempting to solve the quasi-bound state eigenvalue problem, it will be
interesting to calculate the amplitudes 4, (rather than A4, ), since the relative mag-
nitudes A, for different channels ¢’ may give an indication of the importance of a
component |i) in a particular resonance fine structure peak. The spectroscopic
amplitudes A, are defined by

1
A =5 A1, (980)

that is, they give the projection of the normalized, fully antisymmetrized state i)
on the state |c'.

In this section we calculate the norm and overlap matrix elements needed for the
12C 4+ 12C norm eigenvalue problem, and for the evaluation of the spectroscopic
amplitudes A, for the channels ¢’ enumerated in sect. 2.

The '2C+'2C overlaps. Matrix elements between '2C+*2C cluster functions
of the type

<[[¢(12C)(04) % ¢(1 ZC)(04)](lcuc) 1% X(R)(QO)]L)"‘)I.%
X |[[¢(l ZC)(04) x ¢(1 ZC)(04)](l’cu'c) % Z(R)(QO)]LM» (99)

are calculated most efficiently by the second variant of our method, the “single-
column technique”. Anumber of checks have also been made with the full“4-columned
method” especially for those (4.p.), (A.4,) combinations for which the total number
Of Ypmeauy @and D,(p) is not too large. For states of positive parity, (even Q-values),
the only possible (4,.u,) values are (4,u,) = (08), (24) and (40), so that the norm eigen-
matrix may be at most a 3 x 3 matrix for some (Au)'s. For the states with Q = 14,
discussed in connection with table 1, only (i) = (10, 4) leads to a 3 x 3 matrix.
States with Pauli-forbidden (Ap) values must have zero matrix elements. This so-called
redundant solution test furnishes a check on all calculations. Even more powerful
test cases exist, however. For some (1)@ combinations only a single Pauli-allowed
state may exist, even though the cluster basis has a dimension greater than 1. The

special cases (Au) = (14, 2) and (11, 5) for @ = 14 are examples. In such cases the
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norm matrix can have only one non-zero eigenvalue, corresponding to the Pauli-
allowed eigenvector. The remaining eigenvalues must be zero, even if the number of
channels is increased by including other cluster structures in the basis.

The single-column BS transforms needed for the 12C+ '2C basis can be found in
appendix C. They are the BS transforms of the operator 1./ for 6-particle systems
with cluster decomposition into fragments with [+n = I'+n’ = 34 3 particles. The 3
nucleons in each fragment must couple to SU(3) symmetry (4,u,) = (4,4, = (0O1).
The resultant single-column (4,4,) has the two possible values (4.u,) = (02) and (10).
The single-column BS transforms can be expressed in terms of the relative motion
degree of freedom, K, and the two pseudovectors K, = /I[K,xK,], K3, =
V3K, xK,], which carry the internal excitations of the two *2C fragments, see
fig. 1b. The needed single-column BS transforms are given in terms of the K-space
functions H(3*<#<3(3<#<)y in appendix C. Note that the cross term, with (4 u,) = (02),
(A.l) = (10), is zero because of the identity of the two fragments. The BS transform
for the full 24-particle system is built from the symmetrized combination of these
four single-column functions

2
HEK) = (1) R0 S ATHGOI - HGP PO, 100

The space symmetry is uniquely determined, since four single-column functions of
I4+n = 343 character can combine only to space symmetry [4°]. The final (1 u.)
are built from (4—a) symmetrically coupled (02) representations coupled with a
symmetrically coupled (10) representations. Note that terms with odd-a decouple
from those with even-a. Terms with a = odd can only lead to (A.u,) eigenvalues of
(16) and (32):
(02) gy X (10) — {(06)+(22)+(00)} x (10) — (16) and (32) only

(02) x (10)2, . = (02) x (30) — (32) only.

symm

These lead to negative-parity states only. Terms with odd a are thus split off from the
terms with even a in eq. (100). For positive-parity states

1\ .
HE K, = (ﬁ) X I[HGOP3OM)*
+6[H(g(02)g(02))]Z[H(g(IO)g(l0))]2 +[H(g(10)g(10))]4}. (101a)

The factors 4, (related to the identity of the two fragments), and (4!)~2 are required
to gain the proper normalization of the fragment internal wave functions. In terms of
the shorthand notation

PrchdAene) = [d( lﬂ)]*[[P(Kn, K34)()~cl‘c) x P(K)(QO)](“‘)
% [P(KTZs K§4)(u’cl’c) x P(K*)‘OQ)](“)]?OO) (101b)
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for the basic K-space expansion functions, the last term of eq. (101) can give rise only
to terms 24049 Using straightforward SU(3) recoupling transformations of the
type illustrated by the examples of sect. 5, this term can be expanded by

( 1)m +n+j

l l (K K*) 3(10)3(10) 4 _ 1Q+),+u[d(Q0)
2(4') (RGN =3 B 0 (] B % e

41 n Y8-—m 4+mj21 A )ml:l_ 4 ]Q " Q‘
X Hoon™ XK= )(f(A— NILTPra=n)  @-m!

AR |t n(4— !
x(%) [M:I (n— )41 U((04X0Q)(EAXQ — 1, 0); (uAXOn))

x U((A0XnOXA4XQ ~ n, 0); (ENQONP4OO.  (102)

With(Ay) = (Q+4—2pu, u), u = 0,.. ., 4; the two U-coefficients of this term are equiv-
alent to simple SU(2) U-coefficients, eq. {A.11). (Note that f = A— f = 12.) The first
term of eq. (101a), with a = 0, gives

e(K K*)[ (3(02)3(02))]4 - Z Z (_ 1)Q+2,+p
2(41)? (Ac HAe's) = (08)(24)(40) Q(A)
« [d(QO)d(Ac#c)d(lcﬂc)]
d(Ap)

Z 2 z 25+m J(?)(l)(4 1)(1 )(m)(r)(s)(lz 21

ljmn rst p

N Q' ( A )21 l:l A ]Q 21 ( 1)}.+y
@-20!'\ra-n) | "Pra=nl &lGndai—m o

[(@—j+m—r+s5—1,0) (j—m+r—s+1,0) 40) |
X |(@—j+r—s+t,0) (j—r+s—t0) (40)
| (Ta) (2j—m,0) ) |
[(4—j+m—r+t,0) @d—j+r—t,0) (A
x |(j—-m+r—t,0) (j—r+1t0) (2j—m,0)
 (40) (40) (k)
[(4—j+m—n—r,0) (n+s—t,0) d—j4+m—r+s—1t0)
x | (n+t,0) @4—j—n+r—s0 @-j+r—s+t0)
[ (4—j+m—r+1t,0) @d—j+r—t0 (A0)

x U((HANOQNAANQ — 2j+m, 0); (uAXO, 2j—m))
X U((AuN2j — m, OXApXQ — 2j +m, 0); (AAINQO)) x PiAekoteno), (103)



192 K. T. Hecht et al. | Spectroscopic amplitudes

The three 9-(Ay) coefficients are all equivalent to SU(2) 9 coefficients. This term con
tributes to all three (4_u.) and (Au}) values.

Finally, the middle term of eq. (101), with a = 2, contributes to terms with (4u,
and (A.u,) = (24) and (40) only:

e(l.( . K*)[H(S(OZ)g(OZ))]Z[H(g(10}%(10))]2

[d(QO)d(Zﬁc)d(IiﬁZ)T
d(Au)

2(41)2

Z (__1)Q+).+u3

(Ao HAep’) = (24)(40) Q(An)

53030 A

R DO HEHE
tjmnrst pqg afy

, b 10— 21 py2ep2 Q! A 20+ 8 A Q-21—8
X(a)(y)(ﬂ—a)( q )(p‘a—l—q)(Q__zl_,ﬂ)!(f(A_f)) [:l_pf(A—f)]

(=1 HeAeE [ dayy  PFe-nly!
x(%@ u%,,) d(2) d2j—m+y,0)] 2/(y—p)!

% [0 78 w0+ 3358 mowor 5V e + 350 m@n )

[(2—j+m—r+s—1,0) (j—m+r—s+1,0) (20) |

x| @2—j+r—s+t10 (j—r+s5—10) (20)

L (i) (2j—m,0) (i) |
[Q—j+m—r+t,0) (Q—j+r—t0) () ]

x | (j—m+r—10) (j—r+t,0) (2j—m,0)

| (20) (20) (A7)

[ 2—j+m—n—r,00 (n+s—t,0) R—j+m—r+s—1t0)
x | (n+1,0) Q—j—n+r—s0) (2—j+r—s+t0)
L 2—j+m—r+1,0) (2—j+r—t0) (A

() i-m0) @D |[EE) @j-m0) (@D
x [ (200 (y0) (4 200  (v0) (4f2)

| ety 2j=m+7,0) A"p")| | (Aep)  (2j—m+7,0y (A7) |
x U((AN0Q) ' A" NQ —2j+m—1,0); (uA)0, 2 j—m+ 7))
x U((Apt N2j ~m+p, ONAuNQ — 2j+m—7, 0); (1 p "N QO)P A+ Herd),

where

(104)

(04),
(20),

for (Au) = (24)

(el ={ for (i) = (40),

Similarly, for (1_i.) and (1,u).



K. T. Hecht et al. | Spectroscopic amplitudes 193

The combination of egs. (101)}(104), together with the basic relation (29), now
leads to the norm matrix elements of eq. (99). The states with Q = 14 = [Q (minimum
Pauli allowed) + 2] form the basis set for our model of molecular quasi-bound states.
The eigenvectors |(Au)i> and eigenvalues A; for this value of Q are shown in table 6.

TABLE 6

12C+'2C norm eigenvalues and vectors for Q = 14

<[4 p) x (14, 0))(AwI(Am)i>

(Awi A,

(An,) = (08) Ap) = (29 (A.) = (40)
(14,2) 1 0.009763 0.95806 0.28656
(11,5 1 0.100713 0.98029 0.19758
(12,3) 1 0.040764 0.92236 0.38633
asn 0.032765 1
(10, 4) 1 0.317811 0.91645 0.37586 0.13732
(10, 4) 2 0.086273 —-0.39731 0.81384 0.42404
(11,2 1 0.058844 1
(12,0) 1 0.050513 1
©93) 1 0.318246 0.97842 0.20661
93 2 0.070937 —0.20661 0.97842
1o, 1y 1 0.057773 1
82 1 0.304046 0.99549 0.09492
82 2 0.059327 —0.09492 0.99549
ay 1 0.277100 ]
60y 1 0.252095 1

Pauli-forbidden states with 4, = 0 are not included.
Eigenvectors for Pauli-forbidden states can be constructed from the above, using their orthogonality
with Pauli-allowed eigenvectors.

The quantum numbers xkJM, are omitted since the transformation coefficients are
independent of these subgroup labels. The normalized, fully antisymmetrized state
vectors are given by

1
;1? AN Ap)icIM ). (105)

States with J* = 0" occur only in the 7representations with both A = even, u = even.
States with J® = 2* can have both k = 0 and x = 2 in the 5 cases (Ap)i = (14, 2)i,
(10, 4)i, (82)i, and occur in the remaining 15 (Au)i with k = 1 for u odd, and x = O for
p = 0, leading to a basis of dimension 20 for J® = 2*. The dimensions for J* = 4%,
6* and 8* are 26,27 and 26.

Norm and overlap kernels for general binary-fragment systems. Similar techniques
can be used to calculate the eigenvalues, A,,,,;, and the corresponding eigenvectors,
{[(Ap) x (QOJAwl(Aw)i>, for arbitrary Q, for any binary fragment decomposition
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of the A-particle system. With these numbers a norm or overlap kernel J#(R”, R’)
can be evaluated in coordinate representation. Such a kernel can be expressed as

[cf. eq. (8b)],
H(R",R) = {$d55 (R—R)YR, )\t 9350 0R~ R)Y(R, 1, ), (106)

where the SU(3) coupled internal functions are themselves constructed from fragment
internal functions of good SU(3) symmetry; e.g.,
$oti =2 X Gl Ga stta- Py pla- AR >
Kl ka-gla-y

X (U x plra -cha —f))IL-M(:' (107)

kel Ka-tla-¢

In eq. (107) the round bracket denotes ordinary angular momentum coupling. To
evaluate the kernels in terms of the oscillator matrix elements of the type calculated
in this section, it is necessary to expand the d-functions of eq. (106) in terms of 3-di-
mensional oscillator functions

IR-R") =Y (MREG*rR")GD. (108)
QLM

With this relation and straightforward SU(3) coupling and recoupling transformations
of the type used throughout this investigation, eq. (106) can be put in the form

+
XR,Ry= Y Y [ d ] (= 1)+Atut it

0 Giomoy LA(ACHY)

x Z bt X (QOYHANALID A gz, il (At x (Q'O)J(Ap))
x Z U((ALXQONAUNOQ'); (Ap1) - 5 (Aokto) - P)

X Z <()'c,’tc) c? (}’O#O)KOLOH(XCIIC)K I'C>p

xolo

x (1M LoMo\ILM[R"Y2? x 1(R)©@V]Gok), (109a)

where Q-Q’ is fixed: Q-Q' = A, cf. eq. (38); and where
[dR")@V x f(RYOL Ny, = FUQOIL; (0Q)LIl(Aoto)oLo > R(R)EOR(RYE
LL'

’ il
g [(ZI;: 1)] (= D CLMLOILoM o) Y (R7, R). (109b)

These are the generalizations of egs. (9a) and (9b), where #(R)\€? are again normal-
ized radial harmonic oscillator functions, and the angular dependence is expressed
through the spherical harmonic Y;,, of the angular coordinates of the unit vector
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R’ relative to R'. Egs. (109) can be used to calculate both norm and overlap kernels.
For the former, A = 0. For the latter, the functions ¢'*<#<) are built from internal
functions for fragments f and 4 —f through eq. (107) while, ¢*=*< must be built by
coupling internal functions for different fragments, f” and 4 —f".

12C 4+ 12C overlaps with channels ¢'. Overlaps between the 12C + ' 2C cluster functions
I[(A1XQ0)](Ax)x) and cluster functions with different fragment decompositions in
channels ¢’ are calculated by techniques similar to those used in connection with egs.
(101)-(104).

For the a+2°Ne channels with ¢(?°Ne)*+d = $(2°Ne)®?, the overlap matrix
elements

CILA20YO x G(H2CYO)ek0 x YR, )@+ 0w
x o |[ Yo VP> 'NeY®? x fR, o) ®*7#>  (110)

for positive-parity states are obtained from the BS transform, which in analogy with
eq. (101a), is obtained via the single-column functions H(3*<#<12%) by

4 / _ 3 _
= ﬁ 4!\/—8_! exp {[;((:— ff,;] (K- K*)}{[H(g(oz)é(zo))]‘s

+ 6[H(g(02)é(ZO))]Z[H(g(IO)é(ZO))]z + [H(g(IO)é(ZO))]lt}_ (1 1 1)

H(K,K*),

Expansions in terms of functions #4480 with (] u) = = (08), (24), and (40),
[cf. eq. (101b)], lead to the desired overlap matrix elements. These expansions follow
from the three relations, eqs. (112)(114), below. With f = 12, f' = 4:

\./_li_ Fiﬁ exp {[M:r( K- K*)}[ H(e21eoy)4

f4-f)
= ¥ )) (—1)Q+“u[5d(80)d(Q0)d(/1cuc)]* [QuQ+4)1
(Acpc)=(08)(24)(40) Q(Ap) 2d( A “)[d(40)]2 4( Q _ 4) !

rizs A N/ A N[ fla-f-pa Pt
_1yp(*
* X l)p(”)<f(A—f)) (f’(A —f’)) [[f(A—f)f'(A—f')]*]
X {165(3-#:)(08) + 26(1«:#:)(24) + 16(‘1:#::)(40)}

x U((2,.41,)(40X44)(40); (04)(80) U((B0XQ0)(44X0, @ —~4); (414(40))
x U((Ap XBOXAUXQ —4, 0); (44)(Q +4, Q)P 1B, (112)
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while
1 4 A- T .
-y (—1)Q+A+u[5d<80)d(Q+4, O)T IS [QUQ+ AT (-1
QG 2(40)d(Ap) 175 =0 (@-D! -2

x(4)(4-”')(’.( 4 )“”2< 4 )"2[ f(A=f)—pA JQ"
PRI fa~ f) 4= LLfAa-HfiAa- 13

x U((40)(Q + 4, 0XB0X0Q); (Au)(40))F 120, (113)

(A— +
Famon{ fup| & wofumgereoagioy
5d(Q0) [ (= 1) [QUQ+4)1]

= - 1 Q+A+tyu
ucuc)=z<24)<40> Q(/lu)( ) I:Zd(}»/‘)_! ;2 (@-1-2
f'=a B A 3+1/2 A 1+1/2 f(A—-f)—pA :lQ—PZ
24—ty 1
* L O (f(A . f)) (f’(A - f’) [[f(A — A=
x {4[33128; 2y + 60 uriaor)

x U((80)Q0X62)(0, @ —2); (4u)(20))
X U((AuN60YAUNQ — 2, 0); (62)(Q + 4, Q)P4 <e1B0), (114)

Specific numerical values of SU(3) recoupling coefficients have been used, wherever
possible, to simplify these expressions.

Similar expressions give the overlaps between the '2C+'2C and ®Be+ 'O
cluster decompositions.

Overlap matrix elements between positive-parity states of '2C+'2C and the
?3Na+p or **Mg+n fragment decompositions are particularly simple. With
Pen = $B3) the BS transform for this overlap is given by a single product of single-
column BS transforms

6

11 1B (7] exp {(K - K*)/[23][HGCP N PIHEODL2M],

_ 2
£ W
HK, K%, J24! 816

(115)

where the normalization factor now includes a spin-isospin factor, as well as factors
needed to insure properly normalized '*C+'2C and **Na+p internal K-space
functions, (cf. table 5). An expansion in terms of the proper SU(3) coupled combina-
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tions of the K-space functions leads to the result
CITO(2CY x (20109149 x 1Ry 120 1)
x oA |[[P(E) x PA = 23)83] O x (R, 5 )@

13d(Q0) Tt [QUQ+10)1]}
—(_ +aitu —~1\e
= (=P 1)][30d(Q—1,1):| @—1)!

A ) AA-fe!
% ( flA— f)) MA-DFf(A— 2?2 = \{16\/T1T5(lcuc)(08}5(lcﬁc)(07)

+ %\/z%a(leu c)(24)[7\/—65(1c5c)(2 3 95(11:17:)(1 5)] - \/%6(lcuc)(40)6(lcﬁc)(3 1)}
o (@+10,00  (Au) (4w -
- - p
X U((37)01)(pA)0Q); (38)- _; (1,0 —1)_p), (116)

\J

where the contributions from the direct and the one-nucleon exchange term have been
written out explicitly. (Note that f = 12, 4 = 24). In the ket the nucleon spin-isospin
function ¢(&,) is coupled with the 4 = 23 internal function to a resultant SU(4)
scalar function of SU(3) symmetry (83).

For the a+2°Ne channels with ¢(*°Ne)t<d = ¢(*°Ne)®? with I, . =27,
3-,...,the internal 2°Ne wave functions can be expressed simply in terms of the single-
shell-model component 5%), |s*[ p*}(01)sd)*(81)](82) k = 2JM ), so that the techni-
ques of sect. 3 can be applied with no essential modification. The needed single-column
BS transforms are included in the tabulation of appendix C. The full BS transform for
this overlap then has the form

H(K, K*)+ e(.K - K ')/[5]4}{ [H(g(OZ);uO))]3[H(g(02)§(22))] 1

1
= Ji
B ‘/24s-[5x7x6!]*
+ 3[H(g(02)§(20))]2[H(g(10);(20)]1[H(g(10)§(22))]1
+3[H(g(02)§(20))]1[HG(10);(20))]2[H(g(oz);(22))]1

+[HEUOLe P gRuoLteay1Y, (117)

Despite the seeming complexity of this transform, the expansion in terms of K-space
functions #*#H82) cf eq. (101b), can be carried out quite explicitly. As for eq. (116),
sums over exchange terms can be carried out, and specific numerical values of the
SU(3) recoupling coefficients can be used to reduce the final expression for the overlap
matrix elements to one which depends only on simple Q, (4u) dependent Racah
coefficients.
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[P 2C) Y x G(12C) O] A4 x (R, - 1,)@* > O]PH)
X .sdl[d:(oc)“’o’ x ¢(20Ne)(82)](82) X X(R4_20)(QO)]‘§M)>
! {1k —
= [_Q_(____Q'f'ﬂ5_)_3]_[l +(—=1¢~ ll[zQﬂ_ﬂ L
(2\/3)¢ Q-3)!

1 1
x {(% (ﬁz’,g (331200 080 @inns ) — P57 (0] i u400Gin63)

1 1 1
+5(1cuc)(24) [‘2—16_52_—5 [;—2—]*5(;,;)(55, - 2_9. 52.7 [%31]*5(1;3(63)4' 5‘1“1“55

[ ] 6(}47)(71)])

x U((Q — 3, 0YBO)AuNAest,); (Q + 5, OXARHU((Q — 3, 0X30)A)(82); (QO)(I/?))}

[QWQ+5)1) 0- 190903 1

TN [1+(—1)2 ]2 -4](Q_4)!

{ [13]‘}6(}%“::)(08) + [13]%6“:#&(24) 5(lcuc)(40)
2°-3-5{2-3-5-7-11] * 27-3%-5[2-5-7-11]F © 2°-3-5[2-3-5- 11}

x U(Q ~4, OY9ON AN, t); (Q+ 5, OX54) U((Q — 4, OX40)A11)(82); (QO)(54))
_lee+y7 o1 {[20 '-4] 3[2272-2]

NG L S e T oy

3 203 _1[20-4+2]}

4(Q-3)! 8 (0-4)

(13} 1
55 3pats Qeawaeadamnes — “_“—[—5_]%5 X400 (T nJ
{(,1,7) 25 3[3]*} (At H24)(Au)(73) PER 32 33 (et A0OTD81)

_[Q!(Q+5)!]’} et {[29‘2——2] 20-3 1[2Q_4+2]}
eyt LHCTINTGT Tt ooy

1 13 i 1
X {23 3 [3_7“1]} 5<acuc)(z4)+ 25.3 [77] 5(Acu¢)<40)}
x U((Q@ — 2, OXNTONAuXAcp); (Q + 5, 0X72)U((Q — 2, 0X20)(AuX82); (Q0XT2)).  (118)

Spectroscopic amplitudes, A, Overlap matrix elements such as those given by
eqs. (116) or (118) can now be used to calculate spectroscopic amplitudes for the !2C +
12 quasi-bound states to the most important observed exit channels. In this work no
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attempt is made to solve the quasi-bound-state problem. Instead, we calculate spec-
troscopic amplitudes A,.; for the “molecular” basis |i), (= |(Aw)i kJM,) of table 6).
These may serve as a diagnostic tool since the relative magnitudes of A, for various
observed channels ¢’ may give an indication of the importance of a particular |i) in
a particular fine structure peak. The amplitude A, is given by the projection of the
normalized, fully antisymmetrized state )i on the state |¢') which is specified by the
fragment decomposition f“+ A—f" and the angular momenta I, I,_,, I, and L,
appropriate to channel ¢'. The spectroscopic amplitudes depend on three types of
factors: (i) the amplitudes and normalization factors (4;)~* of table 6 which define the
states |i), (ii) angular momentum independent overlap matrix elements, such as
those given by eqs. (116) or (118) and (iii) the factors which carry the angular mo-
mentum dependence. These are made up of SU(3) o R(3) Wigner coefficients, and, in
some cases, ordinary angular momentum recoupling coefficients. The angular mo-
mentum structure is somewhat different in the three cases.

(i) In the 12C+ '2C channels both /., and I, _ . may be different from zero. Their
resultant I is coupled with L, the orbital angular momentum of the relative motion
function to resultant J: I, +1,_, =1, 1.+L=1J.

(ii) In the o+ *°Ne or '*0O+ *Be channels, I, = 0, and I, _ . may be different from
zero. The coupling is I,_ . +L = J.

(iii) In the 2*Na+ p (or 2*Mg+ n) channels, the nucleon spin, s = 1, is coupled with
the orbital angular momentum, /, of the nucleon-nucleus relative motion function
to resultant j.

The A— f' = 23 states are built from the angular momentum coupled states
(g gt g (L~ S 4 M 4_ ), with S, _ .. = §. Here x is the orthonormalized
K, (L-type K), quantum number *%). The rotational bands in 2*Na and 23Mg are
assumed to have good J-type K-quantum numbers or their orthonormalized «,.
analogue, with k;. = 3 and }, in particular. The transformation to a k. basis is given by

WAg prbae g Yip Syl g g My_p) = Z C'thoa- j,‘('{A—f’#A—_f')KL(LA~f’SA—f')
x'pLg- g
LiopMy gy, (119)
where the coefficients c,,, can be evaluated by the use of egs. (3.2) to (3.6) of ref. 59),

For a specific '2C+ *2C channel, (I 14— )., the spectroscopic amplitude A4,
is given by the overlap of the Q = 14 component of the *2C+ !2C function

(O x A 2COI%P i, X d R i, s
with the state A, *.o¢|i>. This gives the amplitude
A(Apind — (PO ) x 12CU - 5))y)
= 3 O OD 4 LA (At 2; (14, O)L(Ap)icF>

(Acnec)xe
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1

X ¥ =g K[ x (14, 0)T(A)|(Ap)i>

(Acte) Ai
x {[[P(12C)*Y x (1 2C) O] ek x yRYT4 O 1)
x o |[$(*2C)OD x P(12C)OD]Aeke) x y(R)14- VP, (120)

where the double-barred coefficients are SU(3) > R(3) Wigner coefficients, and the
i-dependent factors can be read from table 6. With I, = I,_, = I.. = 0, this gives
the amplitudes, 4, for the entrance channel. These amplitudes are shown in table 7
TABLE 7
A, (GixJ - 12CO*)+12C(0Y)

J=0 J=2 J=4
(Ap)i
k=0 k=0(rl)? K =2 k=0(rl) x=2(r3)? k=4
(14,2) 1 0.02731 0.02555 —0.00048 0.02150 —-0.00173
(11,5 1 0.03952 0.06421 —0.00494
12,31 —0.01201 —0.02086 0.00098
a3, n 1 —0.01688 —0.02797
(10,4 1 0.18866 0.17015 —0.01133 0.12829 —0.03947 0.00119
(10, 4) 2 0.07109 0.07102 0.00091 0.07047 0.00280 —0.00027
a2y 1 0.00368 0.01373
(12,0) 1 —0.04909 —0.04412 —0.03296
93 1 —0.06505 —0.10062 0.00892
93 2 —0.00941 -0.01756 —0.00089
(10, 1) 1 0.02239 0.03757
82 1 —0.10945 —0.09340 0.00951 —0.05794 0.03267
82 2 —0.04527 —0.04354 —0.00040 —0.03958 —0.00138
an 1 0.07302 0.11396
60) 1 0.11834 0.10648 0.08079
M k= 0,2,... for states with 4 = even.
k= 1,3,... for states with g = odd.

for all states |i) = [(AwikJM) with J = 0, 2, 4. We note the following properties of
these amplitudes:

(i) Only states with k = 0 (u = even) and k = 1 (4 = odd) have significant am-
plitudes. Amplitudes for states with x = 2 are so small that such states cannot be
expected to play a role in the **C + *2C resonances.

(ii) The few most significant amplitudes are those for states with A = even, u =
even.

(iii) The large amplitudes for the k = 0 band of states in a given (Au) are only very
mild functions of J.

For exit channels ¢’, such as the o+ ?°Ne or '°O + ®Be channels, with (4,.4,) =
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00), Iy = 0,8, = 0, (Aye pity-p) = (Rt
A - f'+A~ f (AepdI )

= x * [e) x (14, O J AN AR (e L5 (14— 4, O)LII(Apehred >

(Aene)=(08)(24)(40) A
x ([[P(12CYO x ¢(12C) 09 ek x 4R,y ) V)
x A|[[$F x PLLETH4D x fRyo_ (- p) 474013, (121)

where, A =4, for @G(*°Ne)*e# = p(**Ne)®?; and A =5 for G(2'Ne)ted =
d(*°Ne)®?, eg.

In the p-+2*Na and n + **Mg channels, the spin of the nucleon, 5 = 4, is coupled
to the I of the nucleon-4 = 23 nucleus relative motion function, I+s = j, to give
the amplitudes

A Qi = (A popry piepd )

o= e AT C[Acm) x (14, 0)J(2l(A)i>

X Y Capray Aazpttgs gL o g3 (AOMI(ApT

xiLa-5
QlL_,+1) P .
+ ) — | U, - sJ;L,_
x(£V3) [(2s+1x2LA_,+1) U ysThiLa-sd)
x C[[D(*2CYOH x @1 2C) 09 Aekd 5 YR, _ )44 O3
X d'[[q&(én) X ¢(14 —!'#A-J')]U-A ~fhA~1") 5 X(R23— 1)(40)]£lu)>’ (122)

where the states of 23Na (or 2°Mg) are approximated by the states defined in eq. (119)
with S,_, = s = 1. The isospin Clebsch-Gordan coefficient, (+./3), applies to the
cases n+23Mg and p+ 23Na, respectively.

Apart from the angular momentum dependent factors, the magnitudes of the
spectroscopic amplitudes (121), (122), are determined by

1
—5 {[(cpo) x (14, 0) JApN(Ap0)i>
(Aepo)=(08)(25)40) A]
x ([[P(12C)0% x p(*2C) O hette)  y(R)( 140 (hw)
x AN[[PP* x Y] 5 qRYI4TA VP = (f'+ A~ fAp)Ap)i).  (123)
The factors (f'+ A — f'(A.1)l(Ap)i), defined by eq. (123), are shown in table 8. The

combinations of the numbers of tables 7 and 8 show that the state (10, 4)1 can be ex-
pected to make the dominant contribution to the product of partial width amplitudes
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TABLE 8
The factors (/" + A —f (A )N Aw)i)

S+ A-f ()

i

23

o+ 29Ne(80) 160 4+ *Be(40) 31 23;4:((5;)) o+ 20Ne(82)

(14,2) 1 0.6209 0.1225 ~0.3380
(11,5 1 0.3393
(12,3) 1 0.2812 ~0.1570 0 —0.3586
(13,1 1 0.1753
(10, 4) 1 0.3712 0.3836 0.4046 0.0674
(10, 4) 2 0.0630 0.1245 -0.0387 -0.2180
(11,2) 1 0 0.0387
(12, 0) 1
93) 1 0.2445 0.0341
©3) 2 ~0.0104 ~0.0123
(10, 1) 1 0
82 1 0.1708
(82 2 —0.0034
an 1 0.0836
(60) 1

It Ir#, for most of the observed channels ¢’. However, the states (14, 2)1 and (11, 5)1
can make significant contributions to the o+ 2°Ne channels, and the states (93)1 and
(82)1 may be important for the 2*Na+p and 2*Mg+n channels.

[Itshould be pointed out that the spectroscopic amplitudes of tables 7 and 8 and egs.
(120)(122) are conventional spectroscopic amplitudes, using the language of a recent
series of papers by Fliessbach *¢). The so-called new amplitudes would be renormal-
ized with factors A_* for the exit channels. With these factors the entries of table 8
for the *Na+p channels are changed by at most 19;; while the entries for the
o+ 2°Ne(80) channels, e.g., would change from 0.6209, 0.2812, 0.3712, 0.0630, to 1,
0.5907, 0.4958, 0.0842, respectively. Such a renormalization therefore leads to no
essential change in the basic conclusions about the nature of the dominant compo-
nents (Au)i in the various exit channels.]

7. Concluding remarks

Further developments have been made in a method which reduces the calculation
of the complicated multi-dimensional integrals for norm and overlap matrix elements
in a cluster-model basis to purely algebraic techniques involving the algebra of SU(3)
recoupling transformations. The method involves the calculation of the Bargmann-
Segal integral transform of the antisymmetrization operator and the expansion of
this transform in terms of appropriate SU(3) coupled Bargmann space functions.
A new variant of this method makes it possible to calculate norm and overlap matrix
elements for cluster systems made up of two heavy fragments other than closed-shell
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nuclei. In this method, BS transforms are first calculated for n-particle subsystems of
spatial symmetry characterized by single-columned Young tableaux. The BS trans-
forms for the full A-particle system are then built from suitably symmetrized combi-
nations of these single-column transforms. Both in the construction of the single-col-
umn transforms and in their combination, SU(3) recoupling transformations are used
to advantage.

The example of the '2C+2C system illustrates the feasibility of this technique.
Spectroscopic amplitudes have been calculated connecting the normalized, fully
antisymmetrized '2C+ '2C molecular basis states to exit channels with various frag-
ment decompositions of the A = 24 system. These amplitudes may serve as a diag-
nostic tool in an attempt to gain an understanding of the microscopic structure of the
underlying quasi-bound states. The details of this attempt are left to a future study.

The techniques used here in the calculation of overlap kernels can easily be gen-
eralized to include the overlap of an f +(A4— f) particle cluster function with an
(4 — 2)+ 2 particle fragment system, with arbitrary 2-particle excitations, and thereby
lead directly to a calculation of interaction kernels, using similar techniques.
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von Humboldt Foundation through its US Senior Scientist program and extends his
sincere thanks to Prof. H. A. Weidenmiiller for the hospitality of the Max-Planck-
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Hofmann for valuable discussions and acknowledges financial support from the
Universidad Autonoma de Mexico during his stays in Mexico and from the Max-
Planck-Institut fiir Kernphysik during his stay in Heidelberg.

Appendix A
SU(3) RECOUPLING COEFFICIENTS; A COLLECTION OF USEFUL SPECIAL PROPERTIES

Many special properties of the SU(3) recoupling coefficients have been used
throughout the text. These are collected here for easy reference. (Derivations follow
simply from properties given in ref, 36:54:37-59),

A.1. SU(3) RACAH COEFFICIENTS

A.1.1. Definitions. The SU(3) Racah or 6-(4y) coefficients in unitary form, (U-coef-
ficients), are defined by the recoupling transformation

[, YA200) M A1 281 2)P12(A3143) M AP, 2,3+
= Z |[('11ﬂ1[(3-2ﬂz)(lsﬂa)](lzaﬂzs)Pza](Aﬂ)Px,23 e

(A23423)p23p1,23

X UMA s iy XAt XA A3 pta); (Ay 281 2)P 12012, 35 (A23H23)P2301, 23), (A.1)
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where . .. stands for a convenient set of subgroup labels for the irreducible represen-
tation (4y). Alternately, making use of the unitary property and reality of the trans-
formation coefficients,

|[('11H1)[(12#2)(13ﬂ3)](/123#23)P23](/1ﬂ)l)1. 230
= Z ,[[(11#1)(/12#2)]“12#12)/’12(13/‘3)](}*#)/712,3 cep

(A12112)p12£12,3

X U((A o WAoo X AN A3 123)5 (A1 281 2)P12P12, 35 (A23823)P23P1, 23) (A2)

The notation is a straightforward generalization of that introduced by Racah. The
outer multiplicity labels p,,, p;, 3, p23 and p, ,3 are needed to distinguish multiple
occurences of a given representation in the Kronecker products of the recoupling
transformation. E.g., if a specific (Az) occurs in the product (4,u,) X (1,34,3) with
a d-fold multiplicity (d > 1), then the label p, ,, is needed and has the values p, ,; =
1,2,...,d = p; ;3. The conventions of Draayer and Akiyama *°), based on the
upper Gel'fand pattern coupling scheme of Biedenharn and Louck ©°), are to be used
throughout. In this coupling scheme simple symmetry properties survive under
conjugation, (4;,) — (w4,) i = 1,2, 3 in the coupling (4, u,) X (A,44;) = (A3445), as well
as under the interchange (4,u;) < (A3413), (A,1,) = (4,4,). Interchanges (4,u,) <
(A,u,), however, are not simple. In the general case

(A u)Azu))(Aspz)p - - > = Z Mpp',[(A'ZMZ)(Al”l)](i:‘;/‘l:’))p" D (A.3a)

where M, is a d x d unitary (real) matrix. In the case of a multiplicity-free coupling,
however with p,_,, = 1:

M11 = (_1)11+y1+12+u2+13+[l3. (A.3b)
In most of the recoupling transformations used in this work the SU(3) couplings
are free of outer multiplicity, so that all (or many) of the p-labels are unnecessary. In

such cases the p-labels are replaced by a dash or are simply omitted altogether. E.g.,
the following multiplicity-free recoupling coefficient is denoted by

U((A,0) A2 046X 430); (Agati2)— =3 (Aaattz3)- 2)s (A.d4a)
or simply by
U((A10XA 212X A1KA30); (A1 2141 2 MA230423))- (A.4b)

A.1.2. Special cases. Whenever the recoupling transformation is 1 x 1 the U-coef-
ficient has the value + 1; e.g. in recoupling transformation in which (4, 4,) or (4,4,) or
(Asus) o1 (Ap) = (00). Also,

Ul(A s XAz XA 1 N2 22); (Mg 2041 2)p0 5 (00) - )

4+
= (=1 +m+i.2+ll2+l.12+mz‘spp, [;ifj—(f—tl—)z—d%}_)ﬁ—)] , (A.5)
1A A1
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where the dimension of the irreducible representation (4y) is given by

dOp) = A+ Du+ DA+ p+2). (A.6)
But

U((Aq sy Xty A N A3 13X (A3 u3) 5 (00) - _ 5 (A2323)p0)

di +
=(- 1)).1+ﬂ1+13+u3+123+uzscpp’ l:d(j,l(j:;il:ZLs)] . (A7)

In the general case, C,,. is a unitary matrix (and not the unit matrix). In the special case
when all couplings are free of multiplicity, C,,. (= C,,) = +1.
A.1.3.-Symmetry property under conjugation.

U((A 1 XA AN A3 ts)5 (A1 2141 2)P1 201 2,33 (A23l23)P23P1, 23)

= (_ 1)p12max~p12+912, 3max~P12,3+tP23max—P23+01,23 max—P1,23

X U((p A a2 X pAXpas); (#12/112)P12P12, 35 (#23’123)P23P1, 23)  (AB)
A.1.4. Special symmetry properties. For the completely multiplicity-free case
U((Ay s N Ao X AuXA3t3)s (121 2) - — 5 (A23p23) - )
= U((A3p3)Au XN A 1 11); (Aapizs) - =5 (Agatty2) - )
= U((A 1Ay 1y Npts A3 )pA); (A2 5) - — 5 (Ha3ha3) - 2) (A9)

For the special case, with p,5 =1,

U((Ay i XA 20 ANA33)5 (Ay 281 2)P12P1 2, 35 (A23423)-P1,23)

= (= DMrmtastutiatuntistus [d(’llzﬂlz)d('lzsﬂza)
d(Aypy)d(A305)

X U((/llzlr‘l2)(#2/12)(/1#)(/123%3);(/11#&)1712/’1,232('{3#3)—1712,3)- (A.10)

A.1.5. Equivalence with SU(2) coefficients. If all the U(3) [rather than SU(3)] ir-
reducible representations in the recoupling coefficient can be characterized by at most
2-rowed Young tableaux, the SU(3) U-coefficient is equivalent to an SU(2) coefficient;
that is, if

A+2p = A, +2u, + Ay +2u, + Ay +2u;,
then

U((Ay i XAz AN A3 ps); (Ag 281 20 A2 3023))
v (Aaids hay
=Uwal3222°2 2

1 1, L
=(_1)‘}(11+lz+13+l)[(112+1)(223_1_1)]*} {ijl 242 2 12}, (A11)

273 3 Elza
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where the symbol in curly brackets is a conventional angular momentum 6-j coeffi-
cient,

A.1.6. Special values for maximal couplings. A U-coefficient with two stretched cou-
plings of 1-rowed representations has the simple value

alc'(b+c—p)la+b—p)! T
b+a)l(b+)lc—pla—pw!

U((aOXbOYAu)c0);(a+ b, 0)b+c,0)) = I:( (A.12)

with
J+2u=a+b+c

A U-coefficient with one stretched 1-rowed coupling and a maximal coupling of the
type (0a) x (b0) — (0, a— b) has the value

U((0a)(b0)Au)(c0); (0, a—b)b+c, 0))
N [d(O,a—b)]*I: (@—b)lela—p)'(A+a+2)!
B al(

4
d(0a) b+c)!(a—b—u)!(i+a—b+2)!:l - (ADY)

Also,
U((a— b, 0)(bO)uAXO, b+ c); (a0)Oc))

_[ d(c0) ]*[ (a—b)lela—w(A+a+2)! T (A4
“ db+c0) | |alb+o)a—b—p)l(i+a-b+2)! | 14)

A.2. SU(3) 9-(Ap) COEFFICIENTS

A.2.1. Defining equation. The 9-(Ay) recoupling coefficient, in unitary form °'), is
defined by the recoupling transformation

'[[(11#1)()*2/‘2)](11zlh2)P12[(33/‘3)()»4#4)](}-34#34)/’34](}“#)171 2,34
= Z |[[(’11ﬂ1)()~3ﬂ3)]('{1 KY23 3)P13[uz,Uz)('14#4)](1241124)/’24](1/1)!’1 3,24 D

(A13m13M(A24124)
P13P24P13524

(Arp1) (Aa1,) (Aiatty2) P12
(A313) (Aalts) (A3aM34)  P3a
(A13t13)  (Aaattas)  (Ap) P13, 24 |

P13 P24 P12,34

(A.15)

A.2.2. Special cases. Special 9-(Au) coefficients with one or several (00) representa-
tions are frequently needed in this work.

(Aipy) (ui4y) (00) —

(Aaps) (uad3) (00) —| _ mx-p[ d(Ap) :r A16
wy @y 00 —| =T ai i) | (A.16)

’

P p —
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Also, with py;5,... = 1,
(A114) (144) 00) -~
(A3pes) (Aatss) () p3a - [ d(Ay3443) ]*
(A13t1s) (Aattzs) (Ap) p d(Ayp)d(A3p5)
L~ P2a =
) X U(Ay 3 3X01 A AN A4 124)5 (A3143) - D343 (Aa4l24)P24P), (A17)

while, with p,, =1,

(A114) (Aap2) (A py2

(Hats) (Aqps)  (00) — =[ d(A2424) ]*
(A13p13) (Aabza) (A) p d(Zp412)d(A4p14)
P13 - -

X U((A i M paAdXARNA 24 124)5 (A1 3013)P13P5 (Azba) - P12)- (A.13)

A.2.3. Symmetry property under conjugation.

(A1) (A7) (Aiatt1d) P12
(Asus) (Astts)  (A3a3a) P3a
(A1313) (Azattza) (A0 P13,24
P13 P24 P12,34

(A () (M12412) P12
= (— 1)5s®Psmax=p9 (M3d3)  (ade)  (H34d34) P3a
(By3413) (H24d24) () P13,24
P13 P24 Pi12,34

v (AD9)

where the sum over s in the phase factor sums over all six multiplicity labels.
A.2.4. Special symmetry property.

(A1) (Aakz)  (Ayal43) pya
(A3p3) (Aata)  (Azgitas) pag
(A13ky3) (Aaapag) (Ap) P13,24

P13 P24 P12,34

= (= 1)+ m_ 1)p28 max—p24 I:d()n2#12)‘1(134!‘34)‘1(113“13)]*
d(Ay p )R p3)d(Aps)
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(Arat2) (ady)  (Aipy) P2
(A3aptsq) (ads)  (A3p3)  P3a
(Ap) (H24424) (A13813) P13.24

P12.34 P2a P13

) (A.20)

where the sum over A;+ y, factors is a sum over all nine representations.

A.2.5. Equivalence with SU(2) coefficients. If all U(3) [rather than SU(3)] irreducible
representations in the coupling coefficient can be characterized by at most 2-rowed
tableaux, the 9-(Ay) coefficient is equivalent to an SU(2) 9-j coefficient; that is, if

A+2u = A 42u+ A, 4 20, + Ay + 2y + Ay + 21y,
then

(L) (Aapa)  (yapys)
(Asps)  (Aapts)  (Asaltza)] = [(Arz+ DAsa+ DA 5+ D(dpe + D]?
(A13ty3) (Azabas) (A1)
A Ay Yo
x{3s 3, Yaal.  (A2D)

1 1 1
213 2haa 74

where the coefficient in curly brackets is a conventional angular momentum 9-j
coefficient. Note that such a 9-(Au) coefficient is completely free of multiplicities, and
all p-labels are simply omitted.

A.2.6. Special values for maximal couplings. A 9-(Au) coefficient with four stretched
couplings of 1-rowed representations can be expressed in terms of one simple sum:

(4,0) (420) (41 +45,0)
(430) (440) (A43+4,,0)
(A1+43,0) (A4,+44,0) (Ap)

A+ A —)(As+ A, — WA + A3 — ) A+ A, — 1) !jr

= 1A, 14,14, !
P [ (Ay+A2) (A3 + A 1Ay + A3) (A, + A,)!

« g LD : (A.22)
XU 3)1 (a— )13 — %)k + X— 1) Ay 4 X— )] ‘

with
Av2u = A+ A+ A3+ 4,
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Appendix B
PROPERTIES OF SU(3) COUPLED BARGMANN SPACE FUNCTIONS

Manipulations of SU(3) coupled K-space functions which are needed to gain the
basic canonical form of the Bargmann-space transforms are facilitated by several
subsidiary formulae. The more important of these are collected here for easy reference.
(Some sample derivations are given in subsect. B.4.)

B.1. BASIC BUILDING BLOCKS

The SU(3) coupling of Bargmann space functions in the same variable K requires
a renormalization factor. This follows at once from the norm of the K-space oscillator
function.

(DL
[PURY® %) x PRSI = 60, 401,01 [M] PR+, (B.1)

0,!0,!

where a is any convenient subgroup label set; (e.g., « = kLM or eAM ).
The basic building block for the expansion of K-space functions is the scalar product

(K- K¥) = J3[P(K)"® x PK¥)OV]ED. (B2)
This leads to
(K;- K*" = n![d(n, 0)J*[P(K )" x P(K*Y*" ). (B.3)

[ The subgroup label 00 can be interpreted as L = M = Qorase = M (= A) = 0.]
The vector product of two K-space vectors, ((10)-tensors), is a K-space pseudo-
vector, [(01)-tensor],

[K, xK,], = 2[P(K,)°V x P(K,)*O]O". (B4)
This leads to
P((K, x K, )P = /(n+1)![P(K,)" x P(K,)"*]". (B.5)

B.2. COMBINATIONS OF SCALAR PRODUCTS

The combination of two scalar products with one common K-value can be written
in suitably SU(3) coupled form by the use of relations (B.3), (A.16) and (B.1)

(K, - K$Y(K, - K%\ = [a'b!(a+b)'d(a+b,0)]*
X [ P(Kl)(“'” 0) 5 [ P(Kg)(Oa) x P(Kg)(Ob)](O,aM)]goom. (B.6)



210 K. T. Hecht et al. | Spectroscopic amplitudes

Examples of more complicated products are
(a+c—wib+c~w'pE

K, K3)Ky KWK, K** = ) a'b! ML

(K, K3Y(K;- KY)(K, 1) (%) l: a—lb—p)! [(ﬂ)]

X [[P(Kl)(aﬂ, 0) P(K3)(b0)](/1u) X [P(Kf)(o") X P(KT)(O.bw)](ui.)]%OOO), (B.7)

with (Ay) = (a+b+c¢,0),(a+b+c—2,1),(a+b+c—4,2),...,(a+c—b,b)or(b—a—c,
a+c). Similarly,

K- KT)“(KZ ) KT)b(K1 ) K’S)”(Kz - K3y
(a0) (b0) (a+b,0)

= ¥ [@+h)a+c)ib+e) e+l |(0)  (0)  (c+e,0)
G (a+c,0) (b+e,0) (A

X [[P(Kl)(a +¢,0) X P(Kz)(b+e, 0)](1;4) X [P(K:{:)(O,a+b) X P(Kg)(o,c+e)](u1)]8000), (BS)

where the 9-(Ay) coefficient is equivalent to a simple SU(2) coefficient and can by
evaluated simply by means of eq. (A.22). If K is a polar vector, [(10)-tensor ], while
K, is a pseudovector, ((01)-tensor), e.g. K, = [K, x K, ], then

(K- K )(K*- K}(K,  KX)Y(K- K*)°
_ Tetel [a+c—wib+c—wlii+a+c+2)(A+b+c+2)d(Aw]?
(i) (c—wl(A+c+2)!
% [[P(Kp)(O,a+c) % P(K)(a+e,0)](i.u) x [P(K’;)(b +6,0) 5 P(K*)(O,b+e)](u}.)]5000). (B.9)

B.3. EXPANSIONS OF SPECIAL SU(3)-COUPLED FUNCTIONS

In many of the manipulations of K-space functions it is useful to expand SU(3)
coupled functions in terms of scalar products. Particularly useful expansions include

8[ P(Kl)(lo)XP(K}")(OI)](“)X P(K)(IO)XP(K*)(O” (11)](00)
[ L 17150
= {(K; - K*}K-K})—4K, KK - K*)}, (B.10)
[PK) P x PR*ODIID = /4K - K*)[P(K)'? x PK*OV]ID,  (B.11)
ﬁ[[P(KI)(ZO) X P(Kr)(OZ)](ZZ) 1% [p(K)(ZO) X p(K*)(OZ)](ZZ)](OOOO)
= {o(K,  K**(K- K1 —3(K, - KI)}K - K*)K, - K*YK- K})+3(K - K**K, - K})?).
(B.12)

For symmetrically coupled K-space vectors, SU(3) (20)-tensors, it is useful to use the
shorthand notation

P(K,, K,)2 = [P(K,)"9 x P(K,)19]20),
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Useful expressions involving such tensors are
JO[P(K,, K,)*” x P(K%, K$)°¥16
= 3{(K; - KI)XK,  K$)+ K, K3}K, K})}, (B.13)
[P(K,, K;)®® x P(KY, K$)°¥] 2
= 3/HEK, - K[PE )" x PRYOVIED +(K, - KH[PK,)* O x PKEOV)D

+(K; - KH[PK,)' O x P3OV +(K, - KH[PK )Y x POV,
(B.14)

Also,
\/’fj[[p(xl’ Kz)(ZO) X P(KT,Kg)(OZ)](ZZ) X [p(K)(ZO) X P(K*)(O2)](22)] 808))

= (K- KIXK-K3)K, - K*YK,- K*)

+35(K - K*[(K, - K3)K," K3)+(K, - K3)K, " K})]

— (K- KM[(K, - K¥)XK - K%K,  K*)+(K, KK K¥)K, K%

+(K, - K3)K - K*K,- K*)+(K,- K*(K- KK, - K%)]). (B.15)
Similarly,
VBI[P(KY, K3)©? x PK3)OV]D x [P(K)*O x P(R*)°V] D00

= JHK- K3XK* - [K2 x K3])+(K- K3XK*- [K xK3])},  (B.16)

VBI[P(K)** x PR V] x [P(K 1, K,)*® x PR P0G
= VH(Ks K){(K, - K*K, - [Kyx K))+ (K, K*¥K, - [K;xK]D},  (B.17)

Jﬁ[[P(KI)(zo) x p(KZ)(zo)](z 1% [ P(K’{‘)‘oz) x P(Kg)‘“’]“ 2)]%000)
= H{(K, - K})(K, - K3)*—~ (K, K$)K, K})?}).  (B.I§)

B.4. SAMPLE DERIVATIONS

(i) Relation (B.5) can be proved by induction. For n = 1 the validity follows from
eq. (B.4), which is an expression of a simple SU(3) coupling. The SU(3) Wigner coef-
ficients {(10)x, ; (10)a,)(01)y> have the values +./4; with a = z, x, y corresponding to
eAM = 200, —11+4, —14—1 respectively. Using the pseudovector version of
relation (B.1) we can express

11
P(K, x K]0 = [ ML L IR(K, x K,])0% x PK, x K,)OV]0+,

(n+1)!
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Now, assuming the validity for n, (and for n = 1), this can be written
HrRp
PR, < KD+ = | D2 rpg, oo pig,yeorgom
(n+1)
X [P(Kl)(lo) X P(Kz)(lo)](o l)]gO,rH- 1)

(n0) (n0) (On)

(10) (10) (01)
n+1,0) (n+1,00 (O,n+1)

, ()

=2

x [P(K,)"* 19 x P(K,)n* 1,0)](yo,n+ 1

where we have used a 9-(Au) recoupling transformation and the renormalization
eq. (B.1) in the K, space and the K, space. The 9-(Au) coefficient is equivalent to a
simple 9-j coefficient, [see eq. (A.21)]; and, with three j-values of 0, has the simple
value [(n+2)/2(n+1)]%. Eq. (B.5) follows.

(ii) The derivation of eq. (B.7) follows from simple SU(3) recoupling transformations.
Using eq. (B.6) and (B.3)

[(K, K$K, K¥))Ks K’ = [alcl(a+c)lda+c, 0)d(b, 0)]*b!
x [[P(K,)* % x [P(K$)°® x P(K1)©9]* 09 x [P(K5)** x P(K}) ]I
A 9-(Au) recoupling transformation, using the relation (A.16) for the recoupling
coefficient with three (00) representations, yields
(K, - K3Y(K, - KUK K1) =} [alcla+c)ld(in)]*b!
(Au)
X [[P(Kl)(a+c, 0) % P(Ks)(bo)](ln) % [[P(K;)(Oa) X P(KT)(OC)](O"‘+C) X P(KT)(Ob)](ul)]gOOO)'
A 6-(Ap) recoupling transformation on the (ud)-function, together with the renormal-
ization of the K¥ function, gives

[[P(K’;)‘o“’ x P(KT)(OC)](O,a+c) % P(Kar)(Ob)]gd.)

1 b

Use of the symmetry property (A.8) for the U-coefficient converts it to the form of
eq. (A.12) and leads to the value of the coefficient of eq. (B.7).

(iti) The derivation of eq. (B.9) also follows from simple recoupling transformations.
Using eq. (B.3) and the recoupling coefficient

b+t 0a) (0,b+c)(ud)
= U((0a)0c)(AXOb); (0, a + c)(0, b+ c)) P(K$)°? x P(K?Y) 1

U((00X0c)00)(c0); (' 1H00)) = d(3-uy0ep
(K- K,)'(K, K2¥ = [[PUK)” x P(K,)°"]°% x P(K,)°] x P(K*)*V]Q.

A 6-(Ay) transformation, using the special value (A.7) for the multiplicity-free U-coef-
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ficient, together with the renormalization of the K, space functions, yields

KWK - K* = d(0,a+c) 4 (a+c)! +
K- KK, - K*) = [ Ta s C)] [ R }

x [[P(K)“? x P(K,)*** 9]0 x P(K*)V]¢.
Combination with the analogous expression for the two remaining factors gives
(K . Kp)a(Kp . K:)C(K . K*)e(K* . K:)b
_ [d(O, a+ c):r[(a +c) !]*I:d(O, e+ b)il*l:(e +b) !]*
d(a0)d(0c) alc! d(0e)d(b0) elb!
x [[[ P( K)(aO) x P( Kp)(o, a+c)](0c) x P( K:)(cO)](oo)
x [P(KYe® x [P(K*)®:¢*¥ x P(K3)]C]01]00)

The K and K* functions in the SU(3) coupled P’s can now be brought together by
the trivial 9-(Ap) recoupling transformation with three (00) representations, eq. (A.16),
to yield

dpy)
(00) (00)7(00) __ _
[[.. ]°9%[...]°] (,%, [d(cO)d(Oe):l
X [[[P(K)("o) % p(Kp)(O,a+c)](OC) X P(K)(eo)](lu)
X P(K;)(co) X [P(K*)(O,e+b) x P(K:)(bO)](Oe)](ul)](OOOO)_

A 6-(Ap) transformation in the (Ay) function as well as in the (u4) function is then
necessary to combine the P(K) and the P(K}):

[[P(K)“® x P(K,)®-2*97109 x P(KYeD|# = U((0, a+cXaOXAuXeD); (Oc)a+e, 0))

BH
% [(a':'e‘:)] [P(Kp)(o,a+c)x P(K)(a+e,0)]glll)’
ae:.

where we have first interchanged the order of the (a0) x (0, a+¢) coupling. Note:
For this multiplicity-free coupling this interchange is trivial and merly introduces
the phase factor (—1)°*2*¢*¢ = 41, see egs. (A.3a) and (A.3b). Similarly

[P(K*)<®) x [P(K*)®:5*9) x P(K*)®0]©16D = U(cOXbOXuAXO, b+e); (b + ¢, 0X0e))
y [(b+c)!

blc!

4
] [P(K*)®*9 x P(K*)©-0+a0h,

The two U-coefficients are evaluated through egs. (A.13) and (A.14), respectively. The
combination of all the factors gives the desired result, eq. (B.9).
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Appendix C
SINGLE-COLUMN BS TRANSFORMS OF NORM AND OVERLAP KERNELS

A tabulation of the BS transforms of norm and overlap matrix elements for totally
antisymmetric space functions, (space functions characterized by single-columned
Young tableaux), is given in this appendix.

DEFINITIONS

The “single-column H(K, K*)” can be defined in terms of the tabulated quantities
H(L(lcuc)'f,(lcuc)) by
K (Acp)epe) — omK-K* che) UiAepe
H(K, K*)* WAcue) — omMK-K )H('f()- H )'f,(/l “ )),

where K refers to the relative motion degree of freedom of fragments f and A— f;
while K* refers to the relative motion degree of freedom of fragments f" and 4— f;
K; refers to the internal degrees of freedom of fragments f and A — f; K} refers to
the internal degrees of freedom of fragments f' and A — f”. Note that f”is chosen such
that ' < f.

The indices i are illustrated in figs. 1a and 1b.

The quantities e? are defined by

A _
- — (K K *)} .
P Aa=NIA-P
Note that ePe? = ¢P*4. The only important property of the mass-dependent factor 7 is
I( A _ 4
columns f(A - f )

ie, for the full 4-columned Young tableaux, the product of factors exp n(K- K*)
combine to make the factor

. fA-9) }
e exPJl[f(A—f)f’(A—f')]*( K-

el = exp{—

columns
[Specifically,
_ A=) =L+ U+n)ff"/4)
[fA~-NfUA-MP
with} ! = [, Z1=f T(+n) = 4]

In the special case, f* = f, (norm kernels)

H(K, K*)eteAend = en(K-K*) H(!Re) WA cno)
n n ’

b

with

eP = exp{—pmA_—f)(K~ K*)},

Yn=1
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1. HOR10QRenod) (pyrely internal functions).
H(Q©0000) _ 1
HQUO319) = (K, -KY)
HEOVOY) = (K, K¥,) where K, = % [K, xK,],

H(300000) _ po0) = L[K, x K,] K X[K* x KX]- K%)°,
H(O(ZO)O(L’O)) = __(K . K*)Z ,a)
[Shorthand notation for 4K, - K¥)* x P{’%

HEE92) = H{(Ry- K2Y(Rs K~ (R, KR, - K27}

2‘ H(:(Acﬂc)i (-“cﬂc})

H(1O0100y — (1_p1),

1 oy — K. - —
HGOO4 )—{(l—elxxl K- o

HEOD30) ={(1-e1>(1?12-xtz)—e*

(K- K¥)K, " K* )}

A . _
m[(l(‘ K*XK,, " K1)
“‘(K' Klz)(K* ' Kfz)]} s

H(1(°°>1f°°>)—P<°°>{(1 —el)— f( AA =& -K*)},

H(é(zoyé(zo)) — %{[(1 —el)—e! K- K*)] (K, K*?

2
3¢ (ot & KPR ko,

A
fl4-1)

f(A=f)
ooy = fla-en-o A &K R KR, K2

—(K4'K’5')2(K5'K§)2—%el( )[(K K3 K, K*(K;- K3’

A
f4-1)
+(K- K3)*(K, - K*)*(K," K3)* - (K- K3)*(K, - K**(K; - K3)?

—(K- K3)*K, - KK, K?)’]} :

*} This SU(3) scalar will usually be suppressed in an obvious shorthand notation.
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3. H(##oAerd)y needed for the A = 24 system

HEU0209) = {(1 — VK, - Kf)—e'(1~e") [(K - K*YK, - KY)

A
fa-)

2
) (K- KK K3)K, - K*)} P3),

_ _ A
—(K-K*K,- K*)]—e'
( XK, )] e(f(A—f)

H(ng)g(oz)) — {% [(1 __el)3__(e1 —e2) <f(AA— f))Z(K_ K*)Z:'

% [R5 K5)Kse- K2)+(K 1y K2 XK., K%)]
12" Bio)iR3, Ry, 12 B3B3, KT,)]

A
1,2
Hee )<f(A—f)
+(Kyy K3.(K- K )K*- Kt))+(K,, K3 )K- K, )K*- K%,)

2
) (%(K K*)[(K12 ) KT:)(K ' K34)(K* - K3,

+(K34 ) Kfz)(K ' KIZ)(K* : K§4)]4 ‘(K' KIZ)(K : K34)(K* : K’fz)(K* ’ K§4))} s

where

_ 1 __ _ 1
K, = ﬁ[Kl xK,], Ky = “2[K3 x K],

HE?30%) = o,

H(G103a0y {(1 —el)4(1 +e')K;- K})

—2e'(1—eY)

4 K VK - K*—(E . K*F . I*
A7) LK KK K1) ~(R- KXYK, - K*)]

—el(l1+e") (

where

A 2 _ _ _
f(A—f)) (K- K*)K- K?‘)(K,-'K*)},
K = \/%[Ku x K34],

A
[fA-Nr- ek
{(K-K,,JK* [K34 x K¥])+ (K3, - KXK*- [K,, x K*])},

HEO30) = —4(1—e)?

HE10200) = {—(1 — V(K ; x Kyl KY)

4 [
[f(A- 14— ]
A2
fLA=)f'(A-f")

(K : K*)([Klz X K34] : KT)“'(K - KY)

+3(1-¢?)

X ([K;y % Kys]- K*)]+e! (K- K*)[(K- K)[K,,xK3,] K*)},
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i A
302120 _ 1
HESTD =31 = )[f(A f)] (A= DFA=77]
X (K- Ky )KS - [K*x Ko+ KyolKS- [K*x R,]),

H(g(m)é(m)) [ T(K K*)([K12XK34] K%)

S (R-K3)

J4=f)

- A
< [-ersrens AT
H(gumgam)-.:[ 4 T{u-axx‘ K3XK- K3 - 4
fA-f) e YO LfA-NrA- NP

X [H1~'XE, - KUK - K92+ €\ - K*¥K - K2XK, - K:)]},

H(g(IO)gwl)) — 03

1 A B
HEO#EY) = f[ A= f)] (K- KK K%)

X {[K- K XKy, [K3xK¥])+ (K- Ky XK, [K%x K%D},

A _ A
37| —231— ! K - K*
f(A—f)‘F{[ Al=e)+d+eXk-K ){f(A—f)f’(A-—f’)]*]

. A
92(22) K K '@(22} K* ®yH0O0) __ 1
[ (KIZ 34 )X (K K )] _(1+e )[f(A_f)fr(A_f/)]«}

HEOPL2) -

X [(K Kl 2)[9?(22)(K*K34K) X W(zz)(K ZK*K )](00)
+(& - Ko J[RIEK K) x PR, KIKD]CO }

where
RVK K, K) = [POR, ;) x POUK,)]° x PRY29]CD,
W(ZZ)(K ZK*K*) [P(K 2)(10) X [P(K )(02)+P(K*)(02)](1 2)](22)

s =5 oo
SA-]LfA-1)
x [[[P(K;)®Y x P(K,,)° V]9 x P(R)30]2H

x [gp(ZZ}(K ZK*K*) % P(Ol)(Kt)](l 2)](00}
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Appendix D

The single-column BS transforms are calculated with the aid of the functions

defined in terms of the operations of eq. (56) acting on (I + n) particle antisymmetrizers.

Particles 1,..., | belong to fragment f, particles [+1,..., I4+n to fragment 4— f;

TABLE 9

The ffunctions with/ = ', n = n’

@9 (1-e")
@0z 1-e'(1+8..)
S 3 —e'
FACHSN] —e',.
it 1—e'(1+8,,+ )
FGE%.) 1—e'Q+p2)+e2
Loty N 1—e'(14+B,,+ B+ B..5x)
Lt 1—e'(14 B+ Brx+ B..5)
S35 —e (1=, — Brx+ BB+ €
S(03:6x+) —e'(1=B,,— B+ B..B. )+ €
S350 —e'B..B..
J(5325.) ~e'B..B..
S22 ) —e!p2
Lty —e'fZ,
S5 ) {1—€'G+[Bext B 1)+ B+ [Buxt B2 €7}
Q5 {1—e' 2+ Brx+ By + BBy + Bl Bux+ By + B2:])
+e*(1+ B+ Byy+ BBy}
Q0T es) {—e'(1—Bx—B,y+ BBy
+€2(2= Brx—Byy+ BBy + Bes[Bux+ Byy + B ]) — €%}
SO o) (—e' +e%)B(Buxt B.)
O (—e' +e)B, (B +B..)

f(O;fy?;z(;‘z‘y‘) (_ el + ez)ﬂ)zrx
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TaBLE 9 (continued)

f(gz;‘?ggy‘z') {1 - 81(2 + ﬁxx + Byy + ﬁzz[ﬂxx + ﬂyy + Bzz])
+ 82(1 + Bxx + ﬂyy)}

f(O?"f’;‘S;ﬁgx*y‘z‘) {(1 - el - 1(1 - 1)z[ﬂxx_*' ﬁyy+ ﬁzz]z}

fEo. ) {1—e'(1+ B +B,,+ B, +3B2)}

f(g 821;2‘"2%1*)2‘2) {1 - el(l + ﬁxx + Bzz + Bxxﬂzz +7B )}

f(g gifii;(*z;z(z'x‘)) {1 el(l + ﬁxx + Byy+ iBzz + ﬂxxﬁzz + ZB )}

; 0E%yz? A e
f(gggz‘i*(z'x‘)z*z) el [f(A—f):l Kzﬂxy
0; O'z';'?(z:?)z2 1 A iK*

S (G} ozncryeze2) e Bs T | %

JCOETE. ) 1

f(g;{;.gff()z.x.) {(1 - el)3 - yyel(l - el)z
- el(l - el)(Bxx+ ﬂzz)(ﬂxx + ﬁyy+ Bzz)}

f g: gﬁaii)}(z?‘)x‘)(z*y*)) {1 - el(l + ﬁxx + ﬂyy + ﬁzz + ﬁzz(ﬂxx + Byy + %ﬁzz)}

f gig%(i?g:'x')xﬂ) {1 - el(l + Bxx + Byy+ ﬂzz +%(ﬁxx+ Bzz)z)}

while particles 1, ..., I' belong to fragment f’, particles I' +1,...,I'4+n = l+nto
fragment A— f'. Eg.

F(Oif;Oi:? )= [__a__ d 0 0 0 d
0; 0z*x*y*z*2) = 5E 5E aE 6E6x ak* ak*

o o' o ) K Pk?
6k* \/_6’(*2 {Z( 1) exP[Z( Pk¥)]}

:Ix. 0,K}=0, Ke.m. =0

= e"(x' K‘)f(g?g;z?ifyazu),
where
_ HA= D=1 +(+n)f1/4)
ra-nNra-mE -
and with }' I' = f', 3" I = f, 3 (I+n) = A, (§ = sum over columns), the product of
single-column factors exp n(K - K*) combine to make the factor

"("(.xw)= fl(A—f) K'K*}
Il P {[f(A— nrda—pps

columns

for the full 4-columned tableau.
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TABLE 10
The ffunctions with / # I', n + n’
f(gif:gfgy*z‘) - (1 - el)zﬂyx
f(g?": gf_'(v)y*z*) (1 - el)zﬁxy
0zx; 0zy
f(Oif; xfgy*z*) { - (1 - ﬂxx) + ei(2 — ﬁxx + ﬁyy + ﬂzz[ﬂxx + ﬁy_v + Bzz])

S5 ye00)

S@0Byne)

f(gzz*gfcy*z 2)

f(giz."?‘:‘c)zOy"z“‘2

f (gf_f;*gggy'z'z)

L SN A |

SR zexnzr)

55: 053

f (g;zi‘fo(z*x*)z"z)

f(gzz ng(z'x")z*Z)
OXy:

f (gzz (J)‘xiy‘z"2

f (g;i;z?gg(z*x‘)z‘z)
R

f (Oéz*izg z‘z(z*x*))

f 0ZX; 0ZX )
:0z txtynz&Z(zt*t)

_82(1 +ﬂyy)}
{(1 - JByy - 81(2 + ﬁxx - ﬁyy + ﬁzz[ﬁxx + ﬁyy + Bzz])
+eX(1+B,,)}

VA= e)[f(A f)] Kby

— 1 _
P .

14 T, .
ifm] Kz{(—2+2ﬂxx+ﬁzz)+e (2+2ﬁy}‘+ﬁzz)}

[1 A Tz{(zmzﬁ —B.)—e' 2+ 2B+ B..)}
2= T T

[

(A N,
3 f(A-f)) ¢ bo
1 A .
= K2
7 f(A—f)) Pey
0
14 ]K{(z B.)— e 2+ 2B+ 2B, + B}
zf(A——-f) ZZ XX ¥y zz
A N,
p f(A—f)>K’e %
1T 4 Jo,.
~ f(A~—f)] Rk
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TaBLE 10 (continued)

f 0zZX; 0Zy ) 1 A %KZK
Oz"x“y"z*z(z‘x*) ﬁ f(A _ f) z e x
1 A LI
f(ng.xeyfz.z(z:x.)) - :/_7’ [m] Kzsz
2 A _
f og:uty?z*z(z'x‘)) (m) Ksz
f(g?zi;y(‘)%z'z(z'x‘)x*z) 0
. s A t
f(gf:)c‘i;r(‘):‘ygz*z(z‘x")(z"y‘)) \/j l:mjl K23 {(1 - el) __21’_(1 + el)(ﬂxx + ﬂyy + ﬂzz)}
The f(:;:}::) are tabulated in terms of the quantities e and §;, j» defined by
ef = CXP{—P - (K-K*)},
Lf(A=-NfAa- )

A e A +
K *
Pux [f(A—f)] ’[f’(A—f’)] =

BZXBIZ = ﬂzszx'

Note that:

Note added in proof: Norm kernels for some complex cluster systems have re-
cently also been worked out by Y. Fujiwara and H. Horiuchi who give norm kernels

r 2C+20, '2C+5Be, '2C+!2C, 2a+2°Ne, ®Be+°Be, and o+ 2*Mg systems,
(to be published). We are indebted to these authors for pointing out a small numerical
error in our original preprint.
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