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Abstract: By expanding the Bargmann-Segal integral transform of norm and overlap kernels in 
appropriately SU(3) coupled Bargmann space functions, the calculation of norm and overlap 
matrix elements in a cluster model basis is reduced to purely algebraic techniques involving the 
algebra of SU(3) recoupling transformations. This technique has been further developed to make 
calculations possible for systems of two heavy fragments other than closed-shell nuclei. In one 
application of the method, analytic expressions are given for the norms of binary fragment systems 
in which a light fragment of mass number f, f < 4, is combined with a heavy fragment of mass 
number A-J with A-f< 24. The A-j’ fragment nuclei with different p and sd-shell structure 
illustrate somewhat different problems in the recoupling technique. In a second application, 
spectroscopic amplitudes are calculated for the most important open channels of the “C+ “C 
resonances. Eigenvalues and eigenvectors ofthe antisymmetrizer are evaluated in a “molecular basis” 
of the “C+ “C system, in which each “C nucleus is assumed to have SU(3) symmetry (04) with 
internal rotational excitations ofO+, 2+ and 4+. Reduced width amplitudes are calculated connecting 
such normalized, fully antisymmetrized molecular basis states to exit channels which include: 
a+20Ne with *ONe internal functions of (80) SU(3) symmetry, (K = O+ band), and (82) SU(3) 
symmetry, (K = 2- band); 160+sBe; and 23Na+p or 23Mg+n fragments with 23Na or 23Mg 
excitations in K = jj and f rotational bands of SU(3) symmetry (83). 

1. Introduction 

In recent years refinements in the resonating group method ’ - 3, have made possible 
a sound microscopic treatment of a number of nuclear reaction and structure prob- 
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lems. However, detailed applications to bound-state, scattering, and reaction prob- 
lems have been limited mainly to very light nuclear systems 3-7) or to scattering 
problems involving closed-shell nuclei such as a, 160, and 40Ca [refs. 3, *- lo)]. Many 
of the recent advances have been made possible by the introduction of integral 
transform techniques l l -‘l) and the closely related complex generator coordinate 
technique 3, which have reduced the computational effort in the calculation of 
resonating group kernels. Nevertheless, the evaluation of resonating group kernels 
in an angular momentum coupled basis has proved difficult for reaction problems 
involving heavy fragments other than closed-shell nuclei. By exploiting the SU(3) 
symmetry properties of the relative motion and internal harmonic oscillator functions 
of a cluster basis it may be possible to handle resonating group calculations involving 
heavy fragments other than closed-shell nuclei. This is true in particular if the cluster 
functions are expanded in an W(3) coupled basis in which SU(3) recoupling tech- 
niques can be used to advantage, and in which the details of the coupling of channel 
spins to relative motion angular momenta can be avoided till the very final step of a 
calculation. Of the many integral transforms used in microscopic nuclear cluster- 
model calculations, the Bargmann-Segal (BS) transform 22) is ideally suited to the 
exploitation of SU(3) recoupling techniques since oscillator functions have very 
simple properties in Bargmann space. The combination of the BS integral transform 
with SU(3) recoupling techniques can greatly reduce the computational difficulties in 
the calculation of resonating group kernels 23). The potential of this technique has 
been illustrated with a few examples in ref. 24). Details of the technique have also been 
demonstrated with the calculation of the norms for cluster systems made up of a 
heavy fragment and an a-particle 25*26) for states of arbitrarily high oscillator 
excitation in the relative motion degree of freedom. A very similar technique has 
recently also been used by Fujiwara and Horiuchi 27) in their generator coordinate 
theory of norm kernels with applications to “C + a, “C + 160 and ’ 6O + a + a. In 
their treatment the complex generator coordinate R corresponds to the Bargmann- 
space K variable of refs. 23-26). 

It is the purpose of the present work to expand the combined BS transform and 
SU(3) recoupling technique to facilitate calculations involving nuclear systems made 
up of at least two heavy fragments which are not closed-shell nuclei. The motivation 
comes partly from attempts to understand the tine structure of the so-called “C + “C 
molecular resonances in terms of a sound, fully microscopic description. Although a 
fully microscopic multi-channel resonating group calculation for this challenging 
problem is perhaps still not quite within reach, the techniques have now been de- 
veloped to a stage where it is possible to calculate all the spectroscopic amplitudes 
needed for the determination of the strength functions for the breakup of a specific 
W+ 12C quasi-bound state into various channels. The most important open chan- 
nels involve 12C+12C, *Be+160, a+20Ne, 23Na+p, and 23Mg+n structures. 
Spectroscopic amplitudes are needed for heavy fragments in specific excited states. 
In the a+ ‘ONe breakup, e.g., specific states of the O+, 2+, 4+, 6+, 8+ ground-state 
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rotational band of “Ne as well as the K = 2- band with band head at 4.97 MeV 
are important to an understanding of the experimentally determined strength func- 
tions 28-33). The important channels for this problem involve two-cluster systems. 
For this reason further developments are made in the BS transform technique to 
facilitate the calculation of norm and overlap matrix elements for such cluster systems 
made up of two fragments. Norm and overlap matrix elements are particularly simple 
in the approximation in which particles in different fragments are described by os- 
cillator functions of the same o. In this approximation norm and overlap kernels 
are SU(3) scalars 34), leading to considerable simplification. For the A = 24 system, 
e.g., the equal length parameter oscillator approximation should be very good. The 
generalization needed for the calculation of the interaction kernels and cluster systems 
with fragments involving oscillator functions of different size are reserved for a future 
study. (A detailed discussion of the interaction kernel problem for simple 3- and 4- 
cluster systems can be found in ref. 24)). 

The method, (outlined in sects. 2 and 3), involves two basic steps: 
(i) the calculation of the BS transform of the norm or overlap kernels and 
(ii) the expansion of this transform in terms of suitably SU(3) coupled Bargmann 

space functions. The coefficients in these expansions give the numerical values of the 
norm or overlap elements. The method thus reduces the calculation of complicated 
multidimensional integrals to purely algebraic techniques involving the algebra of 
SU(3) recoupling transformations. 

Two variants of the basic calculational technique have been developed. In the 
first, BS transforms are calculated directly for the full A-particle system of arbitrary 
space symmetry characterized by full 4-columned Young tableaux. In this method the 
BS transforms are expressed in terms of a few structure and exchange coeflicients 
which have to be evaluated for each case; but norm and overlap matrix elements are 
given in terms of one simple, universal formula. This method is particularly useful 
for lighter systems. It is illustrated in detail, in sect. 4, by the A = 12 system built 
from two 6Li fragments which can couple to space symmetries [4422], [4431] and 
[444]. As a further illustration overlap matrix elements with the a + *Be cluster 
system are also included. In heavier systems this method becomes somewhat cumber- 
some since the total number of structure and exchange coefficients needed for the 
calculation of norm and overlap matrix elements can become large. In a second vari- 
ant of the general method, the BS transforms are therefore first calculated for n-par- 
ticle subsystems of orbital symmetries characterized by single-columned Young 
tableaux (totally antisymmetric space symmetries). The Bargmann space transforms 
for the full A-particle system are then built from these by suitable combinations of 
these “single-column” functions. The calculation of the “single-column” BS trans- 
forms is quite simple. A fairly extensive compilation is given in appendix C. The 
method has the disadvantage that the final form of the analytic expressions for norm 
and overlap matrix elements now varies from case to case since different combinations 
of SU(3) recoupling transformations are now needed for each specific-case. 
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Two specific applications are given of this technique. In the first, (sect. 5), analytic 
expressions are given for the norms of binary-fragment cluster systems in which a 
light fragment of mass number ft f s 4, has OS internal excitation only. This light 
fragment is combined with a heavy fragment of mass number A -f, with A-J =< 24, 
where for simplicity it is assumed that the heavy fragment is in the state of highest 
possible space symmetry and highest possible W(3) (oscillator quanta) symmetry. 
This is a useful example since the 5 cases, 4 s A-f s 8,8 5 A-f 5 12, 12 $ A-f 
5 16, 16 $ A-f 5 20 and 20 4 A-f 1 24 illustrate somewhat different problems 
in the recoupling technique. 

A second application, (sect. 6), gives the spectroscopic amplitudes for the most 
important open channels for the ‘*C+ “C “molecular resonances”. Under the as- 
sumption that the most important line structure components of these resonances are 
related to “molecular states”, the 12C+ r2C channels are restricted to the “C bands 
of W(3) symmetry (@) = (04). That is, the excitation of each “C nucleus is restricted 
to the O+, 2’, 4+, (@) = (04) rotational band of “C. The other channels to be in- 
cluded are 160 + sBe(O+, 2+, 4+), LX + 20Ne, including the states of the ground-state 
K = O+ band of”ONe in the W(3) approximation (2~) = (80), and.the K = 2- band 
of “Ne, (band head at 4.97 MeV) which should be approximated extremely well by 
the W(3) quantum numbers (Q) = (82); and finally, the 23Na+p and 23Mg+n 
channels where the excited states of the A = 23 nuclei are approx~ated as members 
of (1~) = (83) rotational bands. 

To facilitate the discussion, a number of useful properties of SU(3) recoupling 
coefficients are collected for easy reference in appendix A. (Some of the notation 
pertaining to SU(3) is carefully defined in this appendix.) To keep the algebraic mani- 
pulations of SU(3) coupled Bargmann space functions to a minimum a number of 
subsidiary formulae involving these functions are collected in appendix B together 
with a few sample derivations of such formulae. 

2. Formulation of the problem; the 12C + “C resonances 

In resonating group calculations, in general, and in the 12C-t lzC problem, in 
particular, all state vectors are expanded in properly antisymmetrized cluster funo 
tions with different fragment decompositions in different channels. 

2.1. THE W(3) COUPLED CLUSTER BASIS 

To calculate matrix elements in a cluster function basis by the combination of BS 
integral transform and SU(3) recoupling techniques, it is important to expand the 
cluster functions in an SU(3) coupled oscillator basis. For a 2-cluster function, e.g., 
made up of fragments of mass numbersf and A -fthe wave functions are to be ex- 
panded in 
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Here, d is the antisymmetrization operator, d = (A!)- 1 c (- l)“(‘)P, where the 
sum extends over all permutations P. The internal wave functions, 4, of the two frag- 
ments are assumed to have good SU(3) (oscillator quanta) symmetry, given by the 
Elliott 35) quantum numbers (n,-~~) and (2, _ spLA _ f). The d, are functions off - 1 and 
A -f- 1 internal coordinate vectors and include the full spin and isospin dependence 
of the cluster functions. They are assumed to have good SU(4) and hence good space 
symmetry, but the SU(4) quantum numbers are suppressed. To be more precise, for 
economy of notation, it will be assumed that each fragment spin-isospin function is an 
SU(4) scalar with S, = Tf = 0, S,_, = TA_/ = 0, as in the 12C+ 12C cluster system. 
The square brackets denote SU(3) coupling. (If the fragment spin-isospin functions 
are not SU(4) scalars, the square bracket is interpreted to include the SU(4) coupling 
of the internal functions, 4). If the product (I+,.) x (n,_,-~~_~) is not free of outer 
multiplicity, a multiplicity label p must be included with (Q,) (see appendix A). The 
resultant coupled function of SU(3) symmetry (1~) is characterized by the subgroup 
labels cc These can be chosen in any convenient basis, e.g. the rc.ZM, basis 36) which 
includes the angular momentum quantum numbers JM,; or a Cartesian oscillator 
basis, or the closely related U(1) x SU(2) subgroup basis, labeled by the Elliott in- 
trinsic quantum numbers &MM,. The relative motion function is an oscillator func- 
tion in the relative coordinate vector 

,,‘,,,[v,+~+ . . . +r,]), (2) 

where the single-particle position vectors, and hence R, are dimensionless variables. 
Each dimensionless ri is equal to the physical single-particle coordinate vector 
(measured in cm or fm) divided by [h/ma]*. The equal length parameter approxi- 
mation is made; that is the same o is used for particles in fragmentsfand A - f: 

A basis, in which the fragment spins, I,, I,_,, channel spins I,, and orbital angular 
momenta L, are good quantum numbers, can be expanded in these SU(3)-coupled 
cluster functions by means of SU(3) 2 R(3) reduced (double-barred) Wigner coef- 
ficients 36) 

&((4L%’ x &?::;;:_;))I~ x XP09JM, 

= c c ((QL/)K/Z~; (n,-fCLA-/)ICA-jZA-fll(3Lc~L,)IC,Z,)p 
(A&&e (ArM 

X <(&&,I,; (QO)Z#+)KJ) 

x &[[+(M x #AA -SPA -I) 1 &P&J x x’QW];~&O,. (3) 

The round brackets now denote ordinary angular momentum coupling. (Fragment 
spin-isospin functions are again assumed to be SU(4) scalars.) The SU(3) coupled 
form, eq. (1) has a number of important advantages. 

(i) The complications associated with the details of the angular momentum cou- 
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pling can be avoided till the very last step of a calculation. Matrix elements in the 
SU(3) coupled basis can be expressed solely in terms of (subgroup label-independent) 
Racah or recoupling coefficients. Dependence on fragment and channel spins can 
be introduced in the last step of a calculation by means of eq. (3). 

(ii) Norm and overlap matrix elements for several channels are handled at once in 
the SU(3) coupled basis. All members of SU(3) bands of (n,~+) and (lA_JpA_r) are 
included in one common formula. 

(iii) Since the d operator is an SU(3) scalar, its matrix elements are diagonal in 
(Lp), and the eigenfunctions of the norm and overlap kernels are the SU(3) coupled 
functions of eq. (1) or linear combinations of such functions with the same final (2~). 
This important point was first stressed by Horiuchi 34) and is very useful in identifying 
the Pauli-forbidden components of the cluster basis. This point can be illustrated by 
the “C + “C cluster decomposition of the A = 24 system. With “C internal func- 
tions of SU(3) symmetry (n,~,) = (04), (J,_,P~__,) = (04), the possible channel 
internal SU(3) quantum numbers are (&) = (OS), (16), (24), (32) and (40). For such a 
system of two identical fragments, however, the symmetrically coupled internal 
functions with &+P~ = even, (&) = (08), (24), (40), can couple only with relative 
motion functions of even Q, (and hence even L), and have positive parity; whereas 
the antisymmetrically coupled internal functions with &+P~ = odd, (&cr,) = (16), 
(32) couple only with relative motion functions of odd Q and have negative parity. 
(The d operator destroys functions with &+P~+Q = odd.) The dominant compo- 
nents of the quasi-bound sub-Coulomb resonant states of this system can be expected 
to have large overlaps with shell-model states of 2rZw oscillator excitation. Hence 
cluster states with Q = 14 = [Q(minimum Pauli-allowed)+21 are of particular 
interest. The possible (&cl,), (1~) combinations of such states are listed in table 1. 
There are 14 possible Of states in this space. In an ((I,Z,)Z,L)O+ angular-momentum 
coupled basis these correspond to the (Ill,) combinations: (00), (22), (44) with 
I, = 0; (02), (24), (22), (44) with Z, = 2; (04), (24), (22), (44) with I, = 4; (24), (44) with 
I, = 6; and (44) I, = 8; all with I, = L, where only symmetrically coupled (Z,Z,) 

TABLE 1 

Possible SU(3) quantum numbers for the “C+“C cluster functions with Q = 14, (2hw oscillator 
excitations) 

WY (1478) 
(1397) 

(12,6) (11, 5) (1094) (93) (82) I;; 

(24) {;46,;; $6 (12,6) (11, 5) (14, 2) (12, 3) (10,4) (93) (82) ;;;‘;; I;; ;; 

(9 (18,O) (16, 1) (14,2) (12,3) (1094) 

Pauli-iorbidden 
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are possible. Seven of the 14 O+ states are completely Pauli forbidden. The norm ma- 
trix has 7 zero eigenvalues. In the ((Z,Z,)Z,L)O+ basis, however, the determination of 
the 7 Paul&forbidden vectors involves the diagonalization of a 14 x 14 matrix. In the 
SU(3) coupled basis states with J” = O+ occur only in representations with ;1 = even, 
p = even. Of these, the live O+ states with (1~) = (18,0), (16,4), (14,8), (12, 6)2 can be 
identified at once as completely Pauli-forbidden since the A = 24 shell-model space 
of 2ho oscillator excitation has no states of these high W(3) symmetries. In addition, 
it can be seen that there is only one 2ho shell-model excitation of SU(3) symmetry 
(14, 2) in the A = 24 nucleus, the shell-model state js4pi2[sd6(82)pf?(60)](14, 2)0+). 
One linear combination of states with (&cl,) = (24), (40) and (&) = (14, 2) must 
therefore be Pauli forbidden. The identification of this Pauli-forbidden state, however, 
is now part of a 2-dimensional (rather than a 1Cdimensional) eigenvalue problem. 
The 7 Pauli-allowed states with Q = 14 and J” = O+ have SU(3) quantum numbers 
(14,2), (12,0), (10, 4)2, (82)2, (60). Of the 40 possible states with Q = 14, J” = 2+, 20 
are completely Pauli forbidden; and of the 57 states with Q = 14, .Z” = 4+, 31 are 
completely Pauli forbidden. 

2.2. THE “C+ =C RESONANCES 

Much of the motivation for the development of the techniques of this investigation 
comes from an attempt to understand the socalled molecular resonances 37) in the 
“C + “C reactions in terms of such a microscopic description of this system. Al- 
though a large number of theoretical studies of these resonances seems to confirm 
the usefulness of the quasi-molecular picture, an interpretation of the gross structure 
behavior of these resonances may be possible without invoking a model of molecular 
pocket resonances . 38-40) Evidence for the nuclear molecular picture must thus be 
sought in the fine structure of these resonances. The large number of closely spaced, 
narrow fine structure components are the distinctive feature of the “C+ “C res- 
onances. A simpler fine structure is observed in the 160 + 160 resonances, for exam- 
ple. In the language of the SU(3) coupled cluster basis, this may be related to the 
much richer number of possible (&), (Lp) values in the “C+ “C system. Most 
recent theoretical interpretations make use of some variant of the Imanishi-Nogami 
model 41), based on an internal excitation of the “C nuclei 42-44). The band crossing 
model of Kondo et al. 45), in particular, reproduces some of the tine structure observed 
in particular exit channels. As recently pointed out by Berger and Gogny, none of the 
theoretical models account for all of the key features of these resonances 46), and 
none of the models are sufficiently microscopic to be capable of examining the large 
amount of recent experimental information which is now furnishing strength functions 
to many different exit channels. 

Although a fully microscopic multi-channel resonating group calculation for this 
challenging problem is perhaps not yet within reach, it may be possible to gain some 
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understanding of the resonance line structure in terms of predicted spectroscopic 
amplitudes for the various observed exit channels. Since specific exit channels often 
exhibit markedly different strength factors for different fine structure components of 
the excitation functions, it may be possible to gain an understanding of the structure 
of specific quasi-bound states of the “C + ’ 2C system from a knowledge of such spec- 
troscopic amplitudes. 

For the closely spaced narrow resonances of the 12C+ 12C reactions we assume 
that the T-matrix can be approximated in terms of a few partial width amplitudes 

Z;Z, by 

where the entrance channel c consists of “C+ “C with I, = I,_, = 0. The exit 
channels c’ to be included are: 

(i) r2C+ “C with Zs = 0, 2,4; la-r = 0, 2, 4. The 12C nuclei can be in states of 
their internal rotational excitations, that is in their ground-state rotational bands 
with (n,~+) = (04); 

(ii) c( + “Ne with Ike = O+, 2+, 4+, 6+, 8+, with the “Ne excitations in the ground- 
state K = O+ band described in the SU(3) approximation (L,_J,p,.,_J,) = (80); or 
with Ike = 22, 33, . . ., again within the SU(3) approximation which describes these 
members of this K = 2- band in terms of a pure (n,_,,~~_,,) = (82); 

(iii) 160+ *Be with Zie = O+, 2+, 4+ ; (A,.pfT) = (40); 

(iv) 23Na+p and 23Mg+n, with I” = t+, $+, s+, . . ., and i+, s+, $+, . . .; where 
these rotational bands are approximated as members of pure (L,_,.P~_,.) = (83) 
K~ = ; and i bands. 

The quasi-bound states Iv) are to be built from the states Ii) which have the W(3) 
quantum numbers of the “C + “C molecular states 

with K = p, p--2,..., 0 or 1. Although all calculations are carried out as algebraic 
functions of Q so that 12C+ “C relative motion functions of complicated shape can 
be accommodated, the dominant components of the quasi-bound states can be ex- 
pected to have large overlaps with shell-model states of 2Ao oscillator excitation. 
These are the states with Q = 14 enumerated in table 1. In first approximation 
therefore the basis set for the quasi-bound states for the sub-Coulomb resonances 
is chosen to be the set Ii) consisting of the Pauli-allowed (normalized) eigenvectors 
of the states (5), with Q = 14. The expansion coefficients, ((&)(@)li), which give 
the eigenvectors of the operator, l&, in the ’ 2C + “C cluster basis, are calculated in 
sect. 6. 

Since the observed resonances of the same J” value fall within an energy interval 
of N 2 MeV, and since individual fine structure components may correspond to 
quasi-bound states of very similar structure, the penetrability factors associated with 
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the partial width amplitudes (r&X$) can be expected to be approximately indepen- 
dent of v. The relative magnitudes of the (r$J&) for different v’s can thus be expected 
to be proportional to the relative magnitudes of the corresponding spectroscopic 
amplitudes (&A,,), and it may be possible to gain an understanding of the experi- 
mentally determined strength functions in terms of the spectroscopic amplitudes, 
A,, = (vlc). These can be calculated in terms of overlap matrix elements of the type 
to be discussed in this work. 

Some calculations of 12C+ 12C norm kernels and overlap kernels with the I60 + 
sBe and 20Ne+a channels have previously been made by Tohsaki-Suzuki 47). 
Results are given in a coordinate representation. The emphasis in the present in- 
vestigation is on spectroscopic amplitudes for specific ’ 2C + ’ 2C molecular states, 
Ii) and the many open exit channels 1~‘). Such amplitudes can be calculated in terms 
of the overlap matrix elements evaluated in sect. 6. The solution of the quasi-bound 
state eigenvalue problem and the details of the coupling of the quasi-bound states to 
the continuum states will be left to a subsequent investigation. In the present work, 
the emphasis is on development of the techniques necessary for calculating the needed 
norm and overlap matrix elements. 

3. Formulation of the technique 

3.1. OVERLAP MATRIX ELEMENTS AND RESONATING GROUP KERNELS 

In the SU(3) coupled basis of eq. (I), resonating group kernels and spectroscopic 
amplitudes of the type discussed above can all be evaluated in terms of matrix ele- 
ments of the following general type 

([[&J’QflJ’f x 4 (2~ -fPA -f) 1 (&PC) x X(~))‘QO’]~~“‘X(~,,,,)‘OO’(~~ 

x l[[cjPf'flf') x cp (Aa -f'PA -f') 1 (&lr:) x X(~)‘Q’O’]~~:‘““‘X(~~,~,)(OO)), (6) 
where 0 = H (a hamiltonian), or 0 = 1 (the unit operator). The Dirac bracket nota- 
tion implies integration over all spatial coordinates and a summation over all spin 
and isospin coordinates. A c.m. oscillator function with Oho excitation, [SU(3) 
quantum numbers (OO)], has been added so that the spatial integration can be carried 
out over all single-particle coordinates ri, i = 1,. . ., A on an equal footing. a and R 
are functions of ri given by eq. (2), with cluster decomposition f, A-f for $ and 
f’, A - f’ for R. 

With the use of SU(3) coupled functions it is natural to expand the relative motion 
functions in an oscillator basis. It may, however, be useful to relate the matrix elements 
(6) to the usual norm and interaction kernels which are part of the standard notation 
of resonating group calculations. (For economy of notation, let us for this subsection 
assume that (QJ) = (A,_,P~_,) = (00) and that f’ =f). A resonating group 
function can then be written in terms of the cluster functions 

II/ = ~+#+fVQVL,,.). (7a) 
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The relative motion function, F(R), of arbitrary shape can be expanded in &functions 
in terms of the parameter coordinate ‘), R’, 

F(R) = 
s 

dR’G(R - R’)F(R’), (W 

to yield 

(~#,)&lIc/) = 
ss 

dR”dR’F(R”)*X(R”, R’)F(R’), @a) 

where the kernels, X(R”, R’), are defined by 

WR”, R’) = (~/~A-/~(R-R”)X(R,.,.)I~~lI~~~-/~(R-R’)X(R,.m.)>. (gb) 

An expansion of F(R) in oscillator functions lI(R)LM (Q”) leads to the matrix elements 

ss 
dR”dR’~(R”)~~‘*X(R”, R’)dR’)f?;! 

= ~~/9~-~x(~~~~‘x(~~.~.~~oo~l~~l~~~~-~~~~~~~~~~.~.~~~ (94 

which are of the type of eq. (6). If 0 is an SU(3) scalar operator, (e.g. 0 = l), then 

St-(R”, R’) = 1 A, c w(R”)p”)w(R’)po) 
Q L 

Here, ,4Q is the value of the matrix element (9a), with Q’ = Q, CM' = LM. [Note 
that this is independent of L, M when 0 is an SU(3) scalar operator.] The W(R")f?') are 
normalized radial harmonic oscillator functions, with Q = 2N + L; and P,(cos a) 
is a Legendre polynomial of the angle between the unit vectors @‘, @. The generaliza- 
tion of eq. (9b) for fragments with internal functions [@@ x #1A -fPA -f) 1 (&PC) KJCMC is 
given in sect. 6, see eqs. (109a-b). 

3.2. THE BARGMANN-SEGAL TRANSFORM 

The calculation of the complicated multi-dimensional integrals implied by eq. (6) 
can be reduced to a purely algebraic problem by the introduction of the BS trans- 
form 22-24) of the operators 64. For this purpose, however, it is advantageous to 
separate the spin-isospin and orbital integrations by standard techniques. The SU(4) 
symmetries of the various cluster fragments can be coupled by standard unitary group 
technology 4**49), and the problem can be reduced to one of evaluating orbital in- 
tegrals. In the orbital integrals the antisymmetrizer, &, must be replaced by aYoung 
operator, E: built from products of symmetrizers, determined by the row structure of 
the Young tableaux, and antisymmetrizers, determined by the column structure of the 
tableaux which characterize the full space symmetry of the A-particle functions. 
Either the symmetric or antisymmetric form “) of Y can be used since the details of 
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the subgroup labeling of the permutation group are unimportant for our purposes. 
The BS transform of the operator OYcan then be introduced by 

H(k, k*) = 
s s 

dr, . . . dr, fi A(&, ri)OY fi A(kr, ri). (10) 
i= 1 i=l 

The A(F, ri), [and A(ki, ri)], are the kernel functions for the BS transform, here 
initially expressed in single-particle coordinates, 

where 

A(ki9 vi) = n A(ki,> xJ, (lla) 
‘Z=.X,y,z 

A&,, x) = ?I-* exp { - ik: -ix’ + $k,x}. (lib) 

The l-dimensional BS transform is a unitary integral transform from Z2(R) to a 
space of square integrable analytic functions with the measure 

ddk,) = rc- ’ e -kxktd Re (k,)d Im (k,), (12) 

in the complex k, space; with 

s 

m 
F(k,) = dx A@,, W(x), (13) 

-00 

and inverse 

$(x) = 
f 

d&,)A*(k,, x)F(k,). (14) 

In the present application, the harmonic oscillator generating function property of 
A is of prime importance 

A&,, x) = f ~,,(x)*W,/nl, (15) 
n=O 

where x,(x) is a normalized l-dimensional harmonic oscillator function, and e/fl 
is the corresponding Bargmann space transform. The 3-dimensional Bargmann space 
function, 

is the BS transform of the 3-dimensional oscillator function x(r)io’). It has SU(3) 
irreducible tensor character (QO) with Q = n,+n,+n,, and subgroup labels, a = 
n,n,,n,, here given in a Cartesian oscillator basis. Note that in this case n,n,n, are 
equivalent to the Elliott intrinsic labels with E = 2n,-n, -n,,, M,, = $(n,-n,,), since 
n = &2Q-E) is a redundant label with (,$) = (QO), i.e. with p = 0. A linear com- 
bination of( 16) gives the Bargmann space polynomials P$‘) in an angular momentum 
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basis, (a = LM, u = redundant quantum number in this case). The corresponding 
function of k* has SU(3) irreducible character (OQ) 

P(k*)$OQ’ = 
k*“x k*ny k*“z 

-&ad& = P(k*)‘!!$,,(-l)*Q-*“+M”, (17) 

where the phase factor associated with complex conjugation 36) is absorbed in the 
definition of the subgroup label B. 

In single-particle coordinates the BS transforms of the operators can be evaluated 
by straightforward integrations. For 0 = 1, and Y = c cpP, 

P 

H(k, k*) = c cp exp { i (ki - Pkf)), w 
P i=l 

where, for the transposition P = (12), e.g.: Pk: = k&Pkz = k:. Implicitly, all 
oscillator matrix elements are contained in such transforms. Specific matrix elements 
can be extracted by expansions of the exponentials or by differentiations with respect 
to the ki,, k$ variables, making use of the property 

To gain the integrals needed for a nuclear cluster or reaction problem, it is necessary 
to introduce cluster internal and relative coordinate vectors. For a binary cluster 
decomposition into fragments of masses f and A -f such coordinates can be intro- 

Fig. 1. Cluster coordinates for binary fragment systems; (a) (1 +n)-particle systems, (b) (I+@-particle 
systems. Fragment internal coordinates are denoted by a subscript, R,, R,, . . ., the coordinate R (without 

subscript) is the relative coordinate vector of the two fragments. 
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duced by the orthogonal transformation (7, 

- - 
ri = C OivRv, l;i = C Bi,~,, (20) 

where the first A - 2 coordinates Rj and their Bargmann space transforms Kj refer 
to the f - 1 and A - f - 1 internal coordinates of fra~ents f and A - f, while the 
remaining two are the relative coordinate vector R, eq. (2), and the c.m. vector R,.,,.. 
For examples, see fig. 1. Similarly, for the cluster decomposition into fragmentsf’ 
and A - f’, coordinates Rj can be introduced by a different orthonormal transforma- 
tion 0, 

Using the orthogonality of 0 (and similarly of 0) 

A A 

and the BS transform of the operator 6 Y can be written 

H(E, K*) = 
s s 

dr, . . . dr, fi A(&, RJO Y fi A(#$ Rj), 
i=l j=* 

where both the iii and Rj would have to be considered as functions of rr, 
one were to attempt a direct evaluation of the 3A-dimensional integral. 

An SU(3) coupled Bargmann space function can be defined by 

(21) 

(22) 

(23) 

r, if 

(24) 

where the subgroup labels in the full W(3) coupling coefficient can be chosen in any 
convenient basis. A product of two A-functions can then be expanded 24*25) by 

A(& R&q&, &) = G c [P(KJQlO) x P(izz)~Q~oy) 
QIQ~ (Ma 

x [-~,)‘QA” x ~~2)tQd’)];+‘*e 
(25) 

This is the key to the evaluation of the matrix elements of BY in an SU(3) coupled 
cluster basis, when generalized to the appropriate number of products of A-functions. 

Since oscillator excitations associated with most of the internal degrees of freedom 
of the fragments are restricted to OS states, most of the A(&, &) and A(KT, Rj) expan- 
sions can be frozen in their zeroth-order (unit) terms. For a cluster system with 2 
heavy fragments the oscillator excitations of a few additional internal degrees of 
freedom are faed in their lowest Pauli-allowed (shell-model) values, while oscillator 
excitations associated with the relative motion degree of freedom, R, can be ~bitrarily 
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high. For the r2C+ “C cluster system, e.g., (see fig. lb) 

IS9 

+ terms leading to Pauli-forbidden excitations + terms leading to internal excitations 
of the 12C fragments 

G 1 2 C C [[I’(&, . . .)(n~pf) x p(K,, . . .)@A -em-~ -f)](Q’c) x p(g)(Q”)];A@) 
(&PC) Q W a 

x [[x(R,, . . .)(Qfiff) x x(R,, . . .p -‘PA -f) 1 &flJ x x(R)(QO)]y* + . . ., 

where the last shorthand notation can be used for any binary fragment decomposition 
involving internal degrees of freedom R,, R,, . . .; Ri, Ri+ 1,. . .; with Bargmann space 
transforms Kr, K, ; . . . ; K,, Ki + 1, . . .; and a single degree of freedom R (without index) 
with Bargmann space transform K, describing the relative motion of the two frag- 
ments. [In the i2C+ 12C system the internal K-space functions can in fact be expressed 
in terms of functions of the two pseudovectors [K, x K,] and [K, x K4], see eq. (BS).]. 
In general, the BS transform of the operator 0 Y can be expanded by 

H(K,K*) = c c [[fvl,. * *)(Qlv) x p@,, . . J&4 -fPA -1) 
1 

(bd 

(.hc)Q(hO~ (rlWc)Q’(~“~“)~” 

x p@>‘Q”‘]‘k’~‘[[p(~:, . . ~(w’4’) x p(~j*, . . .)(PA -~‘LI -r’)]W) x p(~*)'oQ"]$;'""' 

x ([C-R,, . . .)(+f) x x(R,, . . .p -fPA -f)-pc) x ~r7,‘Q”‘]~“~‘loYl[[x(R1, . . .)@fPf) 

x X(Rj, . . .)@A -f'pA -f’) I @A‘;) x X(~)‘Q”3]~yd’,). (27) 

If the operator 0 is the hamiltonian, it is useful to imagine that 0 has been expanded 
in terms of SU(3) irreducible tensor operators and to write eq. (27) in terms of the SU(3) 
reduced matrix elements of such operators. Examples of this technique have been 
given in ref. 24). If Co is the unit operator, (or any SU(3) scalar operator), the matrix 
elements of eq. (27) must be diagonal in (All) and 01 and be independent of u. Making 
use of this property and the relation 

[P(lp) x P(K*y-Jgj = 
1 

~ c P(K)pP(K*p 
C4&41~ Ix 

W) 

with d(&) = the dimension of the representation (Lp)), see eq. (A.6); the BS transform 
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of the unit operator can be written 

x [[[P(E,, . . .pf’ x P(&, . . . )&I -fw.+i -fJ]&Pe’ x p(jo(Q’J’](b’ 

x [[WT, *. ~)(lrrW x p(~; . . $BA -f’b -r”]W:) x p(~*)(OQ”]W’]booq:CmJ 

x ([[& . . .)(+f’ x x(Ri, . . .)caa -fPA -f’]-) x X(R)(Q"']~Afl'l 

x Yl[[-(ItI, . . .)@f”‘f’) x x(Rj, . . .)@A -f’pA -f” 1 @;r;’ x ~(R)‘Q’“‘]~A”‘), (29) 

The coefticients of the SU(3) coupled K-space functions with specific (A,p,), 

(2, -,-P~-J), (W, (Qo), b$-++), (&-,,P~-~,) (Xc&), (Q’O); and t&4 are the orbital 
parts of the desired norm or overlap matrix elements. 

The calculation of norm or overlap matrix elements can thus be accomplished by 
two basic steps; 

(i) the BS transform of the unit operator is expressed in terms of the appropriate 
Bargmann space variables &, R, KT, and K*; and 

(ii) these functions are then expanded in terms of the appropriately SU(3) coupled 
K-space functions. The coefficient of the 

[d(il#[[[P(&, . . .) x . . .](Acac’ x P(@(Qo’](ir’ x [[Z’(Kf, . . .) x , . .](“;l:) 

x P(K*)(“Q”]‘““‘]&db’ (30) 

term gives the numerical value of the desired norm or overlap matrix element. The 
usefulness of this technique has recently also been exploited by Fujiwara and Ho- 
riuchi 27). In its use of the generating function property of A(K, R), it is akin in philos- 
ophy to that used earlier by Suzuki 51) and Horiuchi 34). 

[It should perhaps also be noted that both the operator Y and the separate frag- 
ment internal functions P(K,, . .)(Afcr’, P(K, . . .)(1A -W +) must be properly normalized. 
In the detailed application of the technique these normalizations are included during 
the process of calculation. Thus, norms tend to unity for separated fragments, i.e. in 
the limit Q + co.] 

3.3. CALCULATION OF H(R, K*) 

In single-particle k-space coordinates the BS transform of the operator 1. Y has 
the simple form of eq. (18). In principle, the transformation to the appropriate Barg- 
mann space variables Ki, . . ., KF is straightforward. In practice, it is complicated 
because of the large number of terms in the expansion of the Young operator, even 
though this can be drastically reduced by using a double coset decomposition 52) 
for Y. The transformation from Zj + Ki, &J + KT does not change the simple gaussian 
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form of H, and 

H(t, K*) = C a~ exp {C aij@Mrti. Kf)), (31) 
B Lj 

where, in place of a sum over A! permutation operators, the fl-sum has been restricted 
to a sum over double coset generators with weighting coefficients aS. For a cluster 
system of two heavy fragments, each consisting of several subunits with OS internal 
excitation, the number of terms in the @un is still much too large for practical pur- 
poses, so that a more indirect method will be used for the evaluation of H(K, K*). 

The general form of eq. (31) is its most important feature. The SU(3) scalar character 
of H(K, K*) follows from 

and its iteration 

(32) 

(Ki * zq)” = n![d(n, O)]+[P(Q(“O) x P(Kf)(qyJ. (33) 

Of the many internal degrees of freedom most are restricted to OS states, and ex- 
pansions of the exponentials of the corresponding Ei, KY are frozen in their zeroth- 
order unit terms. Only a few internal degrees of freedom carry oscillator excitations, 
and these carry excitations fixed in their lowest Pauli-allowed values, limiting the 
expansion of the exponentials in these Ki variables to specific (small) values. Only 
the oscillator excitations associated with the relative motion Bargmann space vari- 
ables iz, K* (without index) are completely unrestricted. It is thus useful to factor 
H(K, K*) into three types of terms: 

(i) Terms carrying internal excitations only: 

exp (C OijfKi. KY)}- 

Lj 
(34) 

When expanded, these exponentials lead only to terms of the form 

[P(&, I&, * . . )(I”“) x P(K:, K;, . . .)““““]~oooo’, (35) 

where we have used the SU(3) (00) character of (34). The representations (A’$) are 
limited to a few possibilities since the number of oscillator quanta associated with 
(nip’) must be smaller than those associated with both (A& and (L&l,). 

(ii) Cross terms involving both internal and relative motion degrees of freedom: 

exp {C [Gio(Ki * K*)+ Ooi(E. K:)]). (36) 
1 

When expanded, these exponentials lead to terms of the form 

[P(&, x2, e . .)(“‘) x P(K*)(Om)]c;:b * [P(@cm’o) x P(K:, Kf, . . .)(Om’)]&~. (37) 

The possible integers m and m’ are restricted by the requirements 

(X/J’) x (A) -+ (J&)> 
(X/J’) x (m’o) + (t,‘,&), 

(3ga) 
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i.e., the excitations associated with the fragment internal degrees of freedom must 
couple to resultant SU(3) symmetries (A& and (A;&). With fragmentf = f’, (e.g. in 
any norm matrix element), (Q,) and (&A:) must carry the same number of internal 
oscillator excitations, and hence m = m’ in this case. For overlap matrix elements 
between different cluster decompositions; i.e. for f # f’ the difference m-m’ is a 
fixed integer. For a r2C+ 12C - 2oNe + c1 overlap matrix element, e.g., the ’ 2C + “C 
SU(3) representation (A& carries 8 + 8 = 16 internal oscillator quanta, while the 
2oNe+ a representation carries 20+0 internal oscillator quanta, so that m’-m = 4 
in this case. In general 

m’ = m+A. (W 

(iii) The final factor contains only the relative motion K-space variable and has the 
form 

exp {eoo(M * K*)l, (3% 

where the coefficient cr,,(p) is a function of the fragment masses and the index p which 
counts the number of particles exchanged between fragments. The term in H(ki, k:) 
corresponding to the exchange of nucleons a and b can be written, [in single-particle 
k-space coordinates; with P = (ab)], as 

exp ( t (Ei . Pkr)} = exp ( f (E, . k:) - (ii0 - &,). (k,* - kt)}. W) 
i=l i=l 

For fragments of mass numbersSand A - f, the single-particle ki transform into: 
for i = 1,. . .,f 

‘i - [JJ+ -~(-[~]tx+[gK_)+..., 

forj = J+ 1,. . ., A 

‘j = [alft 2 ([q+x+ [~I’L.) + . . . . 

(41) 

while the single-particle k:, corresponding to a cluster decomposition into fragments 
f’ and A - f’, transform into: 

for i = 1, . . . . f’ 

” k? =&(- [qK*+ [qK:_) + . ..) 
for j = f’+ 1,. . ., A 

k: = [A _‘rt,+ --([yP++ [qkj +..., 
(42) 

where the terms abbreviated by + . . . stand for the A-2 Xi and Kf’ associated with 
the fragment internal degrees of freedom which can make no contribution to croo. 
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Without loss of generality, assume that a < b, f’ < jI Then 

&-ES)(k,*--k,*) = o+ . . . unless a < f’, b > f; 
(43) 

(Ii0 - k,) * (k: - kb*) = 
A 

~f(A_f)y(A_fr)l+(‘*K*)+ **. if a < f’, b > _L 

while 

2 CEi. VI = (Kc.,. ’ C.nJ+ 
i=l [ 1 

;;‘A” 1 ;; ;&K*)+.... 
Terms denoted by + . . . are associated with internal degrees of freedom and have 
already been accounted for in factors (i) and (ii). 

For a permutation involving p pairs of nucleons with indices a < f’, b > f, 

floe(P) = 
f’(A-fkPA 

[fV - f)f’(A - f ‘>I+ ’ 
(45) 

The full H(& K*) can be assembled from combinations of products involving factors 
of types (i), (ii) and (iii), weighted with as yet undetermined coeffkients which can be 
functions of m, m’, (nip’), and p. Since m-m’ is a fixed integer, m’ can be eliminated as 
a redundant variable. The K-space functions p”p’) are built from fragment internal 
degrees of freedom only. Since these are independent of the number of exchanged 
nucleons (p), the (2~‘) dependence of the coeffkients can be factored from the p-de- 
pendence, and the full function H(I, K*) can be assembled by means of m(n’~‘) de- 
pendent coeffkients c,,,(Xp’) and m, p-dependent coefficients D,,,(p) to yield 

x [FDJp)exp{ f’(A-f)-pA 
[f(A-f)f’(A-f’),+(“K*) 

x c m1,g 2,. 
%8.Y 

. .)~mo’P(K*~om’P(@“o’P(K:, K;, . . .yPm’) 

x P(&, &, . . .)$!““P(K:, K;, . . .$“I’), (46) 

where factors of type(i) and (ii) have been expanded by means of eq. (28) in terms of the 
set of subgroup labels M, /I and y. The coupling of the internal functions to resultant 
SU(3) symmetries (A& and (A:&) leads to 

x P(K:, Kf, . . .~k)P(K*)$om)P(ol;l’o! 
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For the purpose of evaluating the coefficients the subgroup labels in the full SU(3) 
Wigner coefficients are best chosen in terms of the intrinsic basis a = ~,,4&2,,~, . . . . 
The constants &rr(A’$)(A,~J) are renormalization coefficients associated with the 
combination of P(&,,,, ) and are built from the [(Qi + QJ!/Qi !Q2 !]* renormaliza- 
tion coefficients associated with the coupling of Bargmann space K-functions in the 
same variable, [see eq. (B.l)]. The details of this renormalization are unimportant 
since the renormalization factors can be absorbed by the as yet unknown coefficients 
c,,,(~,~.). It is most convenient to redefine these in terms of the new coefficients y,,,,,,,,,; 
where (with m' = m+d) 

A ml2 

' f'(A-f') [ 1 (48) 

With this definition the structure constants ym(n,PP), have the simplest normalization. 
It will now be useful to express the BS transform H(K, KY) in three basic forms: 
In form I the internal and relative motion K-space functions are retained in their 

uncoupled form with subgroup labels a, j, ac, a: specified in a Cartesian oscillator or 
intrinsic .sAM, basis. This form is the one most closely related to a single-particle 
basis, and it is this form which is used for the evaluation of the coefficients ymCAP,,.) and 

D,(P). 
In form II, H@, K*) is then given in terms of the basic SU(3) coupled K-space 

functions of eq. (30) in which all dependence on subgroup labels has disappeared. 
Once the y,,,Cn,Plj and D,(p) are known, this form gives norm and overlap matrix 
elements directly since these are merely the coefficients in the expansions in terms 
of the SU(3) coupled functions (30). Form II is therefore one of the key results of this 
investigation. 

In form III, the BS transform is also expanded in terms of SU(3) invariant coupled 
functions. The order of the SU(3) coupling is now slightly different. This form is most 
useful for the evaluation of the single-column BS transforms, since the SU(3) in- 
variants of form III can be expanded most easily in terms of scalar products of the 
type (Ki . Kj*). 

The combination of eqs. (46), (47) and (48) leads directly to 
Form I 

x P(&, K2,. . .):~+‘(K:, K;, . . .),f$+), (49) 
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where this form of H(K, K*) will be most useful for the evaluation of the coefficients 
JJ,,,(~,~,) and D,(p). For binary fragment systems the internal function of symmetry 
(&) is to be built by coupling fragment functions of specific symmetries (L,P~) and 
(A, _ spFLA _ f) as in eqs. (26) and (27). Similarly for functions of symmetry (&pi). 

Alternately, form II is achieved as follows. Starting with eq. (46), the exponentials 
are first expanded in powers of (a * K*)Q-“. Four 9-(2~) transformations involving 
recouplings 

[[(mO) x (Om)]'OO' x [(Q -m, 0) x (0, Q - rr~)](~~)](~~) 

+ [[(mO) x (Q-m, O)]‘Qo’ x (OQ)]‘oo’, 

[[(m/O) x (Om’)]‘OO’ x [(nip’) x (~‘X)]‘oo’](oo) + [[(m’(I) x (iz’,~‘)]‘““~“) x (p>Xc)](““‘, 

[C(Qo) x (OQ)l’oo’ x [K/4 x (/4~:)l(00~1~oo~ 

+ [[(Qo) x (U)lc”“’ x [(OQ) x (~,:4)1(““)](~~), 

[[(Q -m, 0) x (mWQo) x [(m+A,O)x(1'p')]'""~"']'"~) 

--f [[(Q-~,O)X(~+A,O)]'~+~~~) x [(~O)X(IZI~')]('~~~)]('~), 

then lead to the expansion of H(E, K*) which is in the basic form of eq. (29), needed 
for the direct evaluation of the norm or overlap matrix elements. Some of the technical 
details of SU(3) recoupling transformations are discussed in appendix A. The first 
three transformations, each with three (00) representations, are given in terms of triv- 
ial SU(3) dimension factors, [eq. (A.16)]. The 4th transformation is a bona fide 
9-(1~) transformation made up of multiplicity-free SU(3) couplings only, A number 
of renormalizations of K-space functions are needed, see eqs. (B.l) and (47); and phase 
factors are introduced by a change in the order of some SU(3) couplings, see eq. 
(A.3b). With these factors the BS transform can be put into the basic form: 
Form II 

(Q-m, 0) W-3 (QO) 
x c (_ l)A+lc+Ps+&+C; (m+ 4 0) V’P’) K&) l14&)lf 

(ho (Q + 4 0) Wc) (b) I 
x [[P(&, R,, . . .)@cflc) x P(IpQ+A’o)]@fl) x [P(Iq, K’i, . . .y:) x P(K*pQyq;$. 

(50) 



166 K. T. Hecht et al. 1 Spectroscopic amplitudes 

Comparison with eq. (29) gives the matrix element 

(CC(&) x LJ~.e/)l(hd x (Q+ 4 WW~l YI[C(++) 

x (4i -/‘PA -,OlK/4) x (Q0)l(Ma> 

(Q-m, 0) ho) (QO) 

(Q+ 4 0) @cd (44 

An alternate form, involving an expansion in terms of SU(3) Racah or 6-(i~) coef- 

ficients, (see appendix A), gives 

(CL(+) x (A, - /PA- ,)W,P,) x (Q + 4 W&l Y 
x I[[(ilf& x t&s, -I,~A -f,)1(4~2 x (Qo)l(W> 

= (_ l)Q+l+r+G+rL 

x U((QO)(OQ-m)(~"p")(Om+A);(mO)__;(OQ+A)__) 

x WQ + 4 Wc,cc,)(QW4~:); (44 - ; @“P”)P- ). (52) 

For the special casef’ = f; (equal fragment decomposition in bra and ket), this is 
in the form of eq. (27) of ref. 25), with (&) = (&,u:), A = 0. Once the structure and 
exchange coefficients Y,,,(~,~,) and D,(p) have been evaluated, norm and overlap matrix 

elements follow at once from this simple, universal formula. In ref. 2s) the y,(,,,., 
are tabulated for a few simple examples, (CI+ heavy fragment cluster norms). The 
method used there for the evaluation of the y,,,(,,,,, is rather indirect, making use of 

shell-model techniques. A more direct method will be developed in this work. 
Before proceeding, it will be useful to exhibit one more form of the BS transform 
- - 

H(K, K*). With a somewhat different recoupling path, eq. (46) leads to: 
Form IZZ 

II@, K*) = 1 y,,,o~,~,[m!(m+ A)!]* 
m(d'a') 
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x u((~~~~L,XCl’nlM~‘r”Mom+ A); (mO)_ - ; (&n:)_p) 

x [[I-& K2,. . .pc) x P(kq, K;, . . .)(ry(A”r”)p 

x [p@)(m+ & 0) x p(K*)(Om)](r”a”)]bOo91. 

This is the generalization of eqs. (15) and (23) of ref.25). 
In lighter nuclei the Y,,,(~,~,) can be calculated directly for the full A-particle system 

of arbitrary space symmetry, characterized by full 4-columned Young tableaux. An 
example will be given in sect. 4. In heavier nuclei the total number of Y,,,(~,~,) needed 
for the evaluation of eq. (5 1) can become somewhat large. In heavier nuclei, therefore, 
a variant of the above technique is used. BS transforms are first calculated for I + n- 

particle subsystems of space symmetries characterized by single-columned Young 
tableaux, (totally antisymmetric space symmetries). The BS transforms for the full 
A-particle system are then built by suitable symmetrized combinations of these 
single-column functions. For this reason, as well as for simplicity, the calculation of 
the Y,,,~~,,,) will be illustrated first by the example of such a “single-column function”. 
For an I+ n fragment system with totally antisymmetric spatial wave function, (made 
up of neutrons with spin-up only, e.g.), the Y operator is a simple I + n-particle anti- 
symmetrizer, d. The cluster function in the bra and ket sides of the matrix element 
will be assumed to consist of fragments of I + n and 1’ + n’ particles, respectively. Form 
I of the BS transform, eq. (49), with K-space functions expressed in a Cartesian oscilla- 
tor or intrinsic ELM,, basis is most useful for the evaluation of the ~,,,(~,~,r With 
specific choices for the subgroup labels, a,, a:, the oscillator excitations carried by the 
internal degrees of freedom can be uniquely specified since the fragment SU(3) sym- 
metries are uniquely determined by the particle number for totally antisymmetric 
states carrying minimum Pauli-allowed excitations. For n = 1, 2, 3, 4; 5 and 6, the 
fragment (&A) must be (00), (lo), (Ol), (00); (20) and (21). The n = 3 fragment, e.g. 
must consist of one OS particle and two p-shell particles, coupled antisymmetrically 
to SU(3) symmetry (01). An I+ n = 2+3-particle cluster system of this type, with 
(&) = (lo), (L,JL,,) = (Ol), can have (&pJ = (00) or (11) only. With (1,~~) = (11) and 
at = EJ~M,~ = 3 $ $, e.g., this must carry two z-excitations and one x-excitation. 
These can be extracted from a BS transform by means of eq. (19) by differentiation 
with respect to a E,, where i is a single-particle index associated with the I = 2 
fragment, and further differentiations with respect to Ejz and &,,X, where j and m are 
single-particle indices associated with the n = 3 fragment. 

Using the orthonormality of the P(fl, iif,, . . .)Lyc) in the complex Bargmann 
space with integration measure, dg(k,), given by eq. (12), 

ss 
* * . v E dg(Ki,)P(K,p K,, * * .)iyc’(P(K,, iy2, e * o)it”“))* = 8~~~p~)(~,cc~Bm~~cp (54) 

X9Y.Z 
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eq. (49) can be converted to a function of the relative motion K and K* only 

ss 
. . . l--j n d~&,)dg(Kj,)(J’(&, K,, . . .);~c’)*H(P(KT, K;, . . ipa)* 

ia jfi 
= qg, K*ph m&)* (55) 

Except for a trivial overall multiplicative constant, this &‘(K, K*) is identical with a 
function of K and K* obtained by a superposition of the operations 

The above operations involve the following steps: 
(a) Differentiation with respect to single-particle k-space coordinates of the BS 

transform of the (I+n)-particle antisymmetrizers, eq. (18) with cp = (- l)o”‘; 
o(P) = parity of P. 

(b) Transformation of the resultant functions to functions of K, Kr, E2,. . ., K*, 

:2T;.[ 

., KY by means of eq. (20) [ see also eqs. (41)], for the &; and by means of eq. 
see also eqs. (42)], for the &T. In the ki, particle indices i = 1, . . ., 1 belong to 

fragmentf;i = 1+1,..., 2+ n to fragment A - f: In the k;, particle indices j = 1,. . ., 1 

belong to fragment S’, j = I’+ 1. . . ., l’+ n’ to fragment A - f’. 
(c) In the last step, Kc,,. and all Ki and KT describing fragment internal degrees of 

freedom are set equal to zero. [Kc,,. is the K-space variable for the c.m. degree of 
freedom of the whole nucleus.] 

The required superposition of such operations involves the coupling of the I+n- 

particle internal functions to fragment and channel SU(3) symmetries (QJ, (Q,,), 
(&uJ, (n,+,,), (&,.p,,,), and (A:&). For single-column (totally antisymmetric) functions, 
only very simple SU(3) Wigner coefficients are needed, and in many cases a clever 
choice of cr, and cr: can restrict the superposition to a single term (e.g. by selection of a 
unique SU(3) coupling path for which all Wigner coefficients are equal to + 1). In 
connection with the operations defined by eq. (56) it will be useful to define a symbol 
of 1+ n and l’+n’ single-particle indices. E.g., with 1 = 3; n = 3; I’ = 1, n’ = 5: 

6 

Pk,*)lI 1 (57) 
Zi=O,KJ=O,Kc.m.=O 

A computer code has been written to calculate the functions of K and K* resulting 
from these operations 53). A fairly extensive tabulation of such functions is given in 
appendix D. 
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3.4. A SPECIFIC EXAMPLE 

To illustrate the method in detail the following specific example is chosen: a 4- 
particle system characterized by a single-columned Young tableau with cluster de- 
composition into fragments with f+n = I’ i-n’ = 1 + 3 particles. This cl-particle 

system is char~ter~ed by SU(3) symmetric 

[(All,) x (&%)I(&&) = [(&cl,*) x (&11,,)1(~~~) = C(OO) x ~wl@l). 
For this simple system there are only two possible values of the indices m(A’p’): 

(i) m = 0, (Z/J) = (Ol)(= (12,j.Q) = (A$‘,)), 

(ii) m = 1, (2~‘) = (10). 

Except for an overall multiplicative constant which can be absorbed by the coeffr- 
cients Y,,,(~,,,,) the function ti(g, K * (AcPc)~(akPL) defimed by eq. (55), with a, = a: = )ac,aL 

%MGC = 1 $3 [N(3) highest weight for (&A,) = (01)] is identical with the single 
F-function 

F($ :;z:“). 
That is 

x (((10)200; (lO)- 1 +~J(ol)l~)>“P(lr)~~~(P’(K)~~~)* 

+ ((lO)- 1 fi; (~0)2~~(01)1 ~~)“P(~~~:,(P(K)‘_t~:3)*) 

I+ I> 9 (58) 

where the value of the F-function has been read from table 9, (appendix D). The 
needed P’r*) are: P(~)~~~ = 1, P(~~~~~ = if,, P(~)~~~~ = Rx. The two non-trivial 
SU(3) Wigner coeffkients have absolute value ,/$. With these, eq. (58) leads at once 
to the determination of the ynrCzr,) and D,,,(p). 

(i) ~~~~~~ = 1, MO) = 1, D,(l) = - 1, 

(ii) ~~~~~~ = 2, WV = 0, O,(l) = -1. 
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The evaluation of the coefficients Y~(~,,,,) and D,(p) through the functions X(X, 
K*)‘“c’+‘“““” th 

a,,@, us makes use of the specific construction of fragment internal func- 
tions in an intrinsic or Cartesian oscillator basis. Once these coefficients have been 

evaluated, however, it is vital to make use of one of the SU(3) invariant (SU(3) 
coupled) forms of H@, K*). For present purposes form III is to be preferred. In the 
application of form III to the present simple example the only non-trivial U-coef- 
ficient, (with m = 1, (J’p’) = (lo), (A”,“) = (11)) has the value -3; (using eqs. (A.8) 
and (All), e.g.). Eq. (53) leads to 

H(~,K*)““‘,‘~” = eqfi.K* _ J5[PK, &Yol) 

x P(KT, K;)““‘]gj 

A 

-2f(A-f)exp 
(K* K*) ([[P(K,, &)(Ol) 

1 

x P(KT, K;)(‘“q(oo) x [p(jyJ’ x p(K*)colqcooqgJ 

-&/q[P(B,, I&)(01) x P(Kf, K;)(loy) x [P(K)(lO) x P(K*)(oy)]g~) ) (59) 

where the internal Ei, K2 associated with the heavier fragment are illustrated in 
fig. la, and where 

P(K,, K2)(01) = [P(K,)(lQ x P(KJ(lo)](O1) = al2 = J$[K, x K,]. (60) 

SU(3) coupled functions of the type appearing in eq. (59) can be expanded in terms of 
simple scalar products. A list of such expansions is given as part of appendix B. E.g., 
eq. (B.lO) gives 

fi[[P(K,, KJ(Oi) x P(KT, K;)“o’]‘” x [P(K)“O’ x P(K*)(oi)](ii)]~$j 

= (E. &)(K* * K:,)--j(K* K*)(&. KT,), (61) 

where it is important to note that K, 2 is a pseudovector, (SU(3) (01) tensor), in applying 
eq. (B.lO) to this case. Eq. (61) together with eq. (32) transforms eq. (59) to the form 

#O’)(O’) = exp q(K f K*) (K { dG+-ew[- ,,A_/)“K.K*)]) 
(K.K*) ((f.K*N~,,.K:,)-(~.t,,MK*.K:,)) 1 (62) 

This single-column BS transform is now in a form in which it can be combined with 
other single-column functions of this type to construct the BS transform for the full 
A-particle system. If this 1+3-particle single-column transform is to be used in com- 
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bination with other single-column functions, it is important to note that such an H 
must contain the mass numbersfand A -fof the full A-particle system. The single- 
column factors exp r,~(ii * K*) combine to make the simple factor exp (K * K*) for the 
full Ccolumned tableau; the only property of q which is needed is Ccolumns rl = 1, 
see appendix C. 

Since such single-column BS transforms are the building blocks for the construc- 
tion of many of the full BS transforms of this work, a catalogue of such single-column 
BS transforms is given in appendix C in a format similar to that of eq. (62). Such 
single-column BS transforms are particularly useful in heavier nuclei. In light nuclei 
a direct evaluation of the complete set of ym(l,r,j and D,(p) for the full A-particle system 
is feasible and, through form II of the full BS transform, leads to the most direct eva- 
luation of norm and overlap matrix elements. This method will therefore be illustrated 
by a more detailed example. 

4. A detailed example: The 6Li + ‘Li cluster system 

The 6Li+ 6Li binary fragment system is chosen to illustrate the direct method for 
the evaluation of the full BS transform. Each 6Li fragment is assumed to have space 
symmetry [42] (with S = 1, T = 0), and SU(3) symmetry (n,p,-) = (20) with I, = 0 
or 2. The possible space symmetries of the full 1Zparticle system are then limited 
to [4422], [4431] and [444]. Th e coupling of the fragment SU(3) symmetries (+& 
x (J,_,P~-,) = (20) x (20) leads to the possibilities (&) = (40), (02), (21). The 
possible (@) are listed in table 2. For relative motion functions fixed in their lowest 

TABLE 2 

Possible (Ap) for the 6Li+ 6Li cluster functions 

W’) (Q+4,0) (Q+L 1) (Q2) (Q-293) (Q-4,4) 
(02) (Q2) (Q-1,1) (Q-230) 
(21) (Q+Z 1) (Q2) (Q-23) (Q+l,o, (Q- 1, 1) (Q - 332) 

Pauli-allowed oscillator excitation, Q = 4, the possible Pauli-allowed (&) values 
are uniquely determined by the 1Zparticle space symmetries: 

(i) (W = (40) for W41 space symmetry since this is the only (&) value for which 
the coupling (&p,) x (40) can give a resultant (2~) = (04); 

(ii) (&) = (21) for [4431] symmetry since (&IL,) x (40) + (APL) = (12) is possible 
only with (&) = (21); and 

(iii) (&CL,) = (02) for [4422] symmetry since &CL,) x (40) --, (np) = (20) is possible 
only with (&cl,) = (02). 
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The zeros required for all other @,u) values for Q = 4 furnish a strong test for the 
full Q-dependent expressions for the overlap matrix elements. For Q > 4 all three 
(&) values may be possible for some @,u) values. For this cluster system, made up of 
two identical fragments, however, AC + pC + Q must be an even integer, as in the case of 
the 12C + 12C system. As a result the norm matrix becomes a 2 x 2 matrix only for 
states of positive parity, (even Q), (&Y) = (Q2); with (&) = (40) and (02). 

4.1. STATES WITH [4422] SPACE SYMMETRY, (IJL’,) = (QL;) = (40) 

The evaluation of the JJ,,,(~,,,,) and D,(p) through the function Xi?j?C21(40)(40) is 
simple, since the choice CY, = CY: = sC/lCMn, = 800, (n,n,n, = 400), automatically 
selects the states with (&) = (&&) = (40). The specific construction of such states 
involves differentiations with respect to four Ei, variables and differentiations with 
respect to four kyz variables. The construction of states with space symmetry [4422] 
is illustrated in fig. 2a. In fig. 2, particles associated with the two different 6Li fragments 

Fig. 2. The combination of single-column functions for the 6 +6-particle system. 

are illustrated by white and shaded squares. Initially, squares associated with the 1st 
and 2nd rows are assumed to represent particles with OS excitations, squares asso- 
ciated with the 3rd and 4th rows z-excitations only, making the initial row symme- 
trization automatic. The separated columns denote the column antisymmetrizations 
associated with the definition of the F(: 1 1) functions of eq. (57). In general, such col- 
umns can couple to several resultant space symmetries. In fig. 2a, however, this 
coupling is unique and gives the single state of [4422] symmetry. For example, the 
last two columns can couple only to space symmetry [22]. In general, two [l’] 
symmetries could couple via [i’] x [l’] = [l”] + [21 l] + [22]. States of symmetry 
[l”] and [211], h owever, would correspond to states with at least two OS particles 



K. T. Hecht et al. / Spectroscopic amplituks 173 

in the same fragment and in the same column, and would correspond to two OS 
particles with identical spin-isospin quantum numbers in the same fragment. Thus 

3Ept44221(g40qJ.(g4000) A [F(,Ofi~~~,,)]2[F(~i~)]2 

= exp (E * K*)[( 1 -e’)2-e’/3~z]2(1-e’)2, (63) 

where these F-functions have been read from table 9. We use the shorthand notation 
of appendix D: With f’ = f: 

The symbol 4 is defined to mean “equal to within an overall multiplicative constant”. 
This constant will always be absorbed by the as yet undetermined Y,,,~~,~,). For the 
general binary fragment system only the p = 0, m = 0, (A’$) = (&c(,) term can make 
a contribution to a norm matrix element of a completely separated 2-fragment sys- 
tem; (this corresponds to the limit Q + co). With the F-functions of appendix D the 
normalization of eq. (49) automatically leads to yoCnCr,) = 1. For a system of two 
identical fragments both the p = 0 and the p = f(ful1 exchange) m = 0, (nip’) = (A& 
terms make (equal) contributions to the (Q --f co) norm matrix elements. In this 
special case, therefore, the product of F-functions must be renormalized by a factor 
of 3. For (A& = (A:&) = (40) the possible m(nlp') values are given by 

Thus 

m(nlp’) = m(4 - m, 0). (65) 

x C ((mO)a; (4-m, O)yl(4o)~~X(~)B; (4-m, 0)~1(40)8~). (66) 

The SU(3) 1 SU(2) x U(1) coupling rules define a, b and’ y uniquely in this case: 

B = a 3 E,A,M,. = 2mOO; y = 8-2mOO. For this unique coupling the SU(3) 
Wigner coefficients have the values + 1. With P(K)$$jo = RF/Jm!, eq. (66) leads to: 

Ym(4-rn.0) = 0 for m = 1, 3; and ~,,,(4-~,~) = 1 for m = 0, 2,4; with D,(p) given by 
simple binomial coefficients. These are tabulated in the tirst entry of table 3. 

4.2. STATES WITH [4431] SPACE SYMMETRY, (ncpc) = (X$) = (40) 

States of [4431] symmetry can be constructed from the column antisymmetrizers 
illustrated in fig. 2b. The coupling of these columns is no longer unique. In particular, 
the coupling of the two [l”] symmetries corresponding to single column tableaux 
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TABLE 3 

Coefficients for the 6Li + 6Li norms 

(n’P? YmLl,p’) UP) 

Cfl = c44221 &PC) = (4w:P:) = (02) 

m = 2 Y,,,,, = 1 D,(P) = -$f,t I)( - ljp 

PI = c44221 G4,) = WMW = (02) 

WP’) Yl?I(,~,~, D,(P) 

0 
1 
2 

(02) 1 
(11) 6 

(29 t 

Cfl = [44221 (~,PJ = (21LWu:) = (21) 

m VP’) Ynl(l~jl') D,(P) 

(21) 
(30) ; 

(11) s 
(01) 
(10) ; 

3- 1)“L-(;H,~I)l 
(- l)“(,-“I) 

+t--l)pc(,~IHp~2)l 

(- 1)“(,:2) 
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TABLE 3 (continued) 
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VI = 144311 &%) = wwx) = WI 

m 

w 
(30) 

(10) 
(00) 

$f-- l)“[@-(p: I)1 
2(- l)p(p$) 
2( - lR,2 2) 
-%- l)p[~pL)-(p~3)1 

VI = c44311 W,) = w9, vx) = (02) 
All Y,,,(~,~.) = 0 

Cfl = P311 m4,) = WM1:/4 = (02) 

m VP’) Ynl(l'p') 4,(P) 

0 (02) it- l)p[@(p%)l 
1 (11) : w)P(pfl) 

PI = c44311 &%u,) = w),m:) = (21) 

m VP’) YnI(,I,p’) Q,,(P) 

0 (21) % - l)pR;) + tp4 ,)I 
1 

(30) ; 

(11) t 
& l)“C(,? ,)-(,“,)I 

2 (01) 4 
(20) 4 

$-1)“(A) 

3 (10) 4 -$wY[(,‘2HpL)l 
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TABLE 3 (continued) 

m VP’) Ym(i’p’) UP) 

0 (40) 1 %- 1)pc(;)-4(p~1)+(p~2)l 
1 (30) 1 6(- l)“[(,~Hp~J1 

2 (20) 1 -2(-l)pr(p~1)-7(p~2)+(p32)1 

3 (10) 1 -6(- l)pC(p~~Hp~J 
4 cw 1 ~-~~pc~p~2~-4~p~3~+~p~4~1 

m = 2: Y2(20, = 1 D,(P) = (- 1)“(,-4J 

m 

0 (02) 1 it - up(;) 
2 (20) 1 -& l)“(,! 1) 

Cfl = w4 (b4) = (2lMl4 = (21) 

(21) g- l)“c(;)-(,5. I)1 

1 (30) 4 
(11) -y -it-- lY(p~l) 

2 

3 

(01) 2 

(20) 0 

(10) 4 

-s- 1)"[(,~,H,~2)1 

--if- W(,~2) 
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with the shadings of fig. 2b is equivalent to the coupling, illustrated by the ket vectors 
to be associated with tig. 2b, 

P 

Iii al 

‘/ 
> 

@a$ 

El 1 a2 z-& 
> 

q a&=j,lma>+gl~~> 

(674 

VW 

Such couplings can be effected by symmetric group or SU(4) coupling techniques. 
However, the equivalence with simple 2-rowed couplings, illustrated by eq. (67b), 
reduces all coupling coefftcients needed for fig. 2 to simple SU(2) Wigner coeff& 
cients. The coupling coefficients used in eq. (67b) are () $ $ -#O), with S = 1 and 0 
for the first and second symmetries of eq. (67b). The additional columns of length 4 
and 2 lead only to unique couplings. The coupling for the bra vectors associated with 
fig. 2b are identical to those for the ket vectors. For the unit operator cross terms be- 
tween different symmetries must be zero, leading to the simple matrix element relation 
illustrated by fig. 2b. From the inverse of this relation, fig. 2b- ‘, 

37’1443 ‘I($$ ‘s”o”o’ & 2F(03& 
, J[F<o”;8fJJ”F(:$j)- 1[F(~~&,)]2[F(~~~)]2, (68) 

or 

+{2[(1-e’)2-eijI,2,][(1 -e’)-e’J?Z,]2(1-e’)-[(1-e’)2-e1/3~z]2(1-e1)2f 

leading at once to the determination of the ymt4 _ m, *I and D,(p). These are listed in table 
3. 

4.3. STATES WITH [444-J SPACE SYMMETRY, (Q.Q = &I”;) = (40) 

The coupling coefficients associated with fig. 2c are equivalent to (1 1 1 - 11s 0) 
with S = 2,1,0. The relation, illustrated by fig. 2c- I, leads to 

~{6[(1-e’)-e’~,,]4-6[(l-e’)2-e’~~~][(1-e’)-e’~,,]2(1-e1) 

+1[(1-e’)2-ee”/3~z]2(1-e1)2} 

(70) 

4.4. MATRIX ELEMENTS WITH (Qc,) = (40), ($u:) = (21); [4422] SPACE SYMMETRY 

From the identity of the two 6Li fragments, matrix elements of this type must be 
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zero. It is instructive to demonstrate this by explicit calculation. The calculation of 
J@44221$$~~~, (again using the simplest possible values of c(~, EL) is achieved by 
simple SU(3) couplings 

&$44221(40),(21) L {L~(0S;01 
*00,s++ - 2 O,*;,,*)F(~~~~~*)+~F(,o5;~~~*)F(,o51~~~*) 

-fF(~ll~~=*,F(~~~~=*)-~F(~~~a,*)F(~~~~=~)}[~(~~~)]2 

= F(~*~,.)[F(~51~~~*)-F(~I;~~,*)][F(~:o,)]2 = 0, (71) 

where we have used: 

(i) <(10)200;(10)- 1$*((20)1+9 = ((lo)- l+f; (10)200((20)1+*) = J* in com- 
bining F(T;;z,)F(Z;;X,) and F(I~&)F(I~;~,), 

(ii) the commutativity of products of F-functions, and 
(iii) ((20)400; (20)1*$((21)5# = - ((20)1$*; (20)4001(21)5~~) = J$ in combining 

F(&~o,,)F(o;‘t~oX~) with F(O;;~~oz,)F(O;;~oz~), and 
(iv) the identity of the F-functions in the square bracket of eq. (71) (see appendix D). 

4.5. MATRIX ELEMENTS FOR STATES WITH [4422] SPACE SYMMETRY, 

(QJ(,) = (~:~~, = (21) 

For the states of lower SU(3) symmetries it will be advantageous to use the fact that 
the Xthl’“cPc)(“LPL) for higher SU(3) symmetries are known from earlier steps in the 
process of calculation. 

By simple SU(3) couplings 

(72) 

(73) 

(74) 

where we have used the result of 4.4, H [hl(40),(21) = 0 ~@44221(40).(40) a,,cr’, 5ft, 5*-l can now be 

expanded by means of SU(3) Wigner coefficients ((mO)a; (4-m, O)y)(40)5$$) in terms 
of the known ym(4-,,,0j and D,(p), calculated for [II] = [4422], (&) = (L$L:) = 
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(40) in 4.1. Thus eq. (74) can be solved for &‘[44223\~~,(~~~ to give 

K(1 -e1)2--e’P~z1[(1 -+e’(PZ,+ B,,+P,,B,,)l +e2Bx,P,,B~J1 -e1J2 
-+{+(1-e’)6-e’(l -e’)4[((20)400;(20)l~f((40)5~~)2/?~z 

+ ((20)1+9; (20)4OO; )(40)5+f)22!~,,&,] +$e2(1 -e’)24!/Ixxfl~z/3!} 

= #W221WW) 
53%. 5tf 

x c P(P)~mO)P(K*~O~‘~((mo)cr; (nlp’)yl(21)5$y, (75) 
a Y 

where, for (A& = (A$:) = = (21), the m(Vp’) values in the sum are restricted to the 

TABLE 4 

Coeffkients for the 6Li + 6Li - a + 8Be overlaps 

PI = Cal @A)4 + 8 = @oh (k&)6 + 6 = @) 

m VP’) Ynt(A'p') UP) 

WI $ 
(30) fi 
(20) fi 
(10) fi 
(00) fi 

( - 1)“(4,) 
-2(- l)pc(;Hp31)1 
(- W[(po2 1)+(p~2)1 

2(-1)P[(p~lHp:2)1 

(pf2) 

Cfl = WI (k&)4 + 8 = w)~(&&,),+, = (21) 

m WI4 Ym(l,r') Q,,(P) 

1 (30) 

$ 

(- l)p(;) 
2 (20) -(- lvc(;)-(,r ,)I 
3 (10) 2 -(-l)p(p~l) 

VI = PI (&cl,)4 + 8 = (4)~ @d&)6 + 6 = fo2) 

m = 2: Y2(20, - -8 D,(P) = (- ly(;) 
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possibilities: 
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m = 0, (~'$1 = (211, m = 1, (A’$) = (30), (1 l), 

m = 2, 0%‘) = (20), (Ol), m = 3, (X/f’) = (10). 

With a few simple SU(3) Wigner coefficients, eq. (75) leads at once to Y,,,(~,~,) and 
D,(p) for these new quantum numbers. (The results are tabulated in table 3). 

Exactly the same technique can be used for the overlaps between cluster functions 
involving different fragment decompositions (f’ # f). The needed F-functions are 
included in appendix D. As an illustration, table 4 gives the coefficients needed to 
calculate the overlaps between the cluster functions 6Li + 6Li and a + 8Be by means 
of eq. (51) or (52). 

5. Norms for simple binary fragment systems 

The BS transform in form II leads to a very direct evaluation of norm and overlap 
matrix elements. In heavier nuclei, however, the total number of structure and ex- 
change coefficients can be large so that the direct method based on eq. (51) can become 
somewhat cumbersome. In this case it is easier to calculate the full BS transform for 
the A-particle system from suitably symmetrized combinations of single-column 
transforms of the type illustrated in sect. 2 with the 1+3-particle example. In this 
method it is advantageous to express the single-column transforms in terms of scalar 
products of K vectors with K* vectors, or [KO x K,] vectors, as in eq. (62). A fairly 
complete catalogue of such single-column functions is given in appendix C. 

The combination of such single-column functions to construct the full BS trans- 
form for the A-particle system of proper space symmetry &ru,), and (&&) is partic- 
ularly simple for the case of the binary fragment cluster decomposition for which one 
of the fragments has OS internal excitations only; e.g. if the light fragment has mass 
number S 5 4. In this case (QJ = (&&) is determined solely by the heavy fragment. 
There is a single overlap integral which gives the norm of such a cluster function. 
For simplicity it will be assumed that the heavy fragment has highest possible space 
symmetry and highest possible SU(3) symmetry; but this is not essential. 

a+y = f 

a+P = i-k 

y+6 = A, 

Fig. 3. Single-column functions for the binary fragment system with 8 Q A-f Q 12. 
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The case 8 $ A - f g 12, f I 4, will be chosen as an illustrative example, It will 
be assumed that the heavy fragment has space symmetry [h,h,h,] = [44(A- 
f -8)J and SU(3) symmetry (A.& = (4-K, pC) with pC = A-f -8. The full BS 
transform for this case will in general require a combination of the following single- 
column transforms; (see fig. 3 and appendix C): 

(i) a 1+ 3-particle transforms with SU(3) symmetry (01) with internal excitations 
specified by the pseudo vector K12, eq. (62); 

(ii) fl 0+3-particle transforms, also with SU(3) quantum numbers (01); 
(iii) y 1+2-particle transforms with internal excitations of SU(3) symmetry (lo), 

carried by the vector K, ; 
(iv) 6 0+2-particle transforms, also with SU(3) symmetry (10). 

S plsyd = exp(K*K*) (l-e’)(I,,.KT,)- 

x (K, . K:rj , (76) 

The symmetric product of these single-column transforms, SaBra, with c1 and p factors 
coupled symmetrically to (Oar), y and 6 factors coupled symmetrically to &O), and the 
resultant coupled to (A,&, with K1 carrying a (40) excitation, and K2 carrying a 
(~~0) excitation, has the desired SU(3) symmetry. But, S,,,, will in general be equal to a 
linear combination of several space symmetries, (cf. the discussion of subsects. 4.1, 
4.2 and 4.3); 

(ia) With f s pe and y = 0, the 4 s~gle-column fictions of Sf(rc-f,oz, couple uni- 
quely to space symmetry [44&J. 

(ib) With f>= K, fl = 0, the 4 single-column functionsof Slc,o(f-p,j(4_fj couple 
uniquely to space symmetry [44fpJ. 

(iia) With f 2 pe, and y = 1 

s,- lfflfc-ff i)l(A,- 11 = 

1 

&+2-f 
jp4’cf lf- ‘I+ &+-l--f fpp,fl 

a-2-f * 
(77) 

This is the generalization of case (b) of fig. 2, with coefficients 

&PC++l-fMPC+l -fti-3lWc-f>>". 
Hence 

Hc44pc+1f-z’ = (Cle+2-f)S~f-1~~Fle-f+ifl(ae-I~-(llc+f-f)S~~li,-f~*fl,. (78) 

Similarly: 
(iib) With f 2 ~1~; and fi = 1, 

Hf44f+‘pe-11 = (H+2-f)S;pc-l)iff+l-p,)(3-ff-f~~+~-f)~~,O~f-~cX4-~~ (79) 
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The only other case possible is: 
(iii) f = pC = 2. This is equivalent to the case illustrated by fig. 2c and gives 

Ht4441 = 6S,,z0 - 6S, 1 1 1 + LS,,,,. (80) 

To transform H(E, K*) into the desired form, eq. (29), it is useful to expand SaSyd. 
Binomial expansions of the a and y factors, followed by expansions of the exponentials, 
give 

S a&d = 1 c 1 Mx3(~-:-3(- lip+, 
Q=m+l I,m,n p 

x (9. K,,)“(K* ’ zq2yyq2. Kyg-(K. K*)Q-“-l. (81) 

The combination of P(R,)(“c-‘*o’, P(R,)cfo), . . ., to gain the desired final form, eq. 
(29), by SU(3) recoupling techniques can be achieved through a few key subsidiary 
formulae which are tabulated in subsect. B.2, and derived in subsect. B.4. Eq. (B.7) 
gives 

(&. K*)*@. KT)‘(g,. q))“c-’ = c (1!)2 kz(_ 1)~c+~+~+i;[~(~,q]3 

cm 

x [[p(&)(AJ’) x p(@“o’]‘zti x [P(KT)‘O”c’ x p(K*)‘O”]‘i’;i’]bO,0’, (82) 

where the phase factor comes from an additional interchange in the order of the (Or) x 
(On,) + (PI) coupling, see eq. (A.3b). Similarly, eq. (B.9) gives 

(g.R,2)“(K*.K:2)n(~12.KTZ)Bc-n(~.~*)Q-”-* 

= c (pc_n)!(Q-n-I)! (pc-“ii)! (X+K+2)! [@F)]* 
(&-n-F)! (X+/&--n+)! (83) 

(GI 

The combination of the K-space functions of eqs. (82) and (83) by the trivial 9-@~) 
transformation with three (00) representations, [eq. (A.16)], followed by the 9-(Lp) 
transformation 

x p&)(‘+.)](~=~c) x p@)(Q”)];W, (84) 
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and the analogous 9-(,$) transformation in the K* functions, using (A.19), gives the 
desired combinations of SU(3) coupled K-space functions. Transformation to the 
[(Ifi) x (&?)](,I.& scheme via (A.16), in the first step, introduces a multiplicity label p 
in the most general case. [The p-dependent phase factor introduced by (A.16) is can- 
celed by the ~dependent phase factor of (A.19).] 

The combination of all recoupling transformations gives 

S 

(50) (10) (&ii) - 2 

x(pc-n)!(Q-n-l)! 
(pc+i)!(;Z+pc-t-2)! I (014 (Q- l,O) (I,$ - 

k~--fiYt~+iu,+2-~Y t&/4 (QO) I (44 - 
I- - 1 

x [[P(K,, &)(Ac~c) x P(IQ(Q*)](~~) x [P(K:, K;)(“c”~) x p(~*)(oQ)](~~)]~$‘). 

Eq. (84) gives the internal functions in the form 

[P(KJlcO) x P(aJOpJ];~c). 

This could also have been transformed to the form 

[p(&)‘“=W x ~~~~~~o~=)]~~) 

(85) 

(86) 

(h + fit + l) (A + IQ)! = 

[ 
&%+‘Y 

(&+1X/A+ 1) &!cle! 1 *[p(Qf40, x p(jf*)1P~OrpC.) a, ’ (87) 

where, with AC + K = 4, eq. (87) has utilized eqs. (60), CBS), (A.1 1) with .I,, = 0, and 
(B.1). As in the first variant of our method, eqs. (76~80) give the BS transfo~ to 
within an overall multiplicative constant which must be determined by the proper 
normalization of the fragment internal functions. Eq. (85) is expressed in terms of 
properly normalized Bargmann space internal functions, P@,, K2)cncuc). These are 
related to the form (86) by 

(88) 

[d(A/.i)]f[[P(K,, lT2)(“c’c) x P(K)(Q”)](a“) x [P(KT,KKf)(‘c”c’ x P(K*)(“Q)](““)]bsp) 

term gives the overlap of the full SU(3), SU(4) coupled f +(A - f) cluster function 
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with itself. This overlap is equal to l/N’, where N is the norm for the SU(3) coupled 
cluster function [(&) x (QO)](@) of space symmetry [44h,h,]. The final result is: 

Case 1. For 8 I A-f 5 12, f r 4; A-f fragment of [44~J(&~~ symmetry, 
pe=A-f-8: 

II A Q-I-III x l-Pf(A-j) 1 
x c (_ l)n,+t+X+ii l!(&-ji)!(pc-n)!(Q-h)!(p,-,5)!(&,+2)! 

GF;,& 
(I-~)!~~!pc!(Q-i)!(pc-n-j4!(~+/q-n+2)! 

@9a) 

where 

For f = 4 a similar result, involving 9 U-coefficients, has been given in ref. 26). 
Similarly for : 

Case 2. 12 5 A- f S 16, f _i 4; A- f fragment of [434- ~~1 space symmetry, 
(&) = (Op,), with p, = A-f - 12; 
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where 

for f s 4-M; 

Chl = E434-PJl, cr = (P), 

[h] = [434-q,+ lf- l] ,c, = (4-~~-~+2~~)-(4-~~-~+1~~), 

for f 2 4-K, 

[b] = [4”f4--&I, CI = (“+p;-4), 

PI = ~4:43f+l3-&1, cI = (f-4+~C+2)(S+P;-3)-(f-4+~C+l)(~+U;-4), 

for f = tt, = 2, 

[h] = [44], ct = 6(F) - W+ l(P). Wb) 

The SU(3) recoupling transformations for this case have been illustrated in some detail 
in ref. *‘) for the special case, f = 4. The two U-coefficients used there, [eq. (31) of 
ref. ““)I, have been written explicitly here, through the use of relations (A.13) and 
(A.14), after use of the symmetry properties (A.8), (A.9) (A.10). 

The two cases, 4 5 A - f s 8 and 16 s A-f S 20, with irt, = 0, are very similar. 
Case3a.4~A-f’~8,f~4,(~~~E)=(uo),a=A-f-4* 

Case 3b. 16 5 A-f s 20, j-r 4, (&,f = (2a,O), a = A-f- 16 

where, with b = 1 for case 3a., b = 4 for case 3b.. 

for f 5 a, 

PI = C4Wl. c, = (LX 

[h-J = [4%+1 f -11, c, = (a-S+2)(‘-*)-(a-f+l)(J) m *, 

for J 1 a, 

PI = C4Ya-J. c, = C), 

[h] = [4bf+la-11, c, = (f-a+2X”-,‘)-(f-a+1HOm), 

for f = a = 2, 

[h-J = [4b+ ‘1, c, = 6(B--ti)+ lQ* 

1 I (92) 

(93) 
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The 9-(A,$ coefficients needed for these cases are equivalent to SU(2) 9-j coefficients, 
and, with 4 stretched coupIings, have the simple form of eq. (A.22). Norms for the spe- 
ciaI cases or+ 20Ne and ix + ‘*C have also been given by Fujiwara and Horiu~hi 27) in 
very similar form. 

As a last example we give the norm for: 
Case 4. 20 5 A - f s 24, f 5 4; (&,) = (81r,) with K = A - f -20. 

(8-5m-21+2n-2s,O) (2j+2s,O) (h4 L 
(2m+21--2n+2s,O) (2~~ -Y- 2s,O) (J2p2) 

(80) (2&t 0) (8/d I 

(8-2m-21+2n+2s-2r,O) (2j+2r-2s,O) WI) 
(2m+2E-2n-2s+2r,O) (2pc---2j-2r+2s, 0) @OPT) 

(80) (2&P 0) (814) i 

r (2m+21-2n+2s,O) (Q-2n+2r-2s,O) (&p.J - 1 
x C (2pc-2j-2s,O) 

I p’ (&Pu,) 
- 

(2n - 2r t 2s, 0) 

(4$-Y 
- 
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(2m+21-2n+2r-2~,0) (Q-2n+2s,O) (&pa) - 

(2pc - 2j - 2r + 2s, 0) (2n - 2s, 0) 
X 

(h4 - 

(&I4 (Qo) ib) 
I 

- * 
(94 

- - P' 

The cl,,, for [45h’h”] are identical with the c1 m , for [42h’h”] of case l., see eq. (89b). 

TABLE 5 

The factors f(p,) 

p’e f(P,) 

0 1 

1 
4 

s 

2 
42 

55 

3 
7 

11 

4 
5 .72 

4. 11 * 13 

The f(cl,) are given in table 5. They are related to the normalization of the heavy- 
fragment internal wave functions, 

[P(K‘J@O) x P(KJ(21’c0)]~~c), 

and are related to 4 + (n = cl,) + (4 + PJ particle sd shell fractional parentage coeffi- 
cients. [The inverse of these numbers can be found in tables A.1 through A.4 of ref. ““).I 
The first two of the four 9-(np) coefficients in eq. (94) are equivalent to simple 9-j 
coefficients, eq. (A.21). 

In the more challenging of these live cases a few bona fide W(3) 6-(2~) and 9-(np) 
coefficients are needed for the evaluation of the norms. These are readily available 
through the codes of Akiyama and Draayer 36). 

Norm and overlap matrix elements are particularly simple in all those cases in 
which one of the fragments has an internal function of W(3) symmetry (00), the 
second an internal (&) with either & = 0, or pc = 0. All such matrix elements can 
be evaluated without the use of’bona fide SU(3) recoupling coefficients. 

There are other examples of this kind. If one of the fragments is a heavier closed 
shell nucleus, such as 160 or 4oCa, the second fragment a nucleus with an internal 
function with either 1, = 0, or pc = 0, the SU(3) structure of norm and overlap matrix 
elements is identical with that of cases 2 and 3 above. Specific examples of this kind, 
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needed for the “C-t- “C resonance problem, (sect. 6), are the norm of the 8Be + 160 
cluster functions, and the overlap between *Be + ‘$0 and ot + 2oNe cluster functions. 
These can also be evaluated from single-column functions tabulated in appendix C 
and lead to expressions very similar to case 3. In particular: 

(a) Norm of ‘Be+ 160 cluster functions. With a ‘Be internal function of SU(3) 

symmetry (&) = (40) 

x ~R)(Q”)];a~)) = (- I)Q+~+~C ~(f)(f)(,“l)(;~~)(- l)l+m+“+p 
fmn p 

x &tiklm[l-&lQ-” 
[ 

(no) (Q - n, 0) (QO) 
(4-n,@ (no) (Jo) 
(4) (QO) (k) I (95) 

(b) Overlap between *Be+ 160 and a+ “Ne cluster functions. The overlap matrix 
elements are given by 

(&160)(oo)[#(8Be)‘40) x X(tT)(Q+4,O)]~~a)l~~~~)(OO)[~(2ONe)(80) x ~I(R)(QO)]~~P~) 

(Q+m-1,O) (1-m,O) (QO) 

(4+l-m,O) (4-I-t-m,O) (80) (96) 

(Q+4,0) (4) 1 (G) 

6. Spectroscopic amplitudes for the “C+ “C resonances 

The “C + “C excitation functions are determined by the partial width amplitudes, 
r& and r$. For given entrance and exit channels, c and c’, and quasibound states v 
of very similar structure, the relative magnitudes of (r&r&,) for different v can be 
expected to be proportional to the relative magnitudes of the product of amplitudes, 
(A,,&,.). The spectroscopic amplitudes A,, = (vlc’) can therefore give some mea- 
sure of the relative strengths of the excitation functions observed in specific channels 
c’. The quasi-bound states iv) are to be built from a restricted basis Ii>. The states Ii) 
are the Pauli-allowed eigenvectors of the i2C+ r2C “molecular states” 

J$~[[#‘~C)(~~) x $(12C)(04)](Ac~c) x X(R)~‘4~o)]$“,) 3 ~I(~~~~~~~)), (97) 

withu = ~,~-2,. . ., 0 or 1. These states, with Q = 14, are the shell-model components 
of 2ho oscillator excitation of the 12C+ “C cluster functions. The states Ii) are the 
eigenvectors of the operator Id, (with eigenvalues different from zero), in this re- 
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stricted l(~~&+)) basis. States lj) with eigenvalue zero are Pauli forbidden. They 
are the states which are annihilated by the operator d. The states Ii), with 

and 

&Ii) = Aili) (4 Z Oh WW 

(98b) 

require quantum numbers (I&JM,, as well as an index i, for their full specification. 
The transformation coefticients ((~c&(~~)~i) are independent of KJM,, and, for 
fixed Q and fixed (n,~,), (n,_/~~_/), are specified by the quantum numbers (A&, 
(Lp). It will be assumed that the quasi-bound states have the form Iv) = CJi)(ilv). 
Before attempting to solve the quasi-bound state eigenvalue problem, it will be 
interesting to calculate the amplitudes Ai,, (rather than A,& since the relative mag- 
nitudes A,, for different channels c’ may give an indication of the importance of a 
component Ii) in a particular resonance tine structure peak. The spectroscopic 
amplitudes A,, are defined by 

that is, they give the projection of the normalized, fully antisymmetrized state Ii) 

on the state 1~‘). 
In this section we calculate the norm and overlap matrix elements needed for the 

lzC+ “C norm eigenvalue problem, and for the evaluation of the spectroscopic 
amplitudes A,, for the channels c’ enumerated in sect. 2. 

77re “C + 12C overlaps. Matrix elements between “C + “C cluster functions 
of the type 

are calculated most efficiently by the second variant of our method, the “single- 
column technique”. Anumber of checks have also been made with the full“4-columned 
method” especially for those (J.&, (Zc&) combinations for which the total number 
of ym(l,r,) and D,(p) is not too large. For states of positive parity, (even Q-values), 
the only possible (A,& values are (&CL,) = (08), (24) and (40), so that the norm eigen- 
matrix may be at most a 3 x 3 matrix for some (Ip)‘s. For the states with Q = 14, 
discussed in connection with table 1, only (Jp) = (10, 4) leads to a 3 x 3 matrix. 
States with Pat&forbidden (,+) values must have zero matrix elements. This so-called 
redundant solution test furnishes a check on all calculations. Even more powerful 
iest cases exist, however. For some (np)Q combinations only a single Pauli-allowed 
state may exist, even though the cluster basis has a dimension greater than 1. The 
special cases (@) = (14, 2) and (11, 5) for Q = 14 are examples. In such cases the 
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norm matrix can have only one non-zero eigenvalue, corresponding to the Pauli- 
allowed eigenvector. The remaining eigenvalues must be zero, even if the number of 
channels is increased by including other cluster structures in the basis. 

The single-column BS transforms needed for the r2C+ i2C basis can be found in 
appendix C. They are the BS transforms of the operator ld for 6-particle systems 
with cluster decomposition into fragments with I+ n = 1’+ n’ = 3 + 3 particles. The 3 
nucleons in each fragment must couple to SU(3) symmetry (&,) = (A,& = (01). 
The resultant single-column (&,K) has the two possible values (A& = (02) and (10). 
The single-column BS transforms can be expressed in terms of the relative motion 
degree of freedom, K, and the two pseudovectors K,, = &[K, x K2], KS4 = 
flz[K3 x K4], which carry the internal excitations of the two r2C fragments, see 
fig. lb. The needed single-column BS transforms are given in terms of the K-space 
functions I& 3(AcJ’c):(LL“L)) in appendix C. Note that the cross term, with (A& = (02), 
(A:&) = (lo), is zero because of the identity of the two fragments. The BS transform 
for the full 24particle system is built from the symmetrized combination of these 

four single-column functions 

H(K, K*) = f A 2 e(R’d[‘) c (z)[H( 
0 

~(02):(02))]4-a[~(3J(10)3(1O))]e. 
(W 

(1 

The space symmetry is uniquely determined, since four single-column functions of 
I+ n = 3 + 3 character can combine only to space symmetry [4”]. The final (A& 
are built from (4-u) symmetrically coupled (02) representations coupled with a 
symmetrically coupled (10) representations. Note that terms with odd-u decouple 
from those with even-u. Terms with a = odd can only lead to (A& eigenvalues of 
(16) and (32): 

(02)&llfn x (10) + {(06)+(22)+(00)} x (10) + (16) and (32) only 

(02) x (fO),&Mn + (02) x (30) + (32) only. 

These lead to negative-parity states only. Terms with odd a are thus split off from the 
terms with even a in eq. (100). For positive-parity states 

H($,K*)+ = i 4+ ’ e(r’K*){[H(:(02)33(02))]4 
( .> 

+ 6CW 3’““~‘0”)]‘[~(~“0~~~10~)]2 + [~(3”“‘y”‘)]“}~ (1Ola) 

The factors 4, (related to the identity of the two fragments), and (4!)-2 are required 
to gain the proper normalization of the fragment internal wave functions. In terms of 
the shorthand notation 

@~lr~W~~:) Z [d(n#[[P& g34)(Llr,) x p(#QO)](b’) 

x [JJ(K:,, K;4)(P’,&) x p(~*)(OQ)](d)]bOd)) (101b) 
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for the basic K-space expansion functions, the last term of eq. (101) can give rise only 
to terms ~9~~)~~‘). Using straightforward SU(3) recoupling transformations of the 
type illustrated by the examples of sect. 5, this term can be expanded by 

1 lZ -- 0 
2 4! 

,(~.~*,[~(:c1o)~c10))]4 = 5 C (_ l)Q+a+a 

QCW 

3 
a [ - d(Q 1 n!(4-F)! 

{-$q @O) (n - i)!4! 
WWKW~KQ - n, 0) ; WXW 

x U(@O)(nO)(Lp)(Q - n, 0); (&i)(QO))9’(40’(40’. (102) 

With(@) = (Q+4-2p,p),p = 0,. . ., 4; the two U-coeffkients of this term are equiv- 
alent to simple SU(2) U-coefficients, eq (A.1 1). (Note that f = A-f = 12.) The first 
term of eq. (lola), with a = 0, gives 

[ 

(4-j+m-r+s-t,O) (j-m+r-s+t,O) (40) 

x (4-j+r-s+t,O) (j-r+s-t,O) (40) 

(83 (Y-m, 0) WC) I 

(4-j+m-r+t,O) 

[ 

(4.7.j+r-t,O) (a3 

x (j-m+r-t,O) (j-r+t,O) (2j - w 0) 

(40) (40) (PX) 1 
(4-j+m-n-r,O) 

[ 
(n+s-t,O) (4-j+m-r+s-t,O) 

x (n+t,O) (4-j-n+r-s,O) (4-j+r-s+t,O) 

(4-j+m-r+t,O) (4-j+r-t,O) (%a 1 x W4&XoQX~i%Q - 3 + m, 0) ; WM% 3 - 4) 

x U((AcpJ2j- m, O)(J.p)(Q - 2j+ m, 0); (jZ)(QO)) x @acCc)(‘kpk). (103) 
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The three 9-(&L) coefficients are all equivalent to SU(2) 9j coefficients. This term con 
tributes to all three (A,& and (&pL) values. 

Finally, the middle term of eq. (101), with a = 2, contributes to terms with (&p, 
and (A&:) = (24) and (40) only: 

xc c 

(_ l)a“+fP+X+i; 

[ 

d( A”,“) 

Gj%ii;,(I~ (d”Il”) d(%) 7 (2-/z)!y! 

d(2j-m+y,O) 2!(y-F)! 

x C&%,P,~124~ +~tlJ;Sfl,~e)f40f]C~~~~~~~~24~ +h&l:&)(40)] 

I 

(2-j+m-r+s-t,O) (j-m+r-s+t,O) (20) 

x (Z-j+r-s+t,O) (j-r+s-&O) (20) 

(JP) (2j- m, 0) 1 (GJ 

I (2-j+m-r+t,O) (2-j+r-t,O) (Xji) 

x (j-m+r-t,O) (j-r-t&O) (2j- m, 0) 

(20) (20) (FX) 1 
i 

(2-j+m-n-r,O) (n-i-s-40) (2-j+m-r+s-t,O) 

x (n+t,O) (2-j-n+r-s,O) (2-j+r-s+t,O) 

(2-j+m-r+t,O) (Z-j+r-40) GP) 1 
I 
K%i,) (3 - my 0) (2) Ii (X$iLI,, W - m, 0) m - x (20) W) cm (20) fro) cq4 (QJ (2j-m+y,O) (nl@') (I:&) (2j--~+y,O~~W'~"~ 

x U((ll:n:)(OQ)(~"nlf)(Q-2j+m- Y, 0); WW, 2j--m+y)) 

x U((~,pJo(j- m + y, O)(A,u)(Q - 2 j+ m - y, 0); (n”~‘r)(QO)~“c~c”“;~~‘, W) 

where 

Similarly, for (XjIi) and (Al,&). 
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The combination of eqs. (101)-(104), together with the basic relation (29), now 
leads to the norm matrix elements of eq. (99). The states with Q = 14 = [Q (minimum 
Pauli allowed) + 23 form the basis set for our model of molecular quasi-bound states. 
The eigenvectors I(A and eigenvalues ni for this value of Q are shown in table 6. 

TABLE 6 

‘*C + ‘*C norm eigenvalues and vectors for Q = 14 

(1472) 1 0.009763 
(1135) 1 0.100713 
(l&3) 1 0.040764 
(13, 1) 1 0.032765 
U&4) 1 0.317811 
(1034) 2 0.086273 
(11,2) 1 0.058844 
(12,O) 1 0.050513 
(93) 1 0.318246 
(93) 2 0.070937 
(10, 1) 1 0.057773 
(82) 1 0.304046 
(82) 2 0.059327 
(71) 1 0.277100 
(60) 1 0.252095 

0.95806 0.28656 
0.98029 0.19758 

0.92236 0.38633 
1 

0.91645 0.37586 0.13732 
-0.39731 0.81384 0.42404 

1 
I 

0.97842 0.20661 
- 0.20661 0.97842 

1 
0.99549 0.09492 

- 0.09492 0.99549 
1 
I 

Pauli-forbidden states with Ai = 0 are not included. 
Eigenvectors for Pa&-forbidden states can be constructed from the above, using their orthogonality 

with Pauli-allowed eigenvectors. 

The quantum numbers IcJM, are omitted since the transformation coeffkients are 
independent of these subgroup labels. The normalized, fully antisymmetrized state 
vectors are given by 

States with J” = O+ occur only in the 7 representations with both I = even, ~1 = even. 
States with .I” = 2+ can have both K = 0 and K = 2 in the 5 cases (Ap)i = (14, 2)i, 
(10,4)i, (82)i, and occur in the remaining 15 (Ap)i with K = 1 for p odd, and K = 0 for 
p = 0, leading to a basis of dimension 20 for .I” = 2+. The dimensions for J” = 4+, 
6+ and 8’ are 26,27 and 26. 

Norm and overlap kernels for general binary-fragment systems. Similar techniques 
can be used to calculate the eigenvalues, I&+, and the corresponding eigenvectors, 

<C(&) x (QW~M~~~i>9 f or arbitrary Q, for any binary fragment decomposition 
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of the A-particle system. With these numbers a norm or overlap kernel X(R”,R’) 
can be evaluated in coordinate representation. Such a kernel can be expressed as 

[cf. eq. (8b)], 

.X(R”, R’) = (~~~~~~.~(~~-R”)X(R,,,,)““J~(~~~~~,~(R-R’)X(R,.,,)“~‘), (106) 

where the SU(3) coupled internal functions are themselves constructed from fragment 
internal functions of good SU(3) symmetry; e.g., 

4 (Acre) KJ&E = 1 c ((&PJ)+f; (A.4 -@‘4 -&A -,~‘4-,o(~CPC)~C~C) 
Kf1, KA -/I_4 -f 

x co:%’ x 4:~_-$~_;“)ICMC. (107) 

In eq. (107) the round bracket denotes ordinary angular momentum coupling. To 
evaluate the kernels in terms of the oscillator matrix elements of the type calculated 
in this section, it is necessary to expand the S-functions of eq. (106) in terms of 3-di- 
mensional oscillator functions 

S(R -I?“) = c (x(R)~~‘)*~(K’)~~,QMo’. (108) 
QLM 

With this relation and straightforward SU(3) coupling and recoupling transformations 
of the type used throughout this investigation, eq. (106) can be put in the form 

where Q-Q’ is fured: Q-Q’ = A, cf. eq. (38); and where 

[‘R”)‘QO’ x x(R’)‘OQ”]~$/LW&~ = ;:(QO)L; (OQ')L:ll(~,~,)~o~o)~(~")~O'~(~')~'O' 

x ; - l)L’(LMOEOJLOMO)YLMO(P’ fi?. NW 
These are the generalizations of eqs. (9a) and (9b), where W(R)p’) are again normal- 
ized radial harmonic oscillator functions, and the angular dependence is expressed 
through the spherical harmonic YLM,, of the angular coordinates of the unit vector 
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i?’ relative to @. Eqs. (109) can be used to calculate both norm and overlap kernels. 
For the former, A = 0. For the latter, the functions +(rlcrc) are built from internal 
functions for fragmentsf and A-f through eq. (107) while, $(aLPL) must be built by 
coupling internal functions for different fragments,f’ and A -f’. 

“C + “C overlaps with channels c’. Overlaps between the 12C + “C cluster functions 
I[(3i,pJ(QO)](kp)a) and cluster functions with different fragment decompositions in 
channels c’ are calculated by techniques similar to those used in connection with eqs. 
(101)-(104). 

For the a+“Ne channels with 4(20Ne)(“L“L) = &20Ne)(*o’, the overlap matrix 
elements 

([[&12~)(04) x ~12~y34rj~1,~~~ x x(~,,_,,)~Q+~.o~~~~P~~ 

x df~(a)‘00’~(20Ne)‘80’ x x(R4_ 20)cQo~j’~~P~) (110) 

for positive-parity states are obtained from the BS transform, which in analogy with 
eq. (101 a), is obtained via the single-column functions H(~‘AcPc)~‘20’) by 

-I- 6CW ;(o”‘~““‘)]‘[H(~““‘:‘20’)12 + [H(~““‘;““‘)]‘}_ (111) 

Expansions in terms of functions @AcPc)(80) with (A& = = (08), (24), and (40), 
[cf. eq. (lolb)], lead to the desired overlap matrix elements. These expansions follow 
from the three relations, eqs. (112)-(114), below. With f = 12, f’ = 4: 

c c (- l)Q+L+P [ 

WW(QW(W * [Q!(Q+ 4)!]* = 
&r(,)=(Os)(24)(40) Q(~P) 2d(nj&I(40)]2 1 4(Q-4)! 

x U((~,~Jo(O)(,$)(Q -4,0); (44)(Q +4, O))@‘cBc)(*O), (112) 
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while 

x U((40)(Q + 4,O)(SO)(OQ); (L~)(40))@‘~)(~~), (113) 

= c C (-l)Q+l+r 
[ 

5d(QO)1, (- l)‘+j [Q!(Q+4)!]+ 
_ C---- 

(&r,)=(24)(40) QUlr) 2d(APl_i Zj 21 (Q-Z-2)! 

’ (4[33136(A,c,(24, + 66&tc,C40,) 

x WWtQWWA Q - 2); GWO)) 

x ~(&,uJo(O)(1~)(Q - 2,O); (62)(Q + 4, 0))@1cPc)(80). (114) 

Specific numerical values of SU(3) recoupling coefficients have been used, wherever 
possible, to simplify these expressions. 

Similar expressions give the overlaps between the ‘*C + “C and *Be+ I60 
cluster decompositions. 

Overlap matrix elements between positive-parity states of “C+ “C and the 
23Na+p or 23Mg+ n fragment decompositions are particularly simple. With 
@lLpk) = #83), the BS transform for this overlap is given by a single product of single- 
column BS transforms 

H(K K*)+ = 5 $ &;,+ - [$Jf exp {(K. K*)/[23]~}[H(~~02~~~21~)]3[H(~~02~~~20’)1, 

(115) 

where the normalization factor now includes a spin-isospin factor, as well as factors 
needed to insure properly normalized 12C+ “C and 23Na+p internal K-space 
functions, (cf. table 5). An expansion in terms of the proper SU(3) coupled combina- 
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tions of the K-space functions leads to the result 

<[[~12q'"" x(12q'04']'".~d x .&2_ JQ+~O.O)]~~~J 

x .tdl[[cj~(<,) x &4 = 23)‘83’]‘83’ x X(R,,_ l)(Qo)]~?‘)) 

= (-l)Q+h+‘I[l+(-l)Q] [ 30;;z!j?;; lj+ c" W':pI'l* 

A(A-f)Q-l 

’ 
c {16J~S~l,cd(O*~8~~,iiao7, 

[(A - W-(A - S>lQ’” cx,ii,, 

++&u,Pc~L24~ [7fi&ic)(23r 94x,ii,,u s)l-~~(l,P,)(40,8~x,~,)(3l)j 

UW) KPC) (73) - 

a 

1 

(Q-40) (01) (Q-h 1) - 
,, (Q+ lo,9 WJ (h4 - 

- - P 1 

x U((37)(01X~L;i)(OQ);(38)--;(1,Q-l)-p), SW 

where the contributions from the direct and the one-nucleon exchange term have been 
written out explicitly. (Note that f = 12, A = 24). In the ket the nucleon snin-isospin 

function 4(&J is coupled with the A = 23 internal function to a resultant SU(4) 

scalar function of SU(3) symmetry (83). 
For the a+20Ne channels with &20Ne)(‘c”c) = $(20Ne)(82) with I,_,. = 2-, 

3-,..., the internal 20Ne wave functions can be expressed simply in terms of the single 
shell-model component 54), (~~[p’~(Ol)(sd)~(81)](82) IC = 2JM,), so that the techni- 
ques of sect. 3 can be applied with no essential modification. The needed single-column 
BS transforms are included in the tabulation of appendix C. The full BS transform for 
this overlap then has the form 

H(K, K*)+ = J$ &.L5 x 78x 6 !,* e@ . K l )‘[51f{ [H(,( 3 "2':'2"')]3[~(~'02':'22')]1 

+ 3lW “3’02’:(2o’)]“[H(~““‘:““‘3’[H(:“”’:””’)]’ 

+ 3[H( 33(02):(20))]1[H(~(10):(?0))]2[H(13(02):(22))]1 

+ L-N 33(lo):(20))]3[~(3(10):(22))]1~. (117) 

Despite the seeming complexity of this transform, the expansion in terms of K-space 
functions @cPc)(82), cf. eq. (lOlb), can be carried out quite explicitly. As for eq. (116), 
sums over exchange terms can be carried out, and specific numerical values of the 
SU(3) recoupling coefftcients can be used to reduce the final expression for the overlap 
matrix elements to one which depends only on simple Q, (1~) dependent Racah 
coefficients. 
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(~[~(12~)(04) x ~(~2(-304q(uc) x K(R,,_ ,,)(Q+ 5,wyy 

x dl[r#~(a)‘~~’ x +(20Ne)(82)]‘82’ x X(R4_20)(Qo))~A~)) 

_ [Q!(Q+Wl* 
(2J5)Q - 3 

[l+(- l)Q-1][2Q-3-4]& 

cw~&,&08, Cl31%&24~ 6 
’ 

(&r&40) 
26.3.5[2+5.7.11]+ +27.32.5[2.5+11]* +29.3*5[2*3*5*11]+ > 

x U((Q - 4, o)(9o)@p)(A,pJ; (Q + 5,0)(54))W(Q - 4, (Yo(WAo(2); (QoW54)) 

+ 3 2Q-3 1[2Q-4+2] p-_ 
4(Q-3)! 8 (Q-4)! 

x V(Q - 2, OX~C~O(P)&PJ; (Q + 5, W72))WQ - 2, WWO(PF~~); (QOX72)). (118) 

Spectroscopic amplitudes, ACsi. Overlap matrix elements such as those given by 
eqs. (116) or (118) can now be used to calculate spectroscopic amplitudes for the ’ 2C + 
“C 9 uasi-bound states to the most important observed exit channels. In this work no 
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attempt is made to solve the quasi-bound-state problem. Instead, we calculate spec- 
troscopic amplitudes & for the “molecular” basis Ii), (= I( uJM,) of table 6). 
These may serve as a diagnostic tool since the relative magnitudes of A,,i for various 
observed channels c’ may give an indication of the importance of a particular Ii) in 
a particular fine structure peak. The amplitude Afi is given by the projection of the 
normalized, fully antisymmetrized state Ii) on the state Ic’) which is specified by the 
fragment decomposition f’+ A -f’ and the angular momenta I,., I,_,., I,,, and L, 
appropriate to channel c’. The spectroscopic amplitudes depend on three types of 
factors: (i) the amplitudes and normalization factors (ni)-* of table 6 which define the 
states Ii), (ii) angular momentum independent overlap matrix elements, such as 
those given by eqs. (116) or (118) and (iii) the factors which carry the angular mo- 
mentum dependence. These are made up of SU(3) 3 R(3) Wigner coefficients, and, in 
some cases, ordinary angular momentum recoupling coefficients. The angular mo- 
mentum structure is somewhat different in the three cases. 

(i) In the “C+ “C channels both I,,, and I,_,. may be different from zero. Their 
resultant I,. is coupled with L, the orbital angular momentum of the relative motion 
function to resultant J: I,, + I, -,, = I,., I, + L = J. 

(ii) In the a + “Ne or 160 + ‘Be channels, I,, = 0, and I,_ /, may be different from 
zero. The coupling is I,_,, +L = J. 

(iii) In the 23Na+p (or 23Mg + n) channels, the nucleon spin, s = i, is coupled with 
the orbital angular momentum, I, of the nucleon-nucleus relative motion function 
to resultant j. 

The A-f’ = 23 states are built from the angular momentum coupled states 
I(~,_,,c~~_~,)~c~(.(L~_~~~_~,)Z~_~,), with S,_,. = 3. Here icL is the orthonormalized 
K,, (L-type K), quantum number “). The rotational bands in 23Na and 23Mg are 
assumed to have good J-type K-quantum numbers or their orthonormalized ur, 
analogue, with icl, = 3 and 3, in particular. The transformation to a icl, basis is given by 

l(it,-/,~u,-,,)lc,,S,-f,z,-,,M,-,,) = c CrsLLA_ ,,l(~a_I,~A-.r,)K~(L~_~,~~_,,) 
8c’LLL.J - f’ 

L,-,W,-,A (119) 

where the coefficients c,,.~ can be evaluated by the use of eqs. (3.2) to (3.6) of ref. 55). 
For a specific 12C+ “C channel, (Z,.Z,_,,)Z,, the spectroscopic amplitude A,i 

is given by the overlap of the Q = 14 component of the “C + ‘*C function 

I((#12C)j;?) x &i2C)!oA4_),; x X(R)~1470’)&, 

with the state A,:fd(i). This gives the amplitude 

&Wi~J -, (‘2c(Zf4 x ‘2C(IA-f.))r,) 

= (xx; ww/. ; Kw A-~ll(n:CL:)K:r:><(~~~)~~z~; (14, WII(~pW) 



200 K. T. Hechr et al. / Spectroscopic amplitudes 

x ,& f <C(&z,cl,) x (14, ~)l(&H44i> I 
x ([[~y~)co4) x ~~~~c)co~~(~:N:) x ~~yi4.0qpq 

x ~1[~(~2~)(04) x ~~~2qc04q(~~~~) x X(~)u4.~qp0), 
(120) 

where the double-barred coefficients are SU(3) 3 R(3) Wigner coefficients, and the 
i-dependent factors can be read from table 6. With I,. = I,_,. = I,, = 0, this gives 
the amplitudes, &, for the entrance channel. These amplitudes are shown in table 7 

TABLE 7 

A,= ,((WKJ + ‘*c(o+)+ ‘2c(o+)) 

J=O J=2 J=4 

lc=O K = O(or 1)‘) K=2 K=O(Orl) K=2(Or3)=) K=4 

(14,2) 1 
(11,5) 1 
(12, 3) 1 
(13, 1) 1 
(1% 4) 1 
(10,4) 2 
(11,2) 1 
(12,O) 1 
(93) 1 
(93) 2 
(10, 1) 1 
(82) 1 
(82) 2 
(71) 1 
(6’3 1 

0.0273 1 0.02555 
0.03952 

-0.01201 
-0.01688 

0.18866 0.17015 

0.07109 0.07102 

- 0.04909 -0.04412 
- 0.06505 

-0.00941 
0.02239 

-0.10945 - 0.09340 
- 0.04527 - 0.04354 

0.07302 
0.11834 0.10648 

- 0.00048 0.02150 
0.06421 

- 0.02086 
- 0.02797 

-0.01133 0.12829 
0.00091 0.07047 

0.00368 
- 0.03296 

-0.10062 
-0.01756 

0.03757 
0.00951 - 0.05794 

-0.00040 - 0.03958 
0.11396 
0.08079 

-0.00173 

- 0.00494 

0.00098 

- 0.03947 0.00119 

0.00280 - 0.00027 

0.01373 

0.00892 
- 0.00089 

0.03267 
-0.00138 

“) K = 0, 2, . . for states with p = even. 

K= 1,3,...forstateswithp=odd. 

for all states Ii> E ~(A.@cJM) with J = 0, 2, 4. We note the following properties of 
these amplitudes : 

(i) Only states with K = 0 (p = even) and K = 1 (p = odd) have significant am- 
plitudes. Amplitudes for states with K 2 2 are so small that such states cannot be 
expected to play a role in the 12C + “C resonances. 

(ii) The few most significant amplitudes are those for states with ,I = even, ,u = 
even. 

(iii) The large amplitudes for the K = 0 band of states in a given (np) are only very 
mild functions of J. 

For exit channels c’, such as the u + 2oNe or I60 + ‘Be channels, with (n,.~~,) = 
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ON, 1-y = 0, s,, = 0, (AA_/./AcLA_f’) = (n:p:), 

AL((&)itcJ + f’ + A - f’(Xcp:)Z,) 

= &p,P&24H40) 4 1 <~(~c~c~ x (14,O)l(~~)l(~~)i)((~cL~)~:Z,,; (14-4, O)LII(MJCJ) 

x ([[~(12~)c34) x ~(qyo4qmd x ~~,,_,,)~14.0qp~ 

x &I[[@?“’ x q#iq!](‘;fl;) x X(R/,_(A_/,))(14-4~o)]~~p)), 
(121) 

where, A = 4, for HLoNe)(l;flk) = &20Ne)@o); and A = 5 for &20Ne)(*;fl;) = 
$(20Ne)(*2’, e.g. 

In the p+ 23Na and n + 23Mg channels, the spin of the nucleon, s = 3, is coupled 
to the I of the nucleon-A = 23 nucleus relative motion function, I + s = j, to give 
the amplitudes 

A,,((lp)iicJ -+ (;lA-f,~~-~,)K~,Z~-/,) 

(21,_,! + 1) * 
x(+fi) 

(2s+ lX2L,-,,+ 1) 1 U(Z,_,,sJl; L,_,. j) 

X &I[[+&) x &(lA-f’~~-f’)](AA-f’J’A-f’) x x(R23 _ 1)(40)]3, 
(122) 

where the states of 23Na (or 23Mg) are approximated by the states defined in eq. (119) 
with S,_,, 7 s = f. The isospin Clebsch-Gordan coefficient, (+ &), applies to the 
cases n + 23Mg and p + 23Na, respectively. 

Apart from the angular momentum dependent factors, the magnitudes of the 
spectroscopic amplitudes (121), (122), are determined by 

x ([[pc)v34) x ~12c)c34qmb~ x ~(p4. oyol 

x dl[[#?“) x c#@$?](*~“~) x X(R)(14-dvo)]ffi)> z (f’+,4 - f’(J.‘&)l(J+))i). (123) 

The factors (f’ + A - f’(&.i)l(np)i), defined by eq. (123), are shown in table 8. The 
combinations of the numbers of tables 7 and 8 show that the state (10,4)1 can be ex- 
pected to make the dominant contribution to the product of partial width amplitudes 



202 K. T. Hecht et al. / Spectroscopic amplitudes 

TABLE 8 

The factors (f + A -f(L$L)((&)i) 

a + 20Ne(80) I60 + *Be(40) 
n + Z3Mg(83) 
p + *‘Na(83) 

a + *‘Ne(82) 

(14, 2) 1 
(1195) 1 
(12, 3) 1 
(13, 1) 1 
(10,4) 1 
(10, 4) 2 
(11,2) 1 
(12,O) 1 
(93) 1 
(93) 2 
(10,l) 1 
(82) 1 
(82) 2 
(71) 1 
(60) 1 

0.6209 0.1225 

0.2812 -0.1570 0 

0.3712 0.3836 0.4046 
0.0630 0.1245 - 0.0387 

0 

0.2445 

-0.0104 

0 

0.1708 

-0.0034 

0.0836 

-0.3380 
0.3393 

-0.3586 
0.1753 
0.0674 

-0.2180 
0.0387 

0.0341 
-0.0123 

r&r$ for most of the observed channels c’. However, the states (14,2)1 and (11,5)1 
can make significant contributions to the a + “Ne channels, and the states (93)l and 
(82)l may be important for the 23Na+p and 23Mg+n channels. 

[It should be pointed out that the spectroscopic amplitudes of tables 7 and 8 and eqs. 
(120H122) are conventional spectroscopic amplitudes, using the language of a recent 
series of papers by Fliessbach “j). The so-called new amplitudes would be renormal- 
ized with factors /i;* for the exit channels. With these factors the entries of table 8 
for the 23Na+p channels are changed by at most 1%; while the entries for the 
a+*ONe(80) channels, e.g., would change from 0.6209, 0.2812, 0.3712, 0.0630, to 1, 
0.5907, 0.4958, 0.0842, respectively. Such a renormalization therefore leads to no 
essential change in the basic conclusions about the nature of the dominant compo- 
nents (Ap)i in the various exit channels.] 

7. Concluding remarks 

Further developments have been made in a method which reduces the calculation 
of the complicated multi-dimensional integrals for norm and overlap matrix elements 
in a cluster-model basis to purely algebraic techniques involving the algebra of SU(3) 
recoupling transformations. The method involves the calculation of the Bargmann- 
Segal integral transform of the antisymmetrization operator and the expansion of 
this transform in terms of appropriate SU(3) coupled Bargmann space functions. 
A new variant of this method makes it possible to calculate norm and overlap matrix 
elements for cluster systems made up of two heavy fragments other than closed-shell 
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nuclei. In this method, BS transforms are first calculated for n-particle subsystems of 
spatial symmetry characterized by single-columned Young tableaux. The BS trans- 
forms for the full A-particle system are then built from suitably symmetrized combi- 
nations of these single-column transforms. Both in the construction of the single-col- 
umn transforms and in their combination, SU(3) recoupling transformations are used 
to advantage. 

The example of the “C+ i2C system illustrates the feasibility of this technique. 
Spectroscopic amplitudes have been calculated connecting the normalized, fully 
antisymmetrized “C+ “C molecular basis states to exit channels with various frag- 
ment decompositions of the A = 24 system. These amplitudes may serve as a diag- 
nostic tool in an attempt to gain an understanding of the microscopic structure of the 
underlying quasi-bound states. The details of this attempt are left to a future study. 

The techniques used here in the calculation of overlap kernels can easily be gen- 
eralized to include the overlap of an f +(A- f) particle cluster function with an 
(A - 2) + 2 particle fragment system, with arbitrary 2-particle excitations, and thereby 
lead directly to a calculation of interaction kernels, using similar techniques. 
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Appendix A 

SU(3) RECOUPLING COEFFICIENTS; A COLLECTION OF USEFUL SPECIAL PROPERTIES 

Many special properties of the SU(3) recoupling coefficients have been used 
throughout the text. These are collected here for easy reference. (Derivations follow 
simply from properties given in ref. 36* 54* 57- 59). 

A.l. SU(3) RACAH COEFFICIENTS 

A. 1.1. Definitions. The SU(3) Racah or 6-(1~) coefficients in unitary form, (U-coef- 
ficients), are defined by the recoupling transformation 

I[N~1~1X~2~2)1(~12~~z)P12(~3~~)1(3*~)P12,3. -*> 
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where.. . stands for a convenient set of subgroup labels for the irreducible represen- 
tation (+). Alternately, making use of the unitary property and reality of the trans- 
formation coefficients, 

The notation is a straightforward generalization of that introduced by Racah. The 
outer multiplicity labels pr2, p12, 3, p23 and pr, 23 are needed to distinguish multiple 
occurences of a given representation in the Kronecker products of the recoupling 
transformation. E.g., if a specific (2~) occurs in the product (&pi) x (&3p23) with 
a d-fold multiplicity (d > l), then the label pr, 23 is needed and has the values pl, 23 = 
1, 2,. . .) d = P1,23max. The conventions of Draayer and Akiyama 36), based on the 
upper Gel’fand pattern coupling scheme of Biedenharn and Louck 60), are to be used 
throughout. In this coupling scheme simple symmetry properties survive under 

conjugation, (nicli) + (J&) i = 1,2,3 in the coupling (Alp,) x (A2p2) + (A3p3), a~ well 
as under the interchange (1,~~) H (12&, (Q,) --t (~~2,). Interchanges (1,~~) ++ 
(n,~,), however, are not simple. In the general case 

1[(~,cL1)(122~2)1(~3~3)P * ’ *> = c Mpp’~[(~2~2)(~1~1)1(~3~3)~‘. . *>, (A.3a) 
P’ 

where M,,, is a d x d unitary (real) matrix. In the case of a multiplicity-free coupling, 
however with pmax = 1: 

Ml, = t-1) 
al+~l+~2+p2+~3+P3 (A.3b) 

In most of the recoupling transformations used in this work the SU(3) couplings 
are free of outer multiplicity, so that all (or many) of the p-labels are unnecessary. In 
such cases the p-labels are replaced by a dash or are simply omitted altogether. E.g., 
the following multiplicity-free recoupling coefficient is denoted by 

w~lw2P2Hhw3m (42Pl2L - ; (223P23L -19 (A.4a) 

or simply by 

u((nlo~n,~2~ndo(30)~ (~12k2~n23~23))~ (A.4b) 

A.1.2. Special cases. Whenever the recoupling transformation is 1 x 1 the U-coef- 
ficient has the value + 1; e.g. in recoupling transformation in which (1,~~) or (n,,uJ or 

(&) or VP) = (o($. Also, 

t 
= (_l)al+Pl+a2+c12+a12+lr12~pp, 1 ) (A-5) 
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where the dimension of the irreducible representation (Jp) is given by 

d(@) = +(n+ 1)(/.4+ l)@+/L+2). 

But 

205 

(A4 

f 
= (_l)al+rl+la+~3+123+P23Cpp, 1 . (A-7) 

In the general case, CP,,, is a unitary matrix (and not the unit matrix). In the special case 
when all couplings are free of multiplicity, C,,. (E C, r) = + 1. 

A.1.3:Symmetry property under conjugation. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
= (_~)P12max~P12+P12,3max~P12,3+P23max~P23+P1,23ma~-P1,23 

x u((~11z1)(~212w~~x~3~3); (p Iz )p p 12 12 12 12,3;(~23123)~23i%,23)* (A’8) 

A.1.4. Special symmetry properties. For the completely multiplicity-free case 

U((Il~lHI2~2M~~M~3~3); &2h2)- - ; @23p23)- -) 

= u((n3~3)(n2~2~n~~~l~l)~ @23p23)- - ; (&2&2)- -) 

= u((12~2x~,c11)(cL3~3M~~); (&2~12)- - ; (p23A23)- -)* 

For the special case, with pzJmx = 1, 

(A.91 

= (_l)ll+al+l3+1(3+112+1112+123+P23 442~12)d(~23~23) 

[ 4~&4~3~3) 

’ u((nl2~l2~~2l22)(~~~~23~23)~(il~l)~,2~l,23~(L3~3)-~l2,3)~ (A.lO) 

A.15 Equivalence with SU(2) coeficients. If all the U(3) [rather than SU(3)] ir- 
reducible representations in the recoupling coefficient can be characterized by at most 
2-rowed Young tableaux, the SU(3) U-coefficient is equivalent to an SU(2) coefficient; 
that is, if 

then 
13+2/l = I,+2~,+~,+2~2+jlj+2~L3, 

= (_1)3(“1+~2+~s+~)[(~12+1)(~23+l)]f (A.ll) 
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where the symbol in curly brackets is a conventional angular momentum 6-j coeffi- 
cient. 

A.1.6. Special valuesfor maximal couplings. A U-coefficient with two stretched cou- 
plings of l-rowed representations has the simple value 

U((aO#O)(~&O); (a + b, O)(b + c, 0)) = 
a!c!(b+c-p)!(a+b-p)! + 

(b+a)!(b+c)!(c-p)!(a-p)! 1 (A.12) 

with 
2+2~ = a+b+c. 

A U-coefficient with one stretched l-rowed coupling and a maximal coupling of the 
type (Oa) x (b0) + (0, a-b) has the value 

WWW)(&4(0 ; (0, a - Mb + G 0)) 

Also, 

Wa - b, WW4(0, b + 4; W(W) 

A.2. SU(3) 9-(44 COEFFICIENTS 

A.2.1. Defining equation. The 9-(44 recoupling coefficient, in unitary form 61), is 
defined by the recoupling transformation 

l[C(1,~~)(~2~2)1(~,~~~~)~~~r(~~~~)(n,)~~~, 34. . .> 

=,A,,,,gA2 p*~,lr[(~~~,x~3~3)l(~ 13PI3h 3C(n,~u,)(n4~4)1(~,4~~4)~~41(~~)~~ 3,24 . . .> 
4 

P13P24P13rZ4 

I 

(~IPL,) @,P,) (hPI2) Pl2 

’ 

(A3P3) @,Pu,) (i34P34) P34 

(i13h3) @24p24) (‘b) P13.24 

(A.15) 

P13 P24 P12.34 
I 

A.2.2. Special cases. Special 9-(2~) coefficients with one or several (00) representa- 
tions are frequently needed in this work. 

(A3P3) (cl3A3) (W - = 6 (_ l)Pmax-P 

[ 

WP) * 

(G) (PA) (00) - pp’ 1 w,Pl)~(~,P3) * 

(A.16) 

1 P P’ - J 
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Also, with p13,,_ = 1, 

k&Pi) WI) WO - 1 
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G3C113) + = 

(&3k) U24P24) (M P 4h44k4 1 
P24 - 

’ U((al31Ll3~~l~l~~~~114C14);(~3~3)-~34;(~24~24)~24~~, 

while, with Pan,,, = 1, 

(A.17) 

C 

d(J2&24) * 

d(A2~2)d(‘4~4) 1 

A.2.3. Symmetry property under conjugation. 

Wl) 

: 

U2P2) (A2k2) Pl2 

(~31%) 04v4) @34F34) P34 

(&3/h 3) tA24p24) bL) 

P13 P24 &2,34 I 

P13.24 

(P,J,) (k2&2) P12 1 
= ( _ phnax - Ps) W3) I (PL,n,) (ru34&4) P34 

(k 3b 3) (p24A24) (d) P13.24 ’ 

P13 P24 Pl2,34 I 

(A. 19) 

where the sum over s in the phase factor sums over ail six multiplicity labels. 

A-2.4. Special symmetry property. 

(hl) 

i 

V2P2) (&2k2) Pl2 

W3) G4cl4) &4k4) P34 

@I 3h 3) @24p24) @id P13,24 

P13 P24 P12.34 1 = (_ l)Zi(Ai+/li)(_ 1)p24mx-p24 d(‘12~12)d(‘34~34)d(l,,CL,,) * 

~(~l~,)d(~,dw~ 1 
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(A.20) 
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(42PlZ) W2) WI) Pl2 

X 
b.434) W‘J (b4 P34 

(b) (p24&4) (&3&3) ’ 

P12.34 P24 P13 

where the sum over Izi + pi factors is a sum over all nine representations. 
A.2.5. Equivalence with W(2) coefficients. If all U(3) [rather than W(3)] irreducible 

representations in the coupling coefficient can be characterized by at most 2-rowed 
tableaux, the 9-(1~) coefficient is equivalent to an SU(2) 9-j coefftcient; that is, if 

1+2p= ~,+2~L1+~2+2C12+~3+2111+~4+2~~, 
then 

A.2.6. Special values for maximal couplings. A 94~) coefficient with four stretched 
couplings of l-rowed representations can be expressed in terms of one simple sum: 

(40) 

[ 

(40) 

(4 +&,O) 

(220) (A1 + 129 0) 

(140) (A, + 149 0) 

(12 + 149 0) (k) 
I 

= [@I, + l034 + 1)(n,3 + lx124 + I)]+ 

3 (A.21) 

where the coefficient in curly brackets is a conventional angular momentum 9-j 
coefficient. Note that such a 9-(44 coefficient is completely free of multiplicities, and 
all p-labels are simply omitted. 

= A, !A2!A3!&! 
(A,+&-p)!(&+&-p)!(jl,+&-p)!(&+&-p)! ’ 

(1, +12)!(;i3 +I4)!(A, +A,)!(12 +34)! 1 
(-l)*p! 1 

x x!(p-Xx)! (1,-x)!(L,-x)!(L,+x-,u)!@,+x-p)! 
(A.22) 

with 

A.+2/1= A,+A,+I,+A,. 
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Appendix B 

PROPERTIES OF W(3) COUPLED BARGMANN SPACE FUNCTIONS 
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Manipulations of SU(3) coupled K-space functions which are needed to gain the 
basic canonical form of the Bargmann-space transforms are facilitated by several 
subsidiary formulae. The more important of these are collected here for easy reference. 
(Some sample derivations are given in subsect. B.4.) 

B.I. BASIC BUILDING BLOCKS 

The W(3) coupling of Bargmann space functions in the same variable K requires 
a renormalization factor. This follows at once from the norm of the K-space oscillator 
function. 

[p(K)‘Q1o’) x P(K)‘Q’o’]~Ap’ = 6(Ap)(Q, +Q2, 0) [(;I;~!]tP(K)bo1+Q2Vo), (B.l) 

where a is any convenient subgroup label set; (e.g., a = lcLh4 or &AM”). 
The basic building block for the expansion of K-space functions is the scalar product 

(Ki . KT) = JqP(Kp) x P(qyl’]g? 03.2) 

This leads to 

(Ki * zcj*y = n![d(n, O)]*[P(Ki)‘“o’ x P(Kp”“qg! (B-3) 

[The subgroup label 00 can be interpreted as L = A4 = 0 or as E = M,,( = LI) = 0.1 
The vector product of two K-space vectors, ((lo)-tensors), is a K-space pseudo- 

vector, [(Ol)-tensor], 

This leads to 

[K, x KJo = JZ[P(KJO’) x P(K,)“O’]y’. 03.4) 

P([K, x K,]):o”’ = &I+ l)![P(KJno’ x P(K,)‘““‘];o”‘. (B.5) 

B.2. COMBINATIONS OF SCALAR PRODUCTS 

The combination of two scalar products with one common K-value can be written 
in suitably SU(3) coupled form by the use of relations (B.3), (A.16) and (B.l) 

(K, * K;)“(K, * Kf)b = [u!b!(a+b)!d(a+ b, O)]” 

x [P(Kl)(a+b,o) x [P(K;)‘o”’ x P(K~)‘o”‘]‘“. 0 + b’]f$ (W 
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Examples of more complicated products are 

(K, ’ KI)“(K,. KT)b(K1. q)’ = c a!b! (a+c-A!(b+c-d! +[(f(+),f 
(4) [ (a-p)!(b-p)! 1 

x [[P(Kl)(“+c~ O) x p(K,)‘bo’]‘““’ x [p(K;)“J”’ x p(~:)(O.*+f)](““)]bOoO), (B.7) 

with(Ap) = (a+b+c,O),(a+b+c-2,1),(a+b+c-4,2),...,(a+c-b,b)or(b-u-c, 
a + c). Similarly, 

(a 

= &[(u+b)!(u+c)!(b+e)!(c+e)!d(ip)]* 

I 

(W (a+b, 0) 

(CO) (d) (c+e,O) 

(u + c, 0) (b + e, 0) (2~) 1 x [[p(~J~+cv 0) x p(KJ*+e WJ@P) x [,(,:)(W+*) x p(~f)(O,~+e)](““)]bOoO), (B.8) 
where the 9-(2~) coefficient is equivalent to a simple SU(2) coefficient and can by 
evaluated simply by means of eq. (A.22). If K is a polar vector, [(lo)-tensor], while 
K, is a pseudovector, ((Ol)-tensor), e.g. K, = [K, x KJ, then 

(K . K,)“(K* * Kp*)*(K, * K;)‘(K * K*) 

= Cc!e! 
[(u+c-p)!(b+c-p)!(A.+u+c+2)!(1+b+c+2)!d(lp)]+ 

(h4 (c-p)!(A+c+2)! 

x [[p@J(O.a+f) x ,(,)b+G o)](b) x [p(K,*)‘*+‘. 0) x P(K*)(O.*+e)](pa)]bOo0). (B-9) 

B.3. EXPANSIONS OF SPECIAL SU(3)-COUPLED FUNCTIONS 

In many of the manipulations of K-space functions it is useful to expand SU(3) 
coupled functions in terms of scalar products. Particularly useful expansions include 

J8[[P(K,)““’ x P(Kf)‘““]‘“’ x [P(K)“O’ x P(K*)(O’)](“)]~$o) 

= ((K, . K*)(K. K:)-j(K, * K;J(K. K*)), (B.10) 

[P(K)‘20’ x P(K*)(02)];11) = &(K + K*)[P(K)“” x P(K*)‘“‘)]il’), (B.ll) 

@[[P(K,)‘20’ x P(K:)‘02’]‘22’ x [P(K)f20’ x P(K*)‘02’]‘22’]bo,oo’ 

= {%K, * ZL’*)~(K * K:)2-$(K1 * K:)(K * K*)(K, . K*)(K * K:)+&K * K*)2(K, . K:)2}. 

(B.12) 

For symmetrically coupled K-space vectors, W(3) (20)-tensors, it is useful to use the 
shorthand notation 

P(K,, K2)i2’) E [P(K#‘) x P(K2)(10)];20). 
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Useful expressions involving such tensors are 

Jij;[P(K,, KJ@O) x P(KT, z#q0,0 

= $(@I, * K3(K2 * KX) + (-lit, * Kg!& ’ Kg, (B.13) 

[I’(&, KJC2*) x P(K:, Kf)‘02’];1 ‘) 

= &/q((K, ’ Kf)[P(K,)(‘*’ x P(Ky’]y’+(K, * K~)[P(K,)~‘*’ x P(K;)‘*“]p 

+(K, * Ky)[P(K,y’ x P(Kp-p+(K2 * K;)[P(K,p x P(K:)‘““]y), 

(B.14) 

Also, 

JZ?[[P(K,, K,)@O) x P(K$Kyy’22 x [P(K)‘20’ x P(K*)(*2)](22)]~~~ 

= (SK * K:)(K . K:)(K i * K*)(K, + K*) 

+&K * K*)‘[(K, . KT)(K2. K;)+(Kl . K;)(K2 * K:)] 

--&KS K*)[(K, a KfXK * K;)(K2 * K*)+(K, * K:)(K + K:)(K, + K*) 

+(K, * KfXK * K:)(K, * K*)+(K, - K:XK * K~)(K, * K*)]). 

Similarly, 

(B.15) 

fi[[P(K;, K;)‘02’ x P(K;)(* ‘)]” I) x [P(K)“O’ x I’(&*)‘* “1” “‘36”o”’ 

= &(K * K:)(K* * [Kt x K$])+(K * K;)(K* * [K: x K;])f, (B.16) 

fi[[P(K,)(20’ x P(K)t’o”]‘“” x [P(K,, K,)‘20’ x P(K*)(02)]‘“‘]~~’ 

= -&iKcK*H(K1. K*XK,.CK,~K])S(K,.K*XK,.[K,~K])~, (B.17) 

fi[[P(Kl)(‘*) x P(K,)(20)]‘21’ x [P(K:)‘02’ x P(K;)~02’]‘“2)]$‘) 

= +{(K1 * K:)2(K2 * K;)‘-(K1 * K;)‘(K2. Kf)2). (B.18) 

B.4. SAMPLE DERIVATIONS 

(i) Relation (B.5) can be proved by induction. For n = 1 the validity follows from 
eq. (B.4), which is an expression of a simple SU(3) coupling. The SU(3) Wigner coef- 
ficients ((lO)a, ; (lO)a,[(Ol)y) have the values &,/i; with a = z, x, y corresponding to 
‘%4MA = 200, -ii++, - I+-+, respectively. Using the pseudovector version of 
relation (B.1) we can express 

[P([KI x K,])(*“’ x P([Kl x K,])(““‘3;**“+ ‘). 
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Now, assuming the validity for n, (and for n = l), this can be written 

P([K, x K*])$“*n+l) = 
[ 1 
‘;;;y;! fC[p(&)‘“o x p(K,)‘“O’]‘O”’ 

= [nlY]+~ I ;;i; 
(no) (04 

. . (10) (01) 
(n+l,O) (n+l,O) (O,n+l) ! 

X[p(~l)~“+l’O~xp(~2)~“+1.0~]~~“+1~, 

where we have used a 9-(&L) recoupling transformation and the renormalization 
eq. (B.l) in the K, space and the K, space. The 9-(ip) coefficient is equivalent to a 
simple 9-j coefficient, [see eq. (A.21)]; and, with three j-values of 0, has the simple 
value [(n + 2)/2(n + l)]*. Eq. (B.5) follows. 

(ii) The derivation of eq. (B.7) follows from simple SU(3) recoupling transformations. 
Using eq. (B.6) and (B.3) 

[(K, . Fq)“(K, . Kf)‘](K, . zqy = [a!c!(a+c)!d(a+c, O)d(b, O)]%! 

x [[p(#“+Q’) x [p(~;)‘o”’ x p(~~)(oc)](o,o+c)](oo, x [p(K3)W x p(~:)(W](‘JW]~~). 

A 9-(,Ip) recoupling transformation, using the relation (A.16) for the recoupling 
coefficient with three (00) representations, yields 

(K, * K;)“(K, * K:)‘(K,. zqy = c [a!c!(a+c)!d(&$p! 
(t) 

x [[p(~J’+cs 0) x p(jrQbO’]W x [[p(~;)‘O4 x p(~~)(‘W]Kb+d x p(~;)(‘W]W)]f’$ 

A 6444 recoupling transformation on the (PA)-function, together with the renormal- 
ization of the K: function, gives 

(b+c)! * 

= b!c! [ 1 U((Ou)(Oc)(ptn)(Ob); (0, a + c)(O, b + c))[P(K;)‘~“’ x P(K:)‘O* b+c)]$A) 

Use of the symmetry property (A.8) for the U-coefficient converts it to the form of 
eq. (A.12) and leads to the value of the coefficient of eq. (B.7). 

(iii) The derivation of eq. (B.9) also follows from simple recoupling transformations. 
Using eq. (B.3) and the recoupling coefficient 

WOMOcM~W); (~P’P)) = 6~XP,)(OC), 

(K * Kp,“(Kp * Kf)’ = [[[P(K)‘“O’ x P(K,)‘““‘]‘oo’ x P(K,)(oc)](oc) x P(K;)(cO)]$;o). 

A 6-&L) transformation, using the special value (A.7) for the multiplicity-free U-coef- 
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ficient, together with the renormalization of the K, space functions, yields 
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x [[p(K)‘““’ x P(Kp)(o~a+c)](oc) x P(K;)‘co’]~$? 

Combination with the analogous expression for the two remaining factors gives 

(K . KJ(Kp * K;)‘(K * K*)“(K* . K,*)* 

x [[[P(K)‘“@ x p(Kp)(Od+C)](Od x p(K,*)“o’]‘oo’ 

x [p(K)‘“o’ x [p(K*)(b+b) x p(K~)(b0)](0’)](001]~~)~ 

The K and K* functions in the SU(3) coupled P’s can now be brought together by 
the trivial 9-(&) recoupling transformation with three (00) representations, eq. (A.16), 
to yield 

[[. . .](OO) x [. . .](oo)](oo) = 

x [[[P(K)‘“O’ x P(Kp)(O,“+f)](Od x p(K)(eO)](hd 

x p(K;)“o’ x [P(K*)‘O. e +b) x p(K,*)(bO)](Oe)](““)]bOo0). 

A 641~) transformation in the (1~) function as well as in the (+I) function is then 
necessary to combine the P(K) and the P(K,*): 

[[P(K)‘“” x P(Kp)(O+=+e)](Oc) x P(K) (e”) w = U((0, a + c)(uO)@p)(eO); (Oc)(a + e, 0)) 1. 

x 

[ 1 

a[p(K,)‘O,“+” x P(K)(a+e.O)];aP), ‘;Tey! 
. . 

where we have first interchanged the order of the @I) x (0, a+c) coupling. Note: 
For this multiplicity-free coupling this interchange is trivial and merly introduces 
the phase factor (- l)O+“+‘+’ = + 1, see eqs. (A.3a) and (A.3b). Similarly 

[P(K;t)“” x [P(K*)(“*b+e) x P(Kp*)(bO)](Oe)]jCIA) = U((cO)(bO)(p~)(O, b + e); (b + c, O)(Oe)) 

X 

[ 1 

*[p(K;)‘“+GO’ x p(K*)(‘Lb+e)]$M. (;cy! 
. . 

The two U-coefficients are evaluated through eqs. (A.13) and (A.14), respectively. The 
combination of all the factors gives the desired result, eq. (B.9). 
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Appendix C 

SINGLE-COLUMN BS TRANSFORMS OF NORM AND OVERLAP KERNELS 

A tabulation of the BS transforms of norm and overlap matrix elements for totally 
antisymmetric space functions, (space functions characterized by single-columned 
Young tableaux), is given in this appendix. 

DEFINITIONS 

The “single-column H(K, K*)” can be defined in terms of the tabulated quantities 
#&PC’;;‘““‘:‘) by 

H(a,K ) * &Pc)(&P;) = ,di’ %*)H(~(l.r=)~;(i;r;)), 

where K refers to the relative motion degree of freedom of fragments f and A - f ; 

while K* refers to the relative motion degree of freedom of fragments f’ and A - f’; 
Ri refers to the internal degrees of freedom of fragments f and A - f ; K: refers to 
the internal degrees of freedom of fragments f’ and A - f’. Note that f’ is chosen such 
that f’ I f. 
The indices i are illustrated in figs. la and 1 b. 
The quantities ep are defined by 

r A 
eP=exp -p 

[f(A - f)f’(~ - f’)]+ (’ ’ K*) I * 

Note that t?‘e‘I = ep+q. The only important property of the mass-dependent factor q is 

f’(A-f) + 
..,.c,.,’ = [f@ - f’) 1 ’ 

i.e., for the full 4-columned Young tableaux, the product of factors exp ~(a. K*) 

combine to make the factor 

n eM’“L*) = exp 
f’(A-f) 

columns [f(A- f)f’(A-f’)]+@’ K*) ’ 

[Specifically, 

? = 6-4 - f) - If’ + U + 4o(f ‘/A) 

[f(A-f)f’(A-f’)]+ ’ 

withxl’ = f’, 1 I =f, C(l+n) = A.] 
In the special case, f’ = f, (norm kernels) 

with 
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1. H(, n o(Acp~)o(ac~e)) (purely intern01 fictions). 

H(l 0(00)~(00)) = 1 
, 

H(~(lo)~(lo)) = (& - 1y:), 

H(;(ol);(ol)) = (R,, * KT2) where K,, = -+I x&], 

HL o(ooyoo)) = p\y”J z $([Kl x IQ * K,)([iq x q] * Kg)“‘, 

H(;(20);f=0) = &. ~-32.d 

[Shorthand notation for $(K4 * Kz)” x P”$“$J 

H(z’21’;‘2 I)) = +{(& * K;)‘(& . K;)’ -(f, * K;)‘(& * K$)*}.=’ 

H( !j(lo)j(lo)) = (l-e’)@, . x:)-e’ ,,” f) (g * KM& - K*) 1 3 

(l_e’)(j(l2. K:,)-e’ f(AA_ $I [(g. K*Xf,, - K:,) 

-.$l (K * Kq*)‘(& * K*f2 , 

--(K. &XK* * KY,)] , 

KX>” 

H(i’21)z(2i)) = f (1 -el)_el &_) (K - K*) 1 [(K, * K$)‘(& . K;)* 

- @.+ * KS)2(& * lug)” -$el ‘[(fi a KX)2(&. K*)2(& w K;)2 

+ (g * Klf)2(i& * K*)'(& . K;)* - (f . Kg)2(&. K*)2(& . KX)2 

-(g * K:)2($, * K*)'(K, . Kf)2] . 

l ) This SU(3) scalar will usually be suppressed in an obvious shorthand notation. 
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3. f.qp’c’pL”‘), needed for the A = 24 system 

H(:(lo)~(‘O)) = (1 -e’)2(R, . Kr)-e’(l -e’) 

- 6 * KTHK, . KY] - e1 ( > ,,A”_ f) 2(K. K*)(lZ - K~)(iT, . K*) 1 P$O:J, 

H( am) = (1 _ e1)3 _(e’ _ e2) 

x [@I 2 * K:2)(a34 ’ G4)+ (R, 2 . K&J(K34. KT,)] 

(+(g* K*)[(K12. KY,)@ * g,,)(K* . Kj4) 

+(g,,. KjJo@ &XK* * KT2)+(K12. K&)(9. K3J(K*. KT,) 

+@34. K:,)(K. &XK* . KQ]. -(K. &2)(X. R,,)(K* . K:,)(K* . K:J) , 

where 

4, = L [K, x K,], 
G 

R,, 

H(7’7’3’) = 0, 

H( :(lo)~(lo)) = (1 -e’)2(l +el)(gi. KT) 

A -Wl-e’)f(A_f) [(K. K*)(& . K;) - (K + K;)(& . K*)] 

2(K * K*)(K . K:)(& * K*) , 

where 

H(~(o2)~(‘0)) = -31 _e1)2 A 

Cf(A - f)f’(A - f ‘)I* 
{(g. &,)(K* . [a34 x K:])+(E,,* Qo(* * [a,, x K:])}, 

W am) = -(l -e’)‘([g12 x ITS41 * Kr) 

++(l -e2) cs(A _ f);,(A _ f,)l+ [(a. K*H&2 x K341. K:) - (K. K:) 

x([h, xK341 * K*)] +e’ /(a_ffi,(A_ f,) (g* K*)W KDo(k, x K3J. K*) , 
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x [j(l - e’)(kT, * K*)(lT * KX)2 + e’(K + K*)@i . K$o(:, . Kx)] , 

-2(1-e”)+(l+e’)(KaK*) If(a-/);I~- f’),’ 1 
[~f2z)(~12~3~~)~~‘22)(K:2K3Kq*)]d~o)-~f +e’) ,-f(A f);,tA_ f,>lf 

x [(E + K12)[~(22)(K*R,,pf) x L@~~)(K:,K;Kx)]~) 

+(K * &,)[~22t(K*lrf, 2@ x ~22)(K~2K~K~)]~~)] 
1 

, 

where 

se(2ykp12&J) s [[F)(K12) x P~)(&Jp x pqFyq~22), 

.cY(~~)(KT~K;K;) s [P(K:2)f’o’ x [P(Kg)(02) + p(K;)fo2)]f1 2)](223, 

H( yy)) = 39 

x CCtwG2Y01) 
x ~~3~)(oi)]tlo~ x p(g)t307(21) 

x [@2’(K;2KfK$) x ~“)(K*)](“)]~~). 
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Appendix D 

The single-column BS transforms are calculated with the aid of the functions 

F (_:?_c:,-J 

defined in terms of the operations of eq. (56) acting on (I+ n) particle antisymmetrizers. 
Particles 1,. . ., 1 belong to fragment f; particles l+ 1,. . ., 1 t n to fragment A-f; 

TABLE 9 

Thef-functions with I = I’, n = n’ 

(1 -e’) 

l-e’(l+L) 

-&L 

-e’L 

1-e’(l+BzZ+8xx) 

1 - e’(2 + /?f,) + e2 

1-e’(l+B=,+B,,+P,,P,,) 

l-e’(l+BZ,+~~s,,+B,,B,,) 

41 -Pz,-Pxx+PzzPx,)+e2 

-e’(l -A,-lL+PzzPxx)+e2 

-e’BJz* 

--elBxzPzz 

-e’Pk 

-Mx 

{1-e1(3+[Bx,+8,,12)+e2(3+CBxx+82,12)-e3} 

{1-e’(2+Bx,+B,,+P,,B,,+B,,CB,,+B,,+8,=l) 
+ e2(1 + B,, + By, + LJ,,)~ 

{-e’(l-Bxx-B,,+B,,B,,) 
+ e2(2 - L - P,, + BxxByy + BzzCBxx + Pyyy + Ll) -e3 

(- ei + e2MLy(L + IL) 

(-e’ + e’>&(L + A,,) 

(-e’+e’)/?& 
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TABLE 9 (continued) 
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~~-e’(2+B~,+Pyy+B,,~B,,+Byy+8,,l) 
+ e*(l + I-L + S,,)> 
((1 - e1J4 -e’(l - e’)*lL+ Byy+ &J'~ 

{1-e’(l+Br,+Byy+B,,+382~)} 
{1-e’(l+Bx,+8,,+B,,B,,+fB~~)} 
(1-e1(l+B,,+Pyy+BZ,+B,B,,+3Bt)} 

A +_ 
lz’ f(A-f) Q% 

[ 1 
A + 

e1&x f’(A_ f’) 

[ 1 Kf 

1 

((1 -e1)3-/3yye1(l-e’)2 

- 41 -e’WL+ BzzXBXX+ Byy+ Bzz)I 

{1-e’(l+B,,+Byy+Bzz+BzZ(B,,+8,,+38,,)} 

{1-e’(l+B,,+Byy+Bzz+~8xx+BIZ)2)} 

while particles 1, . . ., 1’ belong to fragment f’, particles I’+ 1,. . ., I’ + n’ = I+ n to 
fragment A- f’. E.g. 

where 

? = I’M - f) - If + (I + nW’/A) 

Cf(A - f)f’(A - f’)]* ’ 

and with c I’ = f’, c 1 = f, c (I+ n) = A, (1 = sum over columns), the product of 
single-column factors exp q(K. g*) combine to make the factor 

n evQ K’) = exp f'(A-f) 
COlUlllUS [f(A - f)f’(A - f’)]+ (’ ’ K*) 

for the full Ccolumned tableau. 
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TABLE 10 

Thef-functions with 1 # 1’, n # n’ 

OFi? 055 A; oz~x*y*Z*~(Z***)) 

41 --e112Byx 
(1 - e’)2Pxy 
f-~1-B~~)+e’t2-~~8,,+8y,+~~B,,[B,,+By,+8,,3) 
-e2tl +P,,)> 
((1 -P,,)-e1~2+~~,-Byyf~2,[s,*+8yy+8,,l) 
+ e20 + &,>> 

-$(1-e’) A 
[ 1 

+R j!? 
m-f) z yx 

i 1 1 A f_ 

U-Wf) K,{t2-B,,)-e1t2+2P,,+28,,+B,,)) 
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TABLE IO (continued) 
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f( 
oE+; 0 
: 0r*x*y*z*qz*x*) ) 

f (~~y~~z**(ZtX*)X*2) 

f( 
OxF; ox- 
O;x*y*z’Oz*~(2*X*)(Z*y*) ) 

The f (: ; : i : : 1) are tabulated in terms of the quantities ep and pij, detined by 

A 

[f(A-f)f’(A- f’)]“(g’K*) 

Note that: 

Note added in proofi Norm kernels for some complex cluster systems have re- 
cently also been worked out by Y. Fujiwara and H. Horiuchi who give norm kernels 
for r2C+2a, ‘2C+8Be, 12C+12C, 2cl+20Ne, ‘Be+*Be, and a+24Mg systems, 
(to be published). We are indebted to these authors for pointing out a small numerical 
error in our original preprint. 
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