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Abstract-A class of exact solutions to the equations of motion of a second grade fluid is exhibited wherein 
the non-linearities which occur in the equations of motion are self-cancelling though individually non- 
vanishing. These flows are those in which the vorticity and the Laplacian of the vorticity remain constant 
along stream lines. 

1. INTRODUCTION 

THE NON-LINEARITIES which occur in the Navier-Stokes equations severely restrict the class for 
which exact solutions can be established. However, there exists a general class of flows 
wherein these non-linearities are self-cancelling though the individual terms are non-vanishing. 
The first such solution where the non-linearities are self-cancelling was exhibited by Taylor[l] 
in his investigations of the decay of a double array of vortices. Another such situation where a 
similar cancellation of the non-linearities occur is the steady flow behind a 2-dimensional grid 
which was studied by Kovasznay[2]. Wang[3] found a general class of flows where these 
non-linearities are self-cancelling and showed that the results of Taylor[l] and Kovasznay[2] 
belonged to that class. 

For a certain class of non-Newtonian fluids, namely the homogenous incompressible 
Rivlin-Ericksen fluids of second grade (Coleman and No11[4]), it was shown by Gupta[5] that 
the higher order non-linearities which occur in the equations of motion are also self-cancelling 
for the specific problems studied by Taylor and Kovasznay mentioned above. 

In this note, following Wang[3], we exhibit exact solutions for a general class of flows of a 
homogenous incompressible second grade fluid. It is found that these exact solutions form a 
sub-class of the solutions exhibited by Wang[3] for the Navier-Stokes equation. It turns out 
that these exact solutions exist for plane flows where the vorticity and the Laplacian of the 
vorticity remain constant along stream lines. 

Thus, it is found that the homogenous incompressible second grade fluid displays a truly 
remarkable property in that, in addition to sharing the same unique solution for the velocity 
field as the classical linearly viscous fluid for slow steady flows (Tanner[6], Huilgol[7], Fosdick 
and Rajagopal[8]), it also admits exact solutions in the case of certain class of unsteady flows 
which are not necessarily slow. In fact, the second grade fluid shares yet another remarkable 
property in common with the classical linearly viscous fluid in that it is completely charac- 
terized by viscometric flows (Truesdell[9]), which is not true for non-Newtonian fluids in 
general. It should, however, be noted that a thermodynamically compatible Rivlin-Ericksen 
fluid of grade three also shares the above property (Rajagopal[lO]). 

2. EQUATIONS OF MOTION 

The Cauchy stress T in a homogenous incompressible Rivlin-Ericksen fluid of second grade 
is related to the fluid motion in the following form 

T = - pl + pAI + alAl + alA;, (2.1) 

where p is the coefficient of viscosity, al and (Y~ are the normal stress moduli and - pl denotes 
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the indeterminate spherical stress. Here A, and A2 are the kinematic tensors defined through 

and 
A, = grad v + (grad v)‘, 

A2 = A, + A,L + LTA,, (2.2)l.Z 

where v denotes the velocity field and the dot represents material time differentiation. 
Substitution of (2.1) into the balance of linear momentum gives in the absence of body 

forces 

~Av + QAV, + ai(Aw x v)((Y, + a&A,Av + 2 div [(grad v)(grad ~9’1) 

-pv,-p(wxv)=grad@, (2.3) 

where A denotes the Laplacian operator, the subscript t denotes partial derivative with respect 
to time, and 

w = curl v, (2.4) 

j! = p - crlv . Av -+(2a, + a~)lA,(~ +; plvj2. (2.5) 

In the above equation (vi2 denotes the usual norm for vectors and (Ail2 denotes the usual trace 
norm for tensors. 

If one takes the curl of (2.3), in the case of plane flows it is found that 

/.~Aw+cw,Aw,+a, ~~+,~I-,w,_,(,~+,~}=O. 
I 

(2.6) 

We now use A to denote the 2-dimensional Laplacian operator, and u and v are the x and y 
components of the velocity, and 

w= wk, 

k being the unit vector normal to the plane of flow. 
For plane flows, we introduce the stream function 4(x, y) through 

and 

a* 
u=-$-, 

a* 
v=-ax’ 

(2.7), 

(2.7), 

and rewrite eqn (2.6) in the following form 

p(A2$) + a,A’IL, + (~1 
a$ aA21(r all, aA21(1 ----- =O 
ay ax ax ay ’ 

(2.8) 

where A2 denotes the usual biharmonic operator. 
We now observe from (2.8) that if the stream function 4 is such that 

and 
4~ = f($)> (2.9) 

A’$ = g($), (2.10) 

where f and g are arbitrary functions, then the non-linearities which occur in (2.8) are 
self-cancelling and the equation becomes linear. Equations (2.9) and (2.10) imply that the 
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vorticity and the Laplacian of vorticity remain constant along stream lines. If (2.9) and (2.10) 
hold, then (2.8) reduces to 

The constitutive assumption (2.1) can be considered to be the second order approximation to 
the response functional of a simple fluid in the sense of retardation (Coleman and Nol1[4]). On 
the other hand, since the constitutive mode1 is properly invariant it could be thought of as an 
exact model, as is done, for example in the case when a1 = a2 = 0, the classical linearly viscous 
theory. If this exact model represented by (2.1) is required to be compatible with ther- 
modynamics in the sense that all arbitrary motions of the fluid satisfy the Clausius-Duhem 
inequality and the assumption that the specific Helmholtz free energy 4 of the fluid be a 
minimum when the fluid is locally at rest, i.e. 

tit& AI, A21 2 rcl(t 0, Oh 

for all symmetric tensors A, and AZ, then it follows that [ 1 l] 

(4 ~>0,a,~OandaIta2=0. 

Of course, this does not preclude the possibility of an approximate model with al < 0 and 
al + a2 # 0. The results expressed in (A) are the subject of much controversy and this involves 
the work of Coleman, Dunn, Fosdick, Mizel, Rajagopal, Ting and Truesdell. We refer the reader to 
Dunn and Fosdick[l l] for a brief review of the same. Recently, the investigations of Fosdick and 
Rajagopal[l2] and Rajagopal and Wineman[13] have also addressed themselves to questions 
regarding the validity of eqn (A). However, eqn (A) has not been employed in obtaining (2.6). It just 
happens that in plane flows the terms multiplied by (a, t a2) are self-cancelling. 

In this note, without restricting ourselves to either point of view we shall investigate the 
implications and the consequences of both these differing viewpoints. 

We proceed to show that the class of problems which are solutions to the eqns (2.9)-(2.11) 
includes all the interesting examples considered by Wang [3] in the case of the Navier-Stokes 
equation. Our problem is different from Wang’s in that in addition to the extra term A*& in eqn 
(2.11), we have an additional eqn (2.10) to be met. It so happens that the examples found by 
Wang[3] are such that (2.10) is met automatically since in all his examples f($) is a linear 
function of J&. We also consider an example where f(4) is not a linear function of $. 

Analysis 
We wish to construct solutions for physically meaningful problems wherein the stream 

function # satisfies (2.9H2.11). First, we shall consider the class of flows where 

W = f($) = 4, (2.12) 

where A is a constant. It follows that 

A*+ = AA$ = A*+ =&I,//), 

and hence a choice of f($) of the form shown in (2.12) meets the conditions expressed by (2.9) 
and (2.10). 

Equations (2.9H2.11) with f($) = A($) yield solutions of the form 

II, = Re( T G exp (a,x) exp (AY) exp (At)), (2.13) 

where C,,, a, and Pn are complex constants and Re stands for the real part of the expression 
within the parenthesis. 



1012 K. R. RAJAGOPAL and A. S. GUPTA 

The following interesting flows belong to the class of exact solutions represented by (2.13) 
(1) The decay of vortices represented by 

3, = A cos mx cos ny e+‘. (2.14) 

Equation (2.14) represents a system of eddies in which each is rotating in the opposite direction 
to that of its four neighbors. Now, eqn (2.14) is compatible with eqn (2.11) if 

1 Ly -=‘+ P 
A p p(mz+ 2)’ 

The case m = n was studied by Gupta[4] for al f 0 and by Taylor[l] for LY~ = 0. Also the case 
m f n was studied by Rajagopal[l4] for a fluid for which (2.1) is regarded as an exact model. 
Since the characteristic time of decay is O~l~A), the above expression shows the smaller the size of 
vortices, the faster is the decay in a given fluid. Further, for vortices of given size the decay is 
hastened for o1 < 0 (provided A remains positive) and is delayed if al > 0. 

If one takes the point of view that the model represented by (2.1) is exact and that the 
restrictions based on eqn (A) hold, then it follows that A > 0. On the other hand, if the 
constitutive relation (2.1) considered as an approximate model up to second order in the time 
scale to the flow of a simple fluid with fading memory, for the validity of such a model, the 
characteristic time scale l//Al of motion in this problem should be sufficiently large com- 
pared with the time scale Jcy,I,u] characterizing the memory of the fluid. This demands that 
p(m*+ n*)-’ @ ((~~1 so that A > 0. Thus, in either case there is decay of vortices, 

(2) Direct impingement of two rotational flows represented by 

Ic, = A sinh ax sinh by e”. (2.15) 

If the stream function I/J given by 
straightforward computation that 

(2.15) is to satisfy (2.9) and (2.11), it then follows from a 

A = p(a2+b2) 
p - cr,(a* t !I*)’ 

(2.16) 

If one is interested in solutions to the problem of direct impingement of two rotational flows of 
increasing strength, i.e. A > 0, then it follows from (2.16) that for the exact model which meets 
the restrictions due to eqn (A), such flows are possible only if 

If the model is considered as an approximate one with aI < 0, then A > 0, If one is interested in 
the physical problem of the direct impingement of two rotational flows of decreasing strength, 
i.e. A < 0, then such a flow is not possible since A given by (2.16) is always positive. 

(3) A viscoelestic analog to Kelvin’s “Cat’s eye” vortices represented by 

$ = A cash ax cos by e”‘. (2.17) 

Substitution of eqn (2.17) in eqn (2.11) gives 

A = da2- b2) 
p - q(a*- b*)’ 

(2.18) 

Once again as before one can obtain conditions under which a solution of the form of (2.17) can 
exist for the exact or approximate model. 

All the above exact solutions are obtained when the vorticity f($) is a linear function of $, 
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namely f($) = A$. A common feature of all these exact solutions is that the stream function r(l 
is of the separable form. 

We next investigate the problem when f(e) is not a linear function of $ We show that in 
this case the exact solution cannot be of the separable form. Suppose, if possiblet 

Jl(x, Y) = X(x) Y(Y), 

then it follows from eqn (2.9) that 

xlt(x)+ Y"(Y) fWY) -=- 
X(x) Y(Y) xy . (2.19) 

This implies that 

X”=CrX, Y”=CtY and f =(C,+C& (2.20) 

where C, and C, are constants. The last of eqns (2.20) contradicts the fact that f is not linear in 
4. Hence our assertion is proved. 

Thus, to consider a problem when f($) is non-linear we have to look for a solution which is 
not of the separable form. Consider, for instance the following expression for the stream 
function. 

w, Y> = (x + Y13. wu 

It follows trivially that 

Aif, = f(~) = 12(x + y) = 12+1’3, 

and clearly f($) is not a linear function of 4. Also 

A*~#I = g(4) = 0. 

Hence the conditions required by eqns (2.9) and (2.10) are met and a stream function of the 
form (2.21) is a solution to the equations of motion for.the steady plane flow of a second grade 
fluid. Physically the above problem represents a situation wherein both the vorticity and 
velocity are constant along stream lines represented by x + y = constant, which constitute a 
l-parameter family of parallel stream lines. 

It is worth observing that by virtue of the chain rule, (2.9) and (2.10) can be replaced by the 
equivalent conditions 

and 

Thus, all the problems considered thus far are problems wherein the vorticity and velocity are 
constant along stream lines. 

There are several other physicaIly meanin~ul problems where “exact solutions” can be 
exhibited due to the non-linearities in the equations being self-cancelling when f(4) is not 
linear. The example expressed by eqn (2.21) is valid for steady flows wherein f($) is a 
non-linear function of IJ?. 

tWe consider the form of the stream function co~es~nding to a steady problem. Similar results can be es~blis~d if 
the problem is not steady. 
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