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ABSTRACT 

Vandermeer, J., Ambrose, R., Hansen, M., McGuinness, H., Perfecto, I., Phillips, C., Rosset, 
P. and Schultz, B., 1984. An ecologically-based approach to the design of intercrop 
agroecosystems: an intercropping system of soybeans and tomatoes in southern Michigan. 
Ecol. Modelling, 25: 121-150. 

A model is developed in which the elementary structure of plant competition is translated 
into the classical yield-density equation. Using the same reasoning, an interspecific form of 
the model is formulated to predict yielding patterns of intercrops. An experimental system of 
a tomato/soybean intercrop in southern Michigan was used to test the model. While the fit of 
the data to the model is generally good, the deviations were sufficiently systematic to suggest 
several modifications. Augmenting the model to account for spatial variability in the 
interspecific competitive effect, an excellent fit to experimental results was obtained. The 
results suggest that a theoretical approach involving plant interactions at the demographic 
level will be useful in a program of evaluating intercrop designs. 

INTRODUCTION 

A central focus of ecology for the past 10 years has been the question of 
coexistence of species: Why is it that certain species commonly occur 
together while others exclude one another (MacArthur, 1972; Pianka, 1976)? 
This problem has been formulated in a variety of ways, some quite complex 
and esoteric, but all ultimately tried to answering the basic questions of how 
and why species coexist. 

A similar but mainly independent orientation can be seen in agronomic 
research on intercropping. The basic question is whether or not an intercrop 
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produces a yield advantage relative to monocultures (Kass, 1978; Willey, 
1979). 

Thus we have two questions being asked independently: 
(1) Under what conditions will two species coexist? 
(2) Under what conditions will two crop types produce more in combina- 

tion with one another than when separated from each other? 
The two questions have obvious similarities, and in certain mathematical 

interpretations are formally identical (Vandermeer, 1981). It seems reasona- 
ble, then, to apply the large body of experimental and theoretical results 
obtained in work on species coexistence to the practical necessity of inter- 
cropping. 

The long history of coeistence research in ecology has centered on what is 
usually referred to as the competitive exclusion principle, originally for- 
mulated by Gause (1934). The principle is, loosely, no two species can 
occupy the same niche. Later popularized (Hardin, 1960) and experimentally 
studied (Colwell and Fuentes, 1975), the principle simply states that if the 
competitive interactions between two species are sufficiently weak, the two 
species will coexist indefinitely. The principle has been extended in various 
forms to multiple-species situations (Levins, 1968; Vandermeer, 1970; Case 
and Gilpin, 1974; May, 1974; Case and Casten, 1979). One of its potential 
applications to agriculture has already been noted (Vandermeer, 1981). 

Recent reviews of intercropping (Kass, 1978; Trenbath, 1974; ASA, 1976; 
Willey, 1979) summarize an impressively large number of empirical studies 
(78 in Kass, 1978 and 92 in Willey, 1979). While a majority of those studies 
are from tropical regions, many were done in the temperate zone. Especially 
popular in the early 1900's were studies of corn-bean (including soybean) 
intercrops (Etheridge and Holm, 1924; Brown, 1935), and recently vegetable 
intercropping research has become more common (Cunard, 1976; Bach, 
1979; Schultz et al., 1982). In contrast to the relatively small amount of 
intercropping research in the U.S.A., visitors to China report a wide variety 
of intercropping experiments in progress in China's temperate regions (Han- 
sen and Risch, 1979; S. Risch, University of California, personal communi- 
cation, 1984). Attempts at formulating ecological theory associated with 
intercropping have been rare (Vandermeer, 1981, 1984b; see also introduc- 
tions in Kass, 1978; Willey, 1979). 

In the present work we begin by casting the classic yield-density equation 
in a form which reveals its underlying ecological meaning. Then, using this 
underlying ecological rationale, we extend the classical approach to the 
two-species situation, thereby proposing an ecologically-based theory of 
intercropping. Finally we use an experimental system of tomatoes and 
soybeans to investigate the validity of the theory. 



1 2 3  

T H E O R Y  

It is a well-accepted fact that the yield of a plant population is related to 
the inverse of its population density. In particular, the equation: 

wO~_ 1 
A +  BD (1) 

seems to be recognized by most workers as an excellent description of the 
yield-density relation for most known plant populations (Shinozaki and 
Kira, 1957; Bleasdale and Nelder, 1960; Holliday, 1960). In equation 1, w is 
the biomass yield of an individual plant, D is the density of the population 
and the three constants A, B and 0 refer to various biological functions, as 
described below. The yield of the population as a whole is then, Y, defined 
a s ~  

D 
Y =  wD - 

(A + BD) a/° 

For purposes of explanation we begin by letting 0 = 1. Equation 1 can 
then be written as: 

1 B 
w - A A Dw (2) 

We can maximize the yield of an individual plant, theoretically, by setting 
the population density equal to zero. Thus: 

1 
k = Wmax = ~ - 

where k thus stands for the maximum yield attainable for an individual 
plant. If 1 / A  is the theoretically maximum value, equation 2 further suggests 
that ( B / A ) D w  is the competitive effect felt by an individual plant. It also 
must be the case that ( B / A ) D  is the competitive effect, (per-unit-biomass), 
and ( B / A ) w  is the competitive effect per individual. Thus B / A  could be 
called a competition coefficient. 

Looking at the same phenomenon from a slightly different perspective, 
the competitive effect felt by one particular plant must be the sum of the 
competitive pressures exerted by all of that plant's neighbors. Furthermore, 
the intensity of the effect is likely to be proportional to the size of the 
neighboring individual. In symbols this competitive effect is: 

N 

i = 1  

where a is the biomass reduction perpetrated by one unit biomass of a 
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competitor (the "competition coefficient"), w i is the biomass of the ith 
individual in the population, and N is the number of individuals which 
significantly compete with the individual in question. 

Thus from one point of view the per unit biomass competitive effect is Za ,  

and from another point of view it is ( B / A ) D ,  giving: 

( B / A ) D  = Ea (3) 

The equivalence of these two expressions is easily seen if we consider 
further the concept of " the  number of individuals which significantly 
compete". We here follow an approach originally implied in the work of De 
Wit (1960) and expanded by several authors (e.g. Opie, 1968; Mead, 1971, 
1979; Gates et al., 1979; Wixley and Shaw, 1981). Suppose that there exists 
an area surrounding the plant in question, within which competitive effects 
are felt from other individuals in the population, and outside of which 
competitive effects are not felt at all. Obviously we are not suggesting that 
such an arrangement actually exists in nature, but make these simplifying 
assumptions only for the purpose of making sense out of the developing 
theory. If S is the area of the competitively effective region, the number of 
individuals actually affecting the individual in question must be N = SD,  

where D is the population density. Assuming a uniform population with 
respect to biomass, we can thus write: 

N SD 

E aw  = E aw  = S D a w  (4) 

which by earlier arguments gives us: 

( B / A  ) Dw = S D a w  

and thus 

B / A  = Sa  

Since 1 / A  = k we have B -- S a / k .  Thus B is, as suggested earlier, a competi- 
tion coefficient, albeit not exactly equivalent to the competition coefficient, 
a. Nevertheless, since S, a and k all have intuitive biological meanings, the 
meaning of B is thus expressed in a biologically meaningful fashion. 

Letting 1 / A  = k and substituting equation 3 into equation 2, we obtain: 

D S  

w=k-E w (5) 

and substituting equation 4 into equation 5: 

w = k - S D a w  (6) 

But equation 6 is meant to represent total plant yield, whereas usually the 
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agriculturally significant factor is only a part of the plant, bringing into the 
picture the general biological rules of how parts of organisms are related to 
their wholes. The allometric growth law seems to apply in general to both 
animals and plants (Huxley, 1932; Kira et al., 1956). Thus the yield of the 
fruit (say) will be related exponentially to the whole plant yield, and we 
have: 

y = w ~ (7) 

where y is equal to a plant part (the fruits, say). Substituting into 6 and 
rearranging we have: 

y O _  k 
1 + S a D  (8) 

which is identical to 1, with A = 1 / k ,  B - s a / k ,  and 0 = 1 /~ .  
The biological reasoning which yields the intuitively satisfying interpreta- 

tion of the parameters is actually embodied in equation 5, and partly in 
equation 7. Equation 5 expresses the simple facts of biological competition, 
and equation 7 expresses the simple fact of allometric growth. More im- 
portantly, such biological reasoning can easily be extended to include 
another species. Namely, equation 6 can be expressed as: 

W 1 = k I - S l l a l D l W l  (9) 

where w 1 is the biomass of an individual of species number 1, k 1 is the 
maximum value an individual of species 1 could attain, $11 is the critical 
region for species 1, a 1 is the per unit biomass intraspecific competition 
coefficient for species 1, and D~ is the population density for species 1. 
Several new and obvious parameters come to mind if we are to add a second 
species. First, there are the obvious parallels to the parameters in equation 7, 
w2, k2, $22 , O~ 2 and D 2. Second, we must define two other parameters which 
specifically refer to the interaction between the two species, S~2 (and its 
counterpart  $21 ) and/~12 (and its counterpart fizz). While $11 refers to an area 
surrounding an individual of species 1 within which another individual of 
species 1 will have a competitive effect, $12 refers to an area surrounding an 
individual of species 1 within which an individual of species 2 will have a 
competitive effect. Similarly, while fil~ refers to the per unit biomass compe- 
titive effect of species 1 on species 1, ill2 refers to the per unit biomass 
competitive effect of species 2 on species 1. With these new definitions we 
are now prepared to expand equation 7 as: 

W 1 = k I - -  S l l O l l D l W l  - -  S 1 2 ~ l z D 2 w 2  

w 2 = k 2 - S220~2D2w2 - -  S2, f i2 ,D,w,  (10) 

These equations represent a model of two plant species interacting, in which 
the biological reasoning is identical to at least one form of biological 



126 

reasoning that gives rise to the well accepted inverse yield-density equation. 
Just as equation 6 can be algebraically manipulated to look like equation 1 
(with 0 = 1, that is), so equations 10 can be algebraically manipulated to take 
the interspecific form of the yield-density relation. For species 1 such 
manipulation yields: 

k I -(k2S12fl ,  2 - k,S2212)D2 
(11) 

W1 = 1 + Sl lOglD1 -{- 8220 /202  -~- (SllS220g1@2 - S21S12~12~21)DlD2  

which can be more compactly written: 

kl - G I D 2  (12) 
W1 = 1 + B I D  1 + B 2 D  2 + C D I D  2 

w h e r e  G 1 = (k2S12 /~12  - k 1 3 2 2 1 2 ) ,  B i ~- Siiogi, a n d  C = S i lS221112  - 

S21S12f112fi21. Equation 12 (along with the similar equation for species 2) 
then represents the interspecific form of the classical inverse yield-density 
relationship (note the exact equivalence of equations 12 and 1 when D 2 is set 
equal to zero - -  remember k = 1/,4). But once again equation 12 only refers 
to the yield of a whole plant. If we let y equal a part of the plant we write: 

kl - GID 2 ]¢ 
y, = Aw? = 1 + CD, D2 

and finally, to represent the yield of the entire population: 

[ k I - G I G 2  ]¢ 
Y1 =yaD1 -- 1 + BID 1 + B2D 2 + CD1D 2 D1 

[ k2 -G2D1 ]~ 
Y2 = Y2 D2 = 1 + B 2 D 7-+--B~1 -+ CD, D 2 D2 (13) 

Equations 13, then, represent the ecologically-based model of intercropping. 
If the model is truly representative of natural processes, it can be used in a 
variety of ways in developing designs for intercropping systems, a subject to 
which we return in the discussion. But first it is necessary to determine if the 
model is in fact capable of representing a natural system. 

M E T H O D S  

We chose to work on a system of soybeans and tomatoes. Both are 
common crops in the midwest, soybean being a low-risk/low-profitability 
crop and tomato being a high risk/high profitability crop. Putting the two 
together thus makes a certain amount of economic sense, combining a 
conservative and gambling approach. 

The idea of the experimentation was first to use one series of experiments 
for estimating parameters. Using the parameter estimates from this first set 
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Fig. 1. Basic design unit for beehive experiments. Each x represents a tomato, each dot a 
soybean. Circled plants are "center  plants", in that they are the principal ones from which 
data were gathered. 

of experiments, the model should be able to predict a set of yields for 
different density combinations. A second set of experiments then determines 
whether or not the prediction are valid. The first set of experiments, in which 
parameters were measured, were beehive experiments (Martin, 1973; Veevers 
and Boffey, 1975) and the second set were density trails. 

A series of spacing experiments, called "beehive" experiments because of 
their hexagonal shape, were set up for both intra- and interspecific compari- 
sons. In each design unit (Fig. 1) there were 16 plants, eight tomatoes and 
eight soybeans, that were harvested. These harvested plants are circled in 
Fig. 1 and are called "center  plants" because of their position in the center 
of a hexagonal arrangement of six other plants. Thus, each design unit 
contained four center tomato plants surrounded by tomato plants (intraspe- 
cific center tomato plants), four center tomato plants surrounded by soybeans 
(interspecific center tomato plants), four center soybeans surrounded by 
soybeans (intraspecific center soybeans) and four center soybeans sur- 
rounded by tomatoes (interspecific center soybeans). 

Each of two blocks contained four design units representing four different 
interplant distances: 1 m, 0.75 m, 0.5 m and 0.25 m. Additionally, each block 
contained three full monospecific beehive designs, two with soybean at 0.1 m 
and 0.01 m spacing and one with tomatoes at 1.5 m spacing. 

Density trials were set up on an adjacent piece of land. Three densities of 
soybeans and three densities of tomatoes in a completely crossed design were 
planted in three blocks of 4 m × 4 m plots. The three densities of soybeans 
were: (1) 3-inch * spacing within rows 1 m apart; (2) 1-inch spacing within 

* 1 inch = 25.4 mm. 
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rows 1 m apart; and (3) 1-inch spacing within rows 0.5 m apart. The three 
densities of tomatoes were: (1) 1.5 m spacing in rows 1.5 m apart: (2) 1 m 
spacing in rows 1 m apart; and (3) 0.5 m spacing in rows 1 m apart. 

The beehive experiments and the density trials are shown in an area photo 
in Fig. 2. Planting, cultivation, and harvesting were identical for both the 
beehive experiments and the density trials. Soybeans (Asgrow Co.) direct 
seeded and tomatoes (Heinz 1350) were transplanted on 6 June 1981. 
Weeding was done by hand weekly. Tomatoes were harvested on 24 August, 
5 September, 12 September, 19 September and 26 September. Soybeans were 
harvested on 9 October. 

RESULTS 

The block means of (1) the per-plant yields fore the beehive experiments 
(Table I) and (2) the block means for the density trials (Table II) are the raw 
data with which we shall be working in the rest of the paper. 

Parameter estimating methods were tailored to the particular parameters. 
Beginning with Sij, the area within which competitive effects are felt, the 

Fig. 2. Aereal photo of study area. Density trials are to the left, beehive experiments to the 

right. 
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data  necessary for its computa t ion  are plant yields as a function of distance, 
readily available f rom the beehive experiments. The yields for the center 
plants (the circled individuals in Fig. 1) are plotted against the interplant  
distance (i.e. the surrounding individuals in the hexagon), in Fig. 3a, b, c and 
d. Also in Fig. 3 are plotted the positions of S~j. In some cases the posit ion is 
at an obvious discontinuity (e.g. Fig. 3d) while in others it is almost arbitrary 
where the position is located. 

Consider  in detail the graph of tomato yield against the distance to 
tomato competi tors  (Fig. 3a). There is an obvious discontinuity between the 
0.5 and 0.75 distances. Thus, the critical distance is (0.5 + 0.75)/2 = 0.625, 
and the critical area S = 'rr(0.625) 2 = 1.227. The mean yields of the tomatoes 
at distances less than 0.625 is 1388 g / m  2 (Table I). Because of the experi- 
mental  design, the exact number  of competi tors  is six. Thus S D  = 6 and 
equation 9 becomes: 

w = K -  6 a w  

TABLE I 

Block means for beehive experiments  

In terplant  Per-plant  yield 
dis tance (m) Tomato  Soybean 

Intraspecific Interspecific Half-hexes Intraspecific Interspecific Half-hexes 
compet i t ion compet i t ion  compet i t ion compet i t ion 

1.5 9 740 . . . .  
1.5 11 860 . . . .  
1.0 6411 9650 7112 153 82 140 
1.0 6 040 11 096 7 990 105 129 105 
0.75 4919 10004 6594 108 54 77 
0.75 5 847 8 318 5 778 85 89 112 
0.5 1 862 6127 2036 58 19 41 
0.5 2150 6155 2 060 61 22 69 
0.25 1 244 2 852 718 15.9 1.7 11 
0.25 298 3 153 645 13.9 5.2 8.9 
0.15 - 5.9 - 
0.15 - - 5.9 - 

0 . 1  - - - 4 . 9  - 

0 . 1  - 1 . 2  - - 

Each number  is a mean  of four data  points. Intraspecific compet i t ion  refers to the yield of 
individual  plants  sur rounded by individuals of their own species, interspecific compet i t ion 
refers to the yield of individual plants  surrounded by individuals of the other  species, and  
half-hexes refer to the yield of individual plants  surrounded by some individuals of both  

species. 
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TABLE II 

Yields (g/m 2) for density-trial plots 

Density of tomatoes 
(per m 2) 

Density of soybeans (per m 2) 

14 40 80 

(a) YieM of tomatoes 
0.44 

1.0 

2.0 

(b) Yield of soybeans 
0.44 

1.0 

2.0 

1098 870 309 
1151 827 385 
1376 1426 412 
2451 1704 888 
3449 2766 1384 
3666 
6081 3318 1249 
5576 3437 3077 
5005 3924 1902 

188 269 178 
198 146 191 
95 174 56 

179 228 202 
202 164 238 
112 
75 144 214 
88 174 209 

192 104 132 
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which can be written: 

k - w  
OLT - -  6w 

The value of k is the average tomato yield in the most highly spaced 
population, in this case 10,857 g / m  2. 

Substituting the above values, we obtain: 

10 857 - 1388 
a = = 1.137 

6(1388) 

In a manner equivalent to the estimate of a-r, the other a was measured. 
The estimates of [3 were obtained from modifying equation 10 to make them 
correspond to the special experimental conditions extant in the beehive 
experiments. Considering the first of equations 10, setting w~ = 0 (since all 
competitors are of species 2), we obtain: 

Wl = kl  - S 1 2 ~ 1 2 D 2 w 2  

As before, because of the experimental design, S D  = 6, so: 

w 1 = k I - 6 B 1 2 w 2  
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as the computing equation. But at this point we must ask which w 2 should be 
used in this computing formula. The ultimate goal is to represent the actual 
degree of competitive effect per unit biomass of competitor. In the beehive 
experiments the best estimates we have for the individuals perpetrating the 
competition are the so-called half-hexes, those individuals surrounded by 
four or five of their own kind and one or two of the other species (see Fig. 
1). 

Finally the parameters A and c are not estimable from the beehive 
experiments. To obtain these parameters we utilized the equation: 

Y = A  I + B D  
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Fig. 3. Per-plant yield as a function of interplant distance from the beehive experiments: (a) 
tomato yield versus tomato competitors; (b) tomato yield versus soybean competitors; (c) 
soybean yield versus soybean competitors; (d) soybean yield versus tomato competitors. 

TABLE Ill 

Observed and predicted (based on regression, see text) monoculture yields from density trial 
experiments 

Soybeans Tomatoes 

Observed Predicted Observed Predicted 

218 223 4303 4520 
226 215 7168 6523 
202 208 7381 7695 
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(equivalent to equation 8) transformed to read: 

In Y = l n A + c l n  I + B D  

to which a linear regression was applied using Y and D from the monocui- 
tures of the density trials and the values of K and B as computed from the 
beehive experiments. The predicted monocultural values, using these param- 
eter estimates are presented in Table III. 

A summary of all parameters is displayed in Table IV. Applying the 
parameter values as shown in Table IV to the interspecific yield-densi ty 
equations, we solved for tomato and soybean yields for the nine combina- 
tions of densities used in the density trials. These values represent predict- 
ions which are independent of the interspecific density trial data. That is, the 
parameters were all estimated from separate experiments, a more rigorous 
procedure than the more usual method of fitting the equations to the 
experimental data themselves. 

An initial assessment of the model can be made by comparing the residual 
variance around the model expectation to the total observed variance in the 
data. The overall variance is 2.5 × 106 and the residual variance is 9.4 × 105. 
The percentage reduction in variance due to the model as a whole is 62% 
( F - - 2 . 6 5 ,  P < 0.001). The overall fit of the model, while not perfect, is at 
least statistically significant. Such a result is encouraging at a very general 
level - -  i.e. we seem to be headed in the right direction - -  but also suggests 
that there is considerable room for improvement. 

The failure of the model is most noticeable if we examine each crop 
separately. Computing total and residual variances we have, for soybean, 
total = 2.9 × 103, residual 3.7 × 103 ( F =  0.78, n.s.), and for tomato, total = 
2.7 × 106, residual = 1.9 × 106 ( F  = 1.30, n.s.). Thus for tomatoes alone the 
model accounts for a non-significant 23% of the variance, while in soybeans 
the model fails completely. The qualitative performance of the model is 
diagramatically represented, for tomatoes only, in Fig. 4, where the expecta- 

TABLE IV 

Estimates of model parameters 

Parameter Tomatoes Soybeans 

K 10860 129 
1.137 3.75 

13 120.26 0.006 
Sii 1.227 0.442 
Sij 0.785 1.227 
c 1.15 1.0596 
A 0.407 2.696 
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tions from the model are presented as bars and the experimental data as 
arrowheads. Recall that the model's predictions were made from indepen- 
dent data, not fit to these experimental points. Qualitatively, the model 
appears to represent the overall trend in the data quite well. 

The inefficiency of the model in the case of soybeans is probably mainly a 
function of the experimental design. In Table V are the results of three-way 
analyses of variance for the yields of soybeans and tomatoes. Neither the 
soybean densities themselves nor the tomato densities had any effect on the 
soybean yields. This means that, in effect, all the soybean plots were the 
same and the yield data represent a sample of yields from a single statistical 
population. This implies that the proper test of the model is to attempt to 
predict the grand mean of all the soybean yields, since they all come from 
the same statistical population (see Table Va). The mean value of the nine 
predicted soybean yields (i.e. from the equations as stipulated by the 
independent beehive experiments), is 191 g / m  2. The grand mean of the 
observations is 166 g / m  2. Using a simple t-test, the means are not judged 
statistically different from one another (P  > 0.05). 

Philosophically, the approach taken with the soybeans should also be 
taken with the tomatoes. If we have no evidence that the various treatments 
did in fact result in different responses from the plants, they should be 

>i ,  

>] 
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> i  

o ! 
- 31 
c0 
E 

I l, I 

> i  

d e n s i t y  

F i g u r e  4 

Fig. 4. Diagrammatic representation of lhe model with tomato yields. Bars are model 
predictions, arrowheads are experimental data (dotted lines are upward projection of the 
model predictions to aid the eye). 



136 

lumped .  But the s imple  p rocedu re  fol lowed with the soybeans  will not  work,  
for, as we see in Tab le  VIb ,  bo th  the soybean  dens i ty  and  the t o m a t o  dens i ty  

were  signif icant  fac tors  in the exper iment .  But while the da ta  should  not  be  

g rouped  as a whole,  the same  pr inc ip le  a p p l i e s -  if var ious  t r ea tmen t  ob-  

servat ions  do  n o w  show statist ical  ev idence  of  hav ing  come  f rom dif ferent  

popu la t ions ,  we should  not  art if icial ly separa te  t hem and a t t e m p t  to app ly  a 
pred ic t ive  model ,  at least  not  a de te rminis t ic  one. 

The  m e a n  values of  the t o m a t o  yields are p resen ted  in Fig. 5. As one  
would  expect ,  a def ini te  pa t t e rn  is evident ,  with the low-dens i ty  t o m a t o  (T1) 
and  h igh-dens i ty  s oybean  ($3) giving the lowest  yield, and  the h igh-dens i ty  
t o m a t o  (T3) and  low-dens i ty  soybean  (S1) giving the highest.  But more  

i m p o r t a n t l y  we can recognize five more  or less na tu ra l  g roups  of  t r e a t m e n t  
means .  We  have  those two g roups  (each with one  mean)  a l ready  m e n t i o n e d  

TABLE V 

Analysis of variance of yields 

Source df MS F Significance 

(a) Soybean yield 
Block 2 
Soybean density 2 
Tomato density 2 
Interaction 4 
Error 14 
Total 
(b) Tomato yield 
Block 2 
Soybean density 2 
Tomato density 2 
Interaction 4 
Error 14 
Total 24 

24 

0.277 2.08 n.s. 
0.150 1.12 n.s. 
0.270 2.03 n.s. 
0.128 0.96 n.s. 
0.133 

0.132 2.49 n.s. 
5.03 94.48 P < 0.001 
2.72 51.15 P < 0.001 
0.038 0.716 n.s. 
0.053 

TABLE VI 

Summary statistics for density trials and model predictions 

Source Experimental Residual % Explained F 
variance variance by model 

Tomatoes 2.7 x 106 1.9 x 107 23% 
Soybeans 2.9 x 103 3.7 x 103 - 
Both crops 2.5 x 106 9.4 xl05 62% 
Grouped 2.7 x 106 1.37 x 106 49% 
tomatoes 

1.30 n.s. 

0.78 n.s. 
2.65 p < 0.001 
1.97 p < 0.05 
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(369 and 5554). Then we have three intermediate groups: (1208, 1041, 1136), 
(2235, 2076) and (3189, 3560). Statistically, none of the groups contain 
means that are significantly different from any other mean in the group 
(using standard t-tests). There is some question as to whether the group 
(2235, 2076) is really distinct from (3189, 3560). We keep them separate for 
the analysis, but very little changes if they are pooled. 

Using these "natural"  groupings, we follow the same procedure as we did 
with the soybeans. Predicted means within a group of treatments were 
themselves averaged to obtain a prediction of the pooled mean of the group. 
These predicted means were then compared to all the observations of all the 
treatments what were within that group. With this new grouping, considering 
tomato yields only, the overall variance is again 2.7 × 106 while the residual 
is 1.37 × 106, for an explained variance of 49% ( F =  1.97, P < 0.05). Again 
the model's performance is apparently in the right general direction, but 
certainly lacks precision. A statistical summary of the model's performance 
is presented in Table VI. 

AN ALTERNATE APPROACH 

The entire previous development relies upon a questionable assumption, 
that of a critical area around an individual plant within which competition is 
extant and outside of which competition is not felt at all. A glance at Fig. 3 
reveals that this assumption is not even approximately met, not a surprising 
fact. The assumption was made originally as an intermediate stage in the 
development of an interspecific form of the yield density relationship. But 
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Fig. 5. Grouping of tomato yields. Like means are surrounded by similar symbols• S1. $2, $3 
refer to the three densities of soybeans and T1, T2, T3 to those of tomatoes. 
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Fig. 6. Competition coefficient as a function of interplant distance. Closed circles are data 
from beehive experiments, and dotted line indicates approximate position of the expectation 
under the constant competition hypothesis. (a) Data for soybeans. (b) Data for tomatoes. 
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such an assumption is implicit even in the derivation of the well-accepted 
intraspecific yield-densi ty  equation (Vandermeer,  1983). It is, we feel, equally 
erroneous for the intraspecific case (Fig. 2a, 2c) as it is for the interspecific 
case (Fig. 2b, 2d). 

Looking more closely at the intraspecific data from the beehive experi- 
ments,  we can modify equation 9 to read: 

a(A) k--Y( A ) 
6 y ( A )  

where a(A),  and y(A)  are now expressed as functions of the interplant  
distance. If the constant  competi t ion assumption is correct, we would expect 
a(A) to be some constant  value over a range of small A, declining pre- 
cipitously at some critical A, and remaining at zero for all larger values of A. 
In Fig. 5 are presented the calculated values of a(A)  as a function of A, 
along with the expectations based on the constant  compet i t ion assumption.  
As can be readily seen, the expectation is not even approximately met. One 
might  at least expect a(A) to form a convex relationship with A but even 
this approximate expectation is dramatically violated. 

3 
0 

"4V 

-1 

2 t -3 

o 

2.0 1.6 1.2 .8 .4 

LN A 
Fig. 7. Log of competit ion coefficient versus log of interplant distance. Open circles (data) 
and crosses (means) indicate soybeans. Closed circles (data) and X's (means) indicate 
tomatoes. 
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The approximate negative exponential appearance of the data in Fig. 6 
suggest that the competition coefficient might be related to interplant 
distance according to the equation: 

a ( A ) = A A  b (14) 

In fact a plot of In a(A) againse In A yields an almost perfect linear 
relationship for our intraspecific beehive data (Fig. 7). Since on the average, 

1 
D = - -  

A 2 

equation 14 can be transformed to: 

a( /~)  = AD~/2 = ADc (15) 

where c = b/2 .  Equations 14 and 15 describe the process of competition and 
how it relates to inter-plant distance, and, by implication, density. The 
parameter A refers to the overall intensity of competition (formally to the 
value of the competition coefficient when D is equal to 1), and the parameter 
c refers to the rate at which competitive intensity decays as a function of 
interplant distance (or, to be precise, one-half that rate, since C = b/2) .  

Recalling the earlier development, from equation 6, it is evident that the 
current a (D)  is equivalent to the SDo~ of equation 6. Thus the analogue of 
equation 6, using the density-dependent or "variable competition" hypothe- 
sis, is: 

w = k - a ( D ) w  

Substituting from equation 15 we obtain: 

w = k - A D C w  

which, after rearrangement becomes: 

k 
w - (16) 

1 + A D  ~ 

Equation 16 is quite similar to equation 1, and is actually only a minor 
variant of the original form as proposed by Bleasdale and Nelder (1960). 
Watkinson (1980) has already shown how this form results from a slight 
change in analytical procedure applied to Bleasdale and Nedler's original 
equation. Mathematically, the two equations are almost identical, with only 
minor differences occurring at very low densities. But, most importantly, the 
interpretation of the parameters is very different in the two cases. In the 
original equation (equation 1) the exponent was interpreted as an allometric 
growth constant. Its analogue (in equation 16) is the rate of decay of 
competition. While the interpretation of the other parameters in the equation 
is the same for both hypotheses (constant versus variable competition), this 
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one parameter is dramatically different in the two different cases (Vander- 
meer, 1984a). 

Perhaps a simple difference in biological interpretation does not matter 
much in a case, such as this, where the analytical forms of the two 
alternatives are so similar. But the difference becomes extremely critical 
when we move to the interspecific case, as evidenced below. 

We approach the interspecific case, using the variable competition hy- 
pothesis, by writing the alternative form of equations 10 (remembering that 
in general a ( D )  = S D a  or f i ( D ) =  S D f l ) .  Such equations are: 

w, = k, - a l l ( D l )  w 1 - fi,2(D2) w 2 

W 2 = k 2 - az~(D,) w, - flzz(D2) w 2 (17) 

The general form of a is, by assumption (and from the appearance of our 
data as described above), a = A D  (', whence we may write: 

• ( ' 1 2  % = k I - A l l D { I , w  1 - A12D2 w2 

= - - " , ,  (18) w2 k2  A21D1-  w I A22D2--w2 

Again performing the necessary algebraic manipulations to put these equa- 
tions in proper y ie ld /dens i ty  form, we obtain, for species 1: 

k 1 - ( k 2 A , 2 D ~ , 2  - K 1 A 2 2 D ~ 2 2  ) 
(19) 

WI = 1 "{-All D2-- D2-- 21D2 - D  1 - D{,I + A22 c, ,  + A l l A 2 2 D [ . 1 1  c, ,  _ A 1 2 A  q ,  c,i 

Unlike the single-species case, equation 19 is no t  analytically similar to 
equations 13. Furthermore, it is considerably more complicated than the 
previous model, with the proliferation of four parameters ( q l ,  cl2, Czl, c22) 
where one (~b) sufficed earlier. Nevertheless, we feel it is probably an 
important improvement over the initial m o d e l -  which, it should be re- 
called, was nothing more than the interspecific form of the classic "recipro- 
cal" yield-densi ty equation. First, while the fit of the data to the constant 
competition model suggested that the general approach was appropriate, it 
also suggested that there was room for improvement. Second, a close 
examination of the assumption of constancy led to a reformulation of one 
basic idea (changing the constant competition to variable competition) which 
in turn led to the more complicated model. We now turn to an initial 
empirical examination of the new model. 

A TEST OF THE VARIABLE COMPETITION HYPOTHESIS 

Since the new model arises directly from our attempt at fitting the old 
model to actual data, we can hardly evaluate the new model with those very 
same data. Such a procedure would be suspect philosophically, but, more 
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important here, would be impossible since the experiments were constructed 
in such a way that their direct application to the new model is physically 
impossible. Consequently the present section is merely an attempt to show 
that the new model holds promise, that it is at least consistent with the data 
at hand. 

The new theoretical equation is given as: 

y = k - a ( D ) y  

But because of the manner in which the experiments were set up (i.e. a total 
of six competitors, regardless of A), the computation equation must be: 

y = k - a( D ) S( D ) Dy (20) 

where, for the experiments S(D) D = 6. Equation 20 is merely a restatement 
of equation 6, with a and S expressed as functions of D. We can estimate 
a(D)  for each experimental inter-plant distance in the beehive experiments. 
Presuming: 

a ( D ) = A ' D  c' 

(Vandermeer 1984a), we estimate A' and c' with a linear regression of 
In a(D) versus D where a(D) is computed, as before with the equation: 

a(D) = k - y  (21) 
6y 

But the function S(D) remains unknown. We presume the general form: 

S ( D ) = B D  b 

and utilize the monocultural density-trial data to compute B and b. If y(D) 
is the empirical yield for the monoculture, we can write: 

kD 
y ( D ) -  

1 + A'DC'S(D) D 

and for each monoculture we can then compute S(D): 

S ( D ) =  k D - y ( D )  (22) 
A'D¢'+ly(D) 

A plot of In S(D) versus In D reveals a linear relationship, suggesting: 

S(D) = BD b (23) 

Thus the values of B and b can be computed from the regression of In S(D) 
on In D. 

In Fig. 7 we present the values of a(D) (computed from the intraspecific 
beehive experiments according to equation 21) as a function of D, on a 
log-log plot. As can be readily seen, the relationships are very close to linear. 
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Using the parameters A' and c' as estimated from the beehive data (see 
Fig. 6) we now turn to the experimental data from the density trial plot, and, 
using equation 22, compute S(D)  for each of the three monocultural 
densities. Regressing In S(D)  against In D we obtain estimates of B and b 
(see equation 23), which allows us then to compute the final parameters as: 

A = A'B 

and 

c = c '  + b +  l 

As a check we then use these estimates to predict the monocultural yields 
from the monospecific yield-density relationship (equation 16). These pre- 
dictions are shown, along with the monocultural means in Table VII. The 
correspondence between predicted and observed is excellent. 

Turning finally to the interspecific situation, the overall theoretical equa- 
tion is: 

Yl = k, - a , , (D)  y, - a,2(D2) Y2 

Because of the manner in which the beehive experiments were set up (i.e. 
only the opposite species acted as competitors) the computation equation is: 

y ,=  k , -  a,j(  Dj) S,j( D,) Djyj 

where, for the experiments S~j(D)Dj = 6. So from the beehive experiments: 

a i j ( D ) _  K , - y i  
6y~ 

The function &j(D) remains unknown, and uncomputable from the 
beehive experiments. Our experiments were not exactly set up to test the 
variable competition hypothesis, their purpose being to test the constant 
competition hypothesis only. Consequently we were left with no method of 
estimating S,j(D) independent of the interspecific density trials. Neverthe- 
less, so as to see if the new model can be made to fit these experimental data, 
we used the yields from the density trials to compute the parameters of the 
S( D)'s. 

TABLE VII 

Monoculture soybean yield 
( g / m  2 ) 

Monoculture tomato yield 
( g / m  2 ) 

Density Observed Predicted Density Observed Predicted 

14 218 221 0.44 4303 4305 
40 226 217 1 7168 7144 
80 202 211 2 7381 7410 
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TABLE VIII 

A ij ('t I 

Perpetrating Perpetrating 
competition competition 

tomato soybean tomato soybean 

Receiving "1 tomato 0.520 2 0 . 2  Receiving l tomato 1.893 1.205 
Competition J soybean 0.012 0.394 Competition ] soybean 1.091 1.100 

Since fitting a model directly to data is inelegant in the first place, we felt 
justified in using the inelegant procedure of trial and error in finding the 
parameters for S(D). Systematically varying each parameter in turn, we 
located what appears to be the combination of parameters that gives the 
minimum sum of squared deviations for the yield data from the density 
trials. These parameters, along with the monospecific parameters are dis- 
played in Table VIII. Using the parameters of Table VIII and the k's as 
estimated earlier we solved for the predicted yields for all nine density 
combinations. 

Assessing the fit can be done, as before, by comparing the residual 
variance around the model predictions to the total observed variance in the 
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Fig. 8. Diagrammatic representation of the variable competition model. Solid bars indicate 
the model prediction, arrowheads indicate experimental data (as in Fig. 4). 
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data. The overall variance is 2.5 x 10 6 and the residual variance is 8.8 x ] 0  4. 

The percentage reduction in variance due to the model as a whole is 97% 
( F  = 29.7, P < 0.001). Thus the overall fit of the model is nearly perfect. 

Looking at each crop individually, we again see an almost perfect fit of 
the model. The mean predicted yield for the soybeans is 162 g / c m  2, as 
compared with the 166 g / c m  2 observed (as before analyzing the variance is 
pointless since there were no significant differences among any of the 
treatments (see Table Via). The overall variance for tomato yields was, as 
before, 2.7 × 106, and the residual variance 1.8 × l0 s. The model thus 
accounts for 93% of the variance in tomatoes alone ( F  = 15.34, P < 0.001). 

The qualitative performance of the model is presented diagramatically, for 
tomatoes, in Fig. 8. The fit is, of course, impressively good. But it bears 
repeating that the fit is not meant to be a test of the model. It is only 
presented as evidence that the overall qualities of the model are quite 
sufficient to represent this data set. A proper test requires an independent 
estimate of all parameters, as was done for the constant competition hy- 
pothesis. At this point we can only say that the model is clearly capable of 
generating the pattern formed by our data. 

SUMMARY AND DISCUSSION 

We have developed a theoretical formulation which derives directly from 
the classic inverse yield-densi ty equation. In the course of that development 
we were forced to assume that competitive pressure was constant within a 
specifiable region surrounding an individual plant, the "constant  competi- 
tion" hypothesis. We then used the system of tomatoes and soybeans to test 
the constant competition theory. Our results suggested that, while the 
general approach of a competit ion-based theory seemed to be in the right 
direction, the particulars of the theory were in need of substantial revision. 
In pursuit of possible revisions we examined closely the assumption of 
constant competition by looking at the estimates of the competition coeffi- 
cients as a function of inter-plant distance. Rather than the expected pattern 
of a constant value for low densities followed by a rapid drop to zero, the 
coefficient varied strongly as a function of interplant distance, even at small 
distances, suggesting the "var iable  competit ion" hypothesis. Based on this 
new hypothesis we were able to develop a new formulation. Our experimen- 
tal data on tomatoes and soybeans were not designed to test this new 
formulation, thus we were not able to subject it to an equivalently rigorous 
test as in the constant competition case. Nevertheless we utilized these data 
to examine the qualitative behavior of the new model. Fitting the model to 
the experimental data resulted in an excellent fit, substantiating the model's 
capabilities of reducing data of this sort. A critical empirical test of the 
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variable competition hypothesis remains to be undertaken, although the 
results reported herein are certainly encouraging. 

The monoculture equation resulting from the variable competition hy- 
pothesis can also be derived from Bleasdale and Nelder's (1960) original 
equation. This was pointed out by Watkinson (1980), although neither he 
nor Bleasdale and Nelder offered a biological interpretation of the new 
equation. More importantly, to our knowledge, no one has previously 
attempted to use this formulation in an interspecific approach. 

The utility of an ecologically-based model is mainly in its potential utility 
in design. For example, if one wishes to maximize the joint production of 
tomatoes and soybeans (i.e. maximize the Land Equivalent Ratio (LER), 
(Willey, 1979a), the model can be used to provide a map of predicted LER's 
as a function of the densities of both crops. By way of example, we have 
computed such a map for the variable competition model, with the parame- 
ters as displayed in Table VIII. As can be seen in Table IX, the densities 1.0 
for tomatoes and 10 for soybeans would give the most efficient utilization of 
available land area (the meaning of LER). These densities are different from 
the optimal densities of the monocultures. 

More abstractly, an approach that has been suggested elsewhere 
(Vandermeer, 1984c) is to compute all possible yields from all possible 
densities. The set of all possible yields is called the "yield set". It is most 
useful to plot the yields of both crops in the intercrop on a graph of yield of 
crop 1 vs. yield of crop 2. If we take as an optimizing criterion the 
maximization of the "Land Equivalent Ratio" (LER), we see that the yield 
set must be convex if there is to be an intercropping combination that gives a 
higher LER than a monoculture (Vandermeer, 1984c). In Fig. 8 we present 
the theoretical yield set for tomatoes and soybeans (based on parameter 

TABLE IX 

Land equivalent ratios, as predicted from the variable competit ion model, for various 
densities of soybeans and tomatoes 

Tomato  Soybean density 

density 5 10 15 20 a 

0.5 1.058 1.098 1.096 1.086 
1.0 1.139 1.155 1.147 1.134 
1.5'* 1.135 1.147 1.142 1.132 
2.0 1.093 1.108 1.107 1.100 

a Optimal density for monoculture. 
Note that the optimal densities for the intercrop are substantially different from those of the 
monocultures (10 and 1.0 as opposed to 20 and 1.5). 
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estimates from our experiments and computations with equation 19), along 
with our experimental points. 

Using the yield-set approach allows us to easily visualize other optimizing 
criteria. For example, if we define the Relative Value Total (RVT) as the 
ratio of the value of the polyculture to the value of the most valuable 
monoculture, we have: 

PlY] + P2Y2 
RVT - 

Pl M] 

where P~ is the monetary value of the ith crop in the intercrop, Yi is the yield 
of the ith crop in the intercrop, M r is the yield of the ith crop in monocul- 
ture, and crop 1 is the more valuable of the two crops. RVT is a linear 
function of y~ and Y2: 

M, P2 r2 
y~ = M]RVT + p ~  

If we wish to find the densities which maximize RVT, we can do so with ease 
by using the yield set. By fixing the slope of the function, M 1 P J P  ], at its 
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actual value, we increase the value of RVT until the function is exactly 
tangent to the yield set. That point of tangency represents the densities of 
the two crops which will give the largest monetary value. In Fig. 9 we have 
illustrated the computation of the maximum value total for two sets of 
tomato and soybean prices. The line labeled A indicates optimizing RVT 
when tomato is the most valuable product and the line labeled B indicates 
optimizing RVT when soybean is the most valuable product. Details of this 
sort of computation can be found in Schultz et al. (1982) and Vandermeer 
(1984b). 

At the more theoretical level our results raise certain questions about the 
basic process of plant competition. The reciprocal yield-density equation, 
apparently today's received theory, seems to require an assumption of 
constant competitive pressure over a defined region of space. Our data 
suggest that such an assumption is invalid, that competitive pressure is 
reduced rapidly as the distance between plants is increased. We suggest that 
this not very surprising fact should be investigated further. 

While the proposition that competitive pressure declines as two plants are 
located farther apart will hardly generate controversy, a slight extrapolation 
to other situations might be less palpable to ecologists. Might we apply this 
same principle to resource gradients? Two individuals located at the same 
position on a resource gradient might display a certain level of competitive 
pressure against one another, yet that level might decline rapidly as their 
separation along the gradient becomes larger. 

The approach presented in this paper is rather primitive, at least from the 
point of view of application. While we feel the general structure of our model 
is appropriate (i.e. a model based on ecological interactions), much of the 
detail of the model must be refined with respect to those parameters that are 
manipulable in the actual agroecosystem. For example, we would eventually 
wish to be able to predict what would happen as a result of increased urea 
(say) application. To approach the problem at this level will require detailed 
theoretical and empirical studies of the three parameters, k, A and c (both 
intra and interspecifically). 
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