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Rat pancreatic islets incubated in nutrient medium were used to study the role of endogenous arachidonic acid metabolism 
in pancreatic hormone secretion. Both glucose and fetal calf serum stimulated radioimmunoassayable PGE, production and 
insulin secretion from islets. These effects were abolished by the phospholipase inhibitor p-bromophenacyl bromide or by 
concurrent inhibition of cyclooxygenase and lipoxygenase by flurbiprofen plus nordihydroguaiaretic acid (NDGA), 

respectively. Bromophenacyl bromide also inhibited glucagon secretion. When used alone, flurbiprofen caused a significant 
enhancement of glucose-induced insulin secretion that was attributed to reactive stimulation of lipoxygenase-product 
formation rather than to selective cyclooxygenase inhibition. NDGA given alone in the presence of stimulatory 
concentrations of glucose suppressed the normal eight-fold rise in insulin secretion, but caused a marked enhancement in 
glucagon secretion that could be overcome by simultaneous inclusion of flurbiprofen. We concluded that: (1) Increased 
metabolism of arachidonic acid in pancreatic islets amplifies the secretion of insulin and glucagon. (2) The lipoxygenase as 
well as the cyclooxygenase pathways of arachidonate metabolism participate in the amplification of insulin secretion. (3) 

The observations made in this study are inconclusive with respect to the involvement of the lipoxygenase and 
cyclooxygenase pathways in glucagon secretion: an inhibitory role for lipoxygenase pathway products is suggested. 

G LUCOSE, the paramount stimulator of insulin 
release, enhances the hydrolysis of phospholipids 

and the metabolism of arachidonic acid in pancreatic 
isletsz4 Phospholipase AZ, the enzyme that liberates 
arachidonate from the phospholipid stores stimulates 
insulin release.’ Arachidonate metabolism is stimu- 
lated also by phorbol esters,6 furosemide,’ methylxan- 
thine,* and fetal calf serum? which are agents with 
diverse biological actions. Also, insulin secretion is 
stimulated by phorbol esters,6 furosemide,” methyl- 
xanthines,” and fetal calf serum.” Conversely, agents 
associated with inhibition of phospholipid and arachi- 
donate metabolism, including glucocorticoids,‘3 diphe- 
nylhydantoin,14 and quinacrine,“, inhibit insulin 
secretion. The implication is that changes in mem- 
brane phospholipids or increases in arachidonate 
metabolites may play a stimulatory role in insulin 
secretion. 

Many in vitro studies support the view that prosta- 
glandins (PGs) may serve as positive modulators in the 
secretion of insulin, glucagon, and somatostatin.‘5-2’ 
Nevertheless, the physiological significance and even 
the qualitative role of endogenous cyclooxygenase 
products as regulators of islet hormone secretion 
remain to be established.‘2922 At variance with the view 
of prostaglandins as agents which promote insulin 
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secretion are the findings that cyclooxygenase inhibi- 
tors often increase rather than decrease insulin 
secretion23s” and that elevated prostaglandin levels 
may sometimes be associated with suppression of 
insulin secretion.25226 

Recently, lipoxygenase enzymes that are involved in 
arachidonate metabolism have been shown to be glu- 
cose sensitive.27 Lipoxygenase activity in pancreatic 
islets accounts for substantial production of nonprosta- 
noid metabolites of arachidonic acid.3 In view of the 
growing evidence for an important permissive or stim- 
ulatory role of lipoxygenase products in secretagogue 
action in other glands*’ we have undertaken a pharma- 
cological evaluation of a regulatory role for endoge- 
nous eicosanoids in islet-hormone secretion. 

MATERIALS AND METHODS 

Intact pancreatic islets were isolated from young adult, male, fed 

Sprague-Dawley rats (Charles River Laboratories, Wilmington, 

MA), by the method of Lacy and Kostianovsky.29 A standard 

polystyrene tissue culture plate with 96 0.3-mL round-bottomed 

wells served as the incubation vessel. Each well contained 0.3 mL 

Waymouth MD-705/l tissue culture medium (G&co, special for- 

mulation) supplemented with 1 mg/mL bovine serum albumin. 

Control “blank” wells received no islets. Five islets were transferred 

into each of the other wells. Four wells were assigned to each 

treatment condition. 

The experimental protocols were designed to induce various levels 

of activation of phospholipase A2 and stimulation of insulin release 

by employing glucose at concentrations of 4,6, 9, 13 and 20 mmol/ 

L, and no glucose as a control. Fetal calf serum (FCS 10, 30 or 100 

pl/mL) was also employed to activate phospholipase A*.’ Whenever 

FCS was employed, 100 kallikrein inhibitor units of aprotinin was 

added to the media in order to protect glucagon. In one experiment, 

exogenous arachidonic acid (Sigma) was added to the incubation 

media (lo,40 and 100 pmol/L) in the presence of 1 mg/mL albumin 

to ascertain that hormone release occurred when this fatty acid was 

in abundance. The following drugs were used to inhibit maximally 

various enzymes involved in arachidonic acid metabolism: (1) 40 

rmol/L p-bromo-phenacyl bromide (BPB, Sigma) to inhibit phos- 

pholipase A,, 3o (2) 10 rmol/L flurbiprofen (FLR, Upjohn) to inhibit 
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cyclooxygenase,3’~12 and (3) 40rmol/L nordihydroguaiaretic acid 

(NDGA, Sigma) to inhibit lipoxygenases.33-36 

The plates were kept for 20 hours in an incubator at 37 ‘C and an 

atmosphere of 5% carbon dioxide and 95% air. The length of the 

incubation period was calibrated to allow sufficient prostaglandins 

to accumulate in the media so that their levels could be measured in 

radioimmunoassay (RIA). Upon completion of the incubations, 

1 0-PL aliquots of the media were submitted to insulin and glucagon 

R1As.j’ For the RIA of PGE,,” 250-PL aliquots from quadruplicate 

wells were pooled and extracted as follows. An equal volume of 

acetonitrile was added to each sample, in order to extract lipids and 

then to dehydrate proteins. The mixture was vortexed and centri- 

fuged to precipitate the protein. The liquid phase was removed and 

acidified with formic acid (pH 3.5). To remove nonpolar, nonhy- 

droxylated fats, 3 mL of petroleum ether was added; the tube was 

vortexed and centrifuged. The lower aqueous layer was removed and 

submitted to petroleum ether extraction a second time. The aqueous 

layer was mixed with 4 mL ethyl acetate. The mixture was centri- 

fuged, the upper ethyl-acetate layer containing eicosanoids was 

removed and saved. The aqueous layer was treated a second time 

with ethyl acetate. The ethyl-acetate layers were combined and dried 

in air at room temperature. Recovery of prostanoids was estimated 

by the recovery of ‘H-TXB, which had been added to each sample 

prior to extraction; it was around 80%. When unlabeled PGEl was 

added to incubation media containing either albumin or FCS prior to 

the extraction process, 75% to 90% of it was recovered in the RIA. 

The limit of sensitivity of the RIA for PGEz was 5.7 femtomoles per 

tube (fmol/tube). When the media in the islet-free blank wells 

contained fetal calf serum, the PGE1 immunoreactivity increased 

proportionate to the concentration of FCS. Based on these measure- 

ments, the concentration of PGE, in the FCS was I2 * 8 nmol/L. 

The numbers of observations refer to experiments conducted using 

separate batches of islets; each observation was made in quadrupli- 

cate. The samples were radioimmunoassayed in duplicate; the data 

represent values after the subtraction of concentrations detected in 

the islet-free incubation media from the corresponding experimental 

islet-containing media. They are given as the means +- standard 

errors of the mean (SEM), and expressed as fmol per islet per hour. 

This unit of expression is conventional and is intended to adjust for 

differences in experimental protocols with respect to islet density and 

duration of incubation; steady secretion rates are not implied. The 

significance of the differences were determined using analysis of 

variance among the replicates (four values per observation) and 

Duncan’s multiple-range tests ” for the hormone results, and Dun- 

nett’s 1 test4” for the PGE2 data derived from pooled samples (one 

value per observation representing four incubation wells). A proba- 

bility of identity of less than 0.05 by two-tailed distribution was 

accepted as statistically significant. 

RESULTS 

Effect of Arachidonic Acid 

To determine whether in this model of islet cells the 
abundance of arachidonate evokes increased synthesis 
of PGs and release of insulin and glucagon, the islets 

were incubated without and with IO,40 or 100 pmol/L 
exogenous arachidonic acid in the presence of 9 mmol/ 
L glucose and 1 mg/mL albumin (Fig 1). As compared 
to incubate levels in the absence of arachidonate, 
PGE2, insulin, and glucagon release increased with 100 
pmol/L arachidonate. Only insulin release increased 
with 40 pmol/L arachidonate; 10 pmol/L of the fatty 
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Fig 1. Release of immunoreactive PGE, (A), insulin IBJ, and 
glucagon (C)from incubated rat islets in the presancs of g mmol/L 
glucose, 1 mg/mL albumin and 0, 10, 40 or 100 gmol/L arachi- 
donic acid (closed circles) in one experiment. In a parallel experi- 

ment depicted by the open circles, the media also contained 1 
pmol/L flurbiprofen (FLR). Asterisks denote statistically signifi- 
cant differences between the quadruplicate values obtained with 
100 pmol/L arachidonete, in the presence or absence of FLR 
(statistical assessment of the PGE, data was not possible because 
the samples were pooled). 

acid had no effect on any of the parameters. In a 

concurrently conducted experiment, the islets were 
incubated with 100 pmol/L arachidonic acid plus 1 

pmol/L flurbiprofen. With flurbiprofen, the release of 
PGE,, insulin, and glucagon decreased toward or to 

levels observed in the absence of arachidonate. 

Effect of Fetal Calf Serum 

FCS at the concentration of 100 yL/mL was used as 

a probe to stimulate phospholipase A, and thus to 
induce an abundance of endogenous arachidonic acid 

(Fig 2).9 In addition, presumably FCS itself contained 

some arachidonate that further enriched the arachi- 

donate pool. Albumin (1 mg/mL) rather than serum 

was the additive in the control wells. With FCS, the 

release of PGE, from islets increased 15 to 17-fold at 0 

and 4 mmol/L glucose, and 24- to 34-fold in the 

presence of 6 to 20 mmol/L glucose. The lowest 
concentration of glucose that evoked significant 

increases in insulin release was 9 mmol/L without and 
6 mmol/L with FCS. FCS augmented insulin release 

to 130%, 216% and 161% of controls at 4, 6, and 9 

mmol/ glucose, respectively. The release of glucagon 
did not appear to be influenced by either the prevailing 
concentration of glucose or by the presence or absence 
of FCS. 

Effect of p-Bromophenacyl Bromide 

In order to elucidate further the role of phospholi- 
pase A2 in islet hormone secretion, BPB was utilized at 
the concentration of 40 pmol/L, considered to be 
sufficient to inhibit the enzyme maximally (Fig 3).30 
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Fig 2. Release of immunoreactive PGE, (A), insulin (6). and 
glucagon (C) from incubated rat islets at six concentrations of 

glucose in the presence of 1 mg/mL bovine serum albumin 

(Control) or 100 /.d_/mL fetal calf serum (FCS). Asterisks denote 
statistically significant differences between corresponding experi- 
mental and control data points. In control experiments, PGEI 
release with 13 and 20 mmol/L glucose was significantly greater 
than that without glucose. 
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Fig 3. Release of PGE,, insulin, and glucagon from incubated 
islets at six concentrations of glucose without (Control) or with 40 
@mol/L p-bromo-phenacyl bromide (BPB). Media contained 1 mg/ 
mL albumin. Asterisks denote significant differences between 
corresponding experimental and control data points. In control 
experiments. PGE, release with 13 mmol/L glucose was signifi- 
cantly greater than that without glucose. 
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The incubation media contained 1 mg/mL albumin 
but no FCS. BPB inhibited PGE, release in the 
absence of glucose (56% of control) and with 13 
mmol/L glucose (33% of control). Insulin release was 
inhibited by BPB at the two highest concentrations of 
glucose (at 13 and 20 mmol/L, 25% and 29% of 
control, respectively). Glucagon release was also inhib- 
ited by BPB: 45%, 49%, and 36% of control, respec- 
tively, at 4, 13 and 20 mmol/L glucose. 

Effect of Flurbiprofen 

A potent and selective inhibitor of cyclooxygenase, 
FLR was used at the concentration of 10 pmol/L (Fig 
4). At all concentrations of glucose, FLR inhibited 
PGE, release in the range of 47% to 13% of control. 
FLR promoted insulin release when glucose concentra- 
tion was high (with 9, 13 and 20 mmol/L glucose, 
130%, 163%, and 152% of control, respectively). Glu- 
cagon release was not significantly affected by FLR. 

Effect of Nordihydroguaiaretic Acid 

NDGA at the concentration of 40 pmol/L was 
employed as a probe to inhibit the lipoxygenases (Fig 
5). In the glucose concentration range of 0 to 9 
mmol/L, PGE2 release with NDGA was similar to or 
moderately greater than that observed during control 
experiments (104% to 213% of control). At 13 and 20 
mmol/L glucose, NDGA inhibited PGE, release to 
60% and 56% of control, respectively. Insulin release 
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Fig 4. Release of PGE,, insulin, and glucagon from incubated 
islets at six concentrations of glucose without (Control) and with 
10 pmol/L flurbiprofen (FLRL Media contained 1 mg/mL albumin. 
Asterisks denote significant differences between corresponding 
experimental and control data points. In control experiments, 
POE* release with 13 and 20 mmol/L glucose was significantly 
greater than that without glucose. 
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Glucagon release was not affected significantly by 
the changes in the levels of FCS. In the absence of 
FCS, only FLR plus NDGA inhibited glucagon 
secretion (P < 0.05). In the presence of various con- 
centrations of FCS, the effects of the drugs on gluca- 
gon secretion were quite variable and did not display 
any definite patterns; the only value which was signifi- 
cantly different from the corresponding control was 
that observed in the presence of NDGA and 100 
pL/mL FCS. 

DISCUSSION 

The results of our studies indicate that arachidonic 
acid metabolism in pancreatic islets participates in the 
regulation of secretion of islet hormones, and that 
perturbations in this metabolism cause complex 
changes in hormone release. 

We monitored the levels of PGE, as an index of 
biosynthetic activity in the cyclooxygenase pathway of 
arachidonate metabolism. We regard the information 
on PGE, levels also as a validation of the occurrence of 
the anticipated effects of the inhibitor drugs. In order 
to monitor the levels of immunoreactive PGE, in the 
media, the incubation period had to be extended 
considerably beyond the durations necessary to moni- 
tor hormone secretion. Thus, the levels of PGE2, 
insulin, and glucagon may underestimate the secreted 
amounts as a result of possible degradation. We 
attempted to minimize the degradation of glucagon by 
enzymes present in serum, using aprotinin. Based on 
information provided by Metz et al in a similar incuba- 
tion system for neonatal rat pancreatic cells,41 we 
assume that PGEz was reasonably stable also in our 
model. 

The increases in PGE, release that occurred with 
exogenous arachidonate indicate that the islet cells can 
take up and metabolize this fatty acid to PGs. The 
abolition of the arachidonate-induced increases in 
PGE, release by flurbiprofen, a potent cyclooxygenase 
inhibitor, adds credence to this interpretation. The 
dose-related increases in PGE2 production that 
occurred with glucose or fetal calf serum and particu- 
larly with the combination of these agents are consis- 
tent with existing evidence that both glucose and FCS 
activate phospholipase AZ. 4*9 The marked reduction of 
the effects of glucose plus FCS by BPB supports the 
interpretation that the increased level of activity of 
phospholipase A2 and resultant increase in cytosolic 
arachidonate accompany the administration of glucose 
and FCS. 

The stimulation of insulin and glucagon release with 
exogenous arachidonate and the inhibition of this 
effect with flurbiprofen suggest an amplifying role for 
the metabolites of arachidonate generated in the 

cyclooxygenase pathway. The stimulatory effect of 
arachidonate on islet-hormone secretion seen in our 
experiment corroborate the observations of Metz et 
ai42 on insulin secretion from cultured neonatal rat 
pancreatic cells and our previous demonstration of the 
stimulation by arachidonate of insulin and glucagon 
secretion from the isolated perfused rat pancreas.43 
The ability of BPB to inhibit insulin and glucagon 
release under conditions that promote phospholipase 
A, activity indicates that the consequent increases in 
arachidonate levels in the cytosol and ensuing 
increases in the metabolism of arachidonate play an 
amplifying role in the secretion of both hormones. The 
effect of BPB on glucagon release must be interpreted 
with caution, because glucagon release did not increase 
in the presence of FCS, a promoter of phospholipase 
activity. In the FCS experiments, the degrading action 
of serum on glucagon may have masked any increases, 
despite the presence of aprotinin in the incubation 
media. Alternatively, the suppressive action of glucose 
may have prevented the anticipated increase in gluca- 
gon secretion from occurring. 

The focus of attention in this study was on the 
involvement of the cylooxygenase-activated and lipox- 
ygenase-activated products of arachidonate metabo- 
lism in the amplification of islet hormone secretion 
that occurs when arachidonate is in abundance. As 
pharmacological probes, FLR was used to inhibit the 
cyclooxygenase and NDGA the lipoxygenases, so that 
clues may be gained by the process of subtraction. 

The fact that FLR inhibited the cyclooxygenase 
under all of our experimental conditions is evidenced 
by the decreases in the biosynthesis of PGE2, the major 
cyclooxygenase product in islets.22 At the moment we 
are not equipped to assess directly whether with 
NDGA the anticipated inhibition of islet lipoxygen- 
ases3 was achieved. In other systems, at the concentra- 
tion employed in this study, NDGA effectively inhib- 
ited lipoxygenases.34Z35 We have no reason to suspect 
that the same did not occur in our experiments. An 
issue of concern is the selectivity of the action of 
NDGA on islet lipoxygenases, because PGE, release 
was inhibited by NDGA whenever glucose or fetal calf 
serum was in abundance. One interpretation of this 
observation is that NDGA inhibited not only lipoxy- 
genases, but also the cyclooxygenase. Alternatively, 
the synthesis of prostaglandins decreased secondary to 
the decreases in lipoxygenase products: Feuerstein et 
a144 have shown that leukotriene C, a lipoxygenase 
product, stimulates prostaglandin release from macro- 
phages. Whatever the mechanisms may have been, in 
evaluating our findings with NDGA, the decreases in 
cyclooxygenase activity that sometimes occurred 
should be kept in mind. Similar considerations are 
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necessary in evaluating the observed effects of FLR. 
FLR is one of the most potent and selective inhibitors 
of cyclooxygenase.3’ Thus, the issue of concern is the 
probable consequences of FLR-induced inhibition of 
cyclooxygenase on the activity in the lipoxygenase 
pathway, rather than a direct effect of FLR on the 
lipoxygenases. There is evidence that the inhibition of 
cyclooxygenase promotes the activity in the lipoxygen- 
ase pathways by two mechanisms:36*45 (1) Prostaglan- 
dins inhibit lipoxygenase activity, so that decreased 
synthesis in prostaglandins would allow the activity in 
that pathway to increase. (2) The inhibition of the 
cyclooxygenase leads to increased metabolism of ara- 
chidonate in the lipoxygenase pathways. Thus, also in 
interpreting the effects of FLR on islet-hormone 
release, potential changes in both pathways of arachi- 
donate metabolism must be considered. We believe 
that by comparing the results with FLR or NDGA 
alone to those obtained by using the two drugs in 
combination, the involvement of the alternate meta- 
bolic pathway in the observed effects can be deduced. 

Ten micromolar FLR enhanced glucose-induced 
insulin release. This observation is consistent with the 
findings of several other investigators46 that cyclooxy- 
genase inhibitors promote glucose-induced insulin 
release. On the other hand, our present results are in 
conflict with our own observations in the present experi- 
ment with exogenous arachidonate and in other studies 
that lpmol/L FLR inhibited insulin release.22347348 Inhi- 
bition of insulin release by cyclooxygenase inhibitors 
was reported also by others.46 Scrutiny of our data 
reveals that FLR promoted insulin release when 
cyclooxygenase was inhibited profoundly and only in 
the presence of high concentrations of glucose, particu- 
larly when fetal calf serum had been added. Availabil- 
ity of glucose or serum are conditions leading to 
activation of phospholipase A, and ensuing increase in 
available arachidonate. Thus, with strong but not with 
mild inhibition of cyclooxygenase the circumstances 
may have been suitable for the shunting of arachidon- 
ate into the lipoxygenase pathways. We have shown 
that administered leukotrienes, which are products of 
5lipoxygenase pathway, stimulate insulin release.49 
Metz et a14* observed that 12-hydroperoxyeicosate- 
traenoic acid, a 12-lipoxygenase product, evoked 
insulin secretion. The inhibition of insulin release with 
NDGA that we documented in this study is consonant 
with our findings on arginine-induced and glucose- 
induced insulin release from the perfused rat pan- 
creas.48.50 Yamamoto et a15,6 and Metz et a142,5’ made 
similar observations to support that lipoxygenase path- 
way products promote insulin secretion. If, in our 
experiments with 10 pmol/L FLR, these compounds 
and other yet-to-be-identified insulin secretagogues 

were produced in abundance, they could have been 
responsible for the enhancement of insulin release. 
This paradigm demands that the increases in insulin 
release that occur upon the inhibition of cyclooxygen- 
ase when there is abundant arachidonate be abolished 
by the inhibition of lipoxygenases. Our results with the 
administration of FLR and NDGA in combination 
demonstrate this predicted response. We have shown 
previously that PGE, as well as other prostaglandins 
are secretagogues of insulin.‘6-‘8 The fact that the 
degree of inhibition of insulin release with FLR plus 
NDGA was greater than that with NDGA alone is an 
indication that the attenuating effect of decreased 
prostaglandin synthesis on insulin release was being 
masked by increased production of insulin secreta- 
gogues in the lipoxygenase pathways. Also, BPB inhib- 
ited insulin release at a magnitude greater than that 
induced by NDGA alone and similar to that induced 
by FLR plus NDGA. The inhibition of prostaglandin 
synthesis that we documented by the decreases in 
PGE, levels, as well as the presumed inhibition of 
synthesis of lipoxygenase products must have contrib- 
uted to BPB-induced attenuation of insulin release. A 
similar reasoning is applicable to the interpretation of 
the inhibitory effects of NDGA on insulin release. In 
the present set of experiments PGE2 levels decreased 
with NDGA, and the addition of FLR intensified the 
inhibition of insulin secretion that occurred with 
NDGA. Thus, if the inhibition of lipoxygenases is the 
primary mechanism by which insulin secretion was 
inhibited, the inhibition of cyclooxygenase appears to 
have assisted in this action. Nevertheless, in other 
experiments48 we documented the ability of NDGA to 
suppress insulin release in the absence of any decreases 
in prostaglandin biosynthesis, so that the ability of 
NDGA to inhibit insulin release by mechanisms other 
than the inhibition of cyclooxygenase cannot be dis- 
puted. 

We and others have shown previously that a variety 
of prostaglandins, including PGE2. stimulate the 
secretion of glucagon.‘6m’9,52 Furthermore, we and oth- 
ers have observed that cyclooxygenase inhibitors 
inhibit glucagon release.‘9,22348*53 The reason for failure 
of FLR to inhibit glucagon release in many of our 
present experiments, at a time it inhibited PGE, 
release is not obvious. Analogous to the interpretation 
of the effects of FLR on insulin release, one may 
postulate that lipoxygenase pathway products also 
promote glucagon secretion, and increased production 
of arachidonate metabolites as a result of the putative 
substrate shunting could prevent the inhibition of 
glucagon secretion. This postulate in not tenable, 
because with NDGA glucagon secretion was 
increased, and because in another study we did not 



934 

observe a clear stimulation of glucagon release by 
leukotrienes which are secretagogues of insulin>g On 
the other hand, the products of a pathway of arachi- 
donate metabolism other than lipoxygenase may have 
been involved: Falck et a154 reported recently that 
certain epoxyeicosatrienoic acids, which are products 
of the epoxygenase pathway of arachidonate metabo- 
lism, stimulate glucagon release. At the moment no 
information is available on the activity of this meta- 
bolic pathway in the pancreas or pancreatic islets, so 
that its involvement in the action of FLR we have 
observed in this study is highly speculative. 

NDGA stimulated glucagon secretion and FLR 
abolished this effect. The information on the involve- 
ment of the lipoxygenase pathway products in the 
regulation of glucagon secretion is very limited and has 
originated exclusively from our laboratory.48*4g Based 
on other observations of the effects of NDGA and 
exogenous leukotrienes, we concluded that the lipoxy- 
genase pathways play a minor or insignificant role in 
regulation of secretion of glucagon. Our earlier data do 
not support or disrepute an interpretation of NDGA 
effects in the present study that endogenous lipoxygen- 
ase products exert an inhibitory influence on glucagon 

MORGAN AND PEK 

secretion. The observed abolition of the effect of 
NDGA by FLR could be an independent action and 
hence cannot be used as evidence against the putative 
role of endogenous lipoxygenase products as inhibitors 
of glucagon secretion. The gaps in knowledge in this 
area are too large to reach definitive conclusions at this 
time. 

We conclude that increased metabolism of arachi- 
donic acid in pancreatic islets amplifies the secretion of 
insulin and glucagon. The lipoxygenase as well as the 
cyclooxygenase pathways of arachidonate metabolism 
participate in the amplification of insulin secretion. 
The observations made in this study are inconclusive 
with respect to the involvement of the two metabolic 
pathways in glucagon secretion; an inhibitory role for 
lipoxygenase pathway products is suggested. 
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