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ESTIMATING THE DISTRIBUTIONAL IMPACT OF 
TIME-OF-DAY PRICING OF ELECTRICITY 
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We consider the general problem of recovering estimates of welfare measures such as willingness to 
pay, price indices, etc. from demand data with particular emphasis on the problem of unobserved 
taste variation across households. We model taste differences across households in a variance 
components framework and derive an iterative estimator for systems of demand equations with 
variance components which is relatively easy to compute. Finally we present an example of the 
methods we propose which involves time of day pricing of electricity. We are able to calculate the 
fraction of the population which would prefer such pricing policies to flat rate pricing. 

1. Introduction 

In the standard approach to demand estimation the observed demand 
behavior is assumed to be generated by maximization of a representative 
consumer’s utility function subject to a budget constraint. The assumption of a 
representative consumer is adopted not for its inherent realism but for its 
analytical convenience; and in many cases it seems to work well as a tentative 
hypothesis. 

However, in some situations we may well desire a more general model that 
allows for differences in tastes across households. The most general alternative 
specification would be a model with all consumers having arbitrarily different 
utility functions. However, such a general model is usually impractical to 
specify and estimate. 

A reasonable intermediate case is one where tastes are allowed to vary across 
the population according to some parametrically specified distribution. In this 
case we may well be able to estimate the parameters of the frequency 
distribution that reflects the variation in tastes across the population. 

A circumstance where the estimation of the distribution of tastes is of 
particular interest is when we want to evaluate the distributional impact of 
some proposed policy change. In many situations we would like to know not 
only the average impact on consumer welfare of a policy change, but also the 
distribution of some welfare measure across the population. 

King (1982) has described how one might go about estimating the variation 
in willingness to pay across the population when this variation depends on 
differences in observed demographic and economic variables. However, there 
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will typically be further differences in willingness to pay that are not directly 
attributable to observed demographic differences in households. We interpret 
these differences as differences in tastes, although other interpretations may be 
possible. 

Burtless and Hausman (1978) have estimated a model incorporating varia- 
tion in tastes in the context of labor supply. They specified that the frequency 
distribution of an income elasticity was truncated normal and estimated the 
parameters of this distribution by an iterative maximum likelihood technique. 
They did not explicitly calculate the welfare distribution implied by their 
estimated parameter distribution but were well aware that this would be 
possible. Below we show that much simpler estimation techniques can be used 
when the distribution of tastes can be assumed to be normal, rather than 
truncated normal, and we use the parameters derived by our estimation 
procedure to calculate the distribution of an appropriate measure of welfare. 

The remainder of the paper proceeds as follows. First we examine the 
concept of willingness to pay’and related welfare measures and show how these 
measures can be explicitly calculated as a function of the unknown parameters 
of the utility function in the one consumer case. We then postulate a model 
where the parameters of the utility function vary across the population 
according to some frequency distribution. We can then derive the implied 
demand equations and estimate the unknown parameters of the distribution of 
tastes using an error components model. The estimated parameters can then be 
used to calculate the distribution across the population of the willingness to 
pay for any particular policy change. Finally we illustrate these methods using 
some data involving time-of-day pricing of electricity. 

2. The compensation function 

What do we mean by the willingness to pay and related measures of welfare? 
In this section we attempt to give a meaningful empirical content to this 
concept. Further discussion can be found in King (1983) and Varian (1979) 
(1984). 

We begin with the indirect utility function for some specific individual which 
we denote by u( p, e). The indirect utility function measures the maximum 
utility the consumer can attain given prices p and expenditure e. Associated 
with this indirect utility function is its inverse, the expenditure function, 
denoted by e( p, u). The expenditure function measures the minimum expendi- 
ture necessary to achieve a particular utility level U. 

Suppose now that we are comparing two possible configurations of prices 
- - 

and expenditure which we denote by (p, e) and (p, e). We can ask how much 
money the consumer would need at prices p to be as well off as he would be in 

- - - - 
the situation described by (p, e). We denote this number by p( p; p, e). From 
the definition of the indirect utility function and the expenditure function, we 
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have 

Following Hurwicz and Uzawa (1971) we refer to the function ~(p; p, 2) as 
the ‘income compensation function’ or sometimes just as the ‘compensation 
function’. King (1983) refers to the same concept as the ‘equivalent income 
function’. 

A reasonable measure of the willingness to pay to avoid a movement from 
the situation (p, e) to the situation (p, Z) is given by 

By construction, a consumer who has income e - W at prices p can reach the 
same level of utility as he could with income .? facing prices p. Hence this 
seems like a sensible way to measure the welfare impact of some policy change. 
Of course, W as we have defined it above, is simply the negative of Hicks’ 
notion of the ‘equivalent variation’ - it is how much expenditure would have 
to change at prices p so as to make the welfare situation of the consumer at 

_ - 
prices p equivalent to that obtained at ( p, e). 

The compensation function can also be used in ratio form to define various 
measures of the ‘change in the cost of living’. Consider, for example, the 
expression 

The price index 7~ measures how much expenditure one would need at prices p 

to be as well off as one would be at ( p, e), relative to the actual expenditure at 
prices p. 

If 7r is greater than one it costs more at prices p to reach the utility level 
u( p, e) than it did at prices p. In this sense the overall price level has increased 
in the movement from p to p. 

If the underlying preferences happen to be homothetic, the indirect utility 
function can be chosen to be multiplicatively separable: u( p, e) = v( p)e. This 
in turn implies that the compensation function also has a multiplicatively 
separable form, 

and that the price index has the form 

Thus in the homothetic case the price index is a function only and does not 
involve the level of expenditure. 
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- - 
It is worthwhile to note that p( p; p, e) behaves exactly like an expenditure 

- - 
function with respect to variations in p, holding (p, e) fixed. It also behaves 

- - 
like an indirect utility function with respect to ( p, e) holding p fixed. This can 
easily be seen from the definition: for fixed p, e( p, u) is an increasing function 
of u - if you want to get more utility at fixed prices you have to spend more 

- - 
money. Hence e(p, u(p, e)) is simply a monotonic transformation of the 
indirect utility function u(p, e) and is therefore itself an indirect utility 
function. 

As an example of the above ideas, suppose that the indirect utility function 
is given by 

(1) 

where G(p) is some negative monotonic, quasi-convex function of prices. Such 
a utility function is of special interest because it generates demand functions 
which exhibit constant income elasticity. By Roy’s law the demand for good j 
is given by 

lnx,(p,e)=ln(-aG(p)/ap,)+blne, 

If b = 1 (the case of homothetic demand) then the indirect utility function in 
(1) takes the form 

u(p,e) = G(P) +Ine, 

so that the demand functions have the form 

The expenditure function for an indirect utility function of form (1) can be 
found by solving for expenditure as a function of utility, 

e(p,u)= [(l - b)(u- G(p))]““-“. 

_ - 
Substituting u( p, e) = u, we have the income compensation function 

In the homothetic case, similar calculations show that 

Thus the parametric specification and estimation of the demand functions 
and the indirect utility function is sufficient to identify and calculate the 
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compensation function ~(p; p, 2). For a specific example, which we will refer 
to later, consider the CES specification in which u( p, e) = (X,CI,~/‘)-‘/‘~. Then 
straightforward application of the above calculations shows that 

3. Variations in tastes 

We turn now to the specification of taste variation. Suppose that household i 
has an indirect utility function u( p, e, 8, E), where 6 is a vector of parameters 
specific to the household, and E is a non-household specific error term. We 
suppose that 6 is distributed across households according to the frequency 
function h (6, A), where A is a vector of unobserved parameters, and that E has 
the usual properties of an error term. 

The demand function for the good j by the household with characteristics 6 

and error term E is given by 

-Jv(P9eT~,E)/~Pj 

xJ= au(p,e,d,e)/ae ’ 

Given observations on (p, x, e) for a number of households, it will typically be 
possible to estimate the parameters in A and thereby construct an estimate of 
the variation in tastes across the population. 

Suppose for example that we observe several choices made by household i 
over time and that the indirect utility function for household i takes the CES 
form described earlier, 

-l/r 

et9 

where 

In this case, the share equations for household i for good j at time t take 
the form 

where K is a constant depending on the parameters and prices. 
The random variable ajj is specific to household i and remains fixed over 

time. The random variable &iJf is a disturbance term that varies over both 



70 E. P. Howrey and H. R. Varian, Distributional impact of TOD pricing 

households and time. The variation of aij over households is what we refer to 

as variation in tastes. 
In order to estimate this model, it is convenient to normalize (Y,~~ = 1, and 

consider the ratio of each share to the k th share. Taking logarithms we find 

log( M+,,/w,~~) = log P, + r log( P,/Pk > + 4, + El,t. 

This gives us k - 1 equations that are linear in the relevant parameters with 
one cross-equation parameter restriction and an additive error components 
disturbance term. 

4. Estimation of systems of equations with error components 

We now consider how to estimate the parameters of a system of equations 
with error components using panel data. The general form that we consider 
derives from the expenditure share equations shown above; namely, 

where Y,,< is the observed value of the dependent variable in equation j at time 
t for household i, xiJt is a vector of kj explanatory variables, and pj is a vector 
of kj regression coefficients. (We have changed our notation a bit to conform 
with econometric practice.) The disturbance term uijt is assumed to be of the 
form 

u,jt = s,, + E r,r 7 

where S,, is that part of the disturbance term specific to equation j of 
household i. 

The T time-series observations for equation j of household i can be written 

in matrix form as 

y*,.= x,,.P, + U,].’ 

where y,,, is a column vector with elements ( Y,~,; t = 1,2,. . . , T), x,,. is a TX k, 
matrix with xijr in row t, and uij_ is a column vector with elements (a,,,; 

t=l,2,..., T). The vector ulj, can similarly be written as 

u ,,.= Sije,+ ‘i/.9 

where e, is a column vector of ones and eij, is a column vector with elements 
( Eij*; t = 1,2,. . . ) T). The mT observations for individual i can now be written 



E. P. Howrey and H. R. Varian, Distributional impact of TOD pricing 

as 

where 

and 

Xii, 0 . * . 0 

x,z. . * . 0 

. ’ ’ ’ ’ . . . . . 

. . . . . 

0 * . . x,, 

The disturbance vector can be expressed as 

71 

q= 
42eT 

. +. 1: i 
E 12. 

I4 =6,@e,+~~, 

LeT 
E *In. 

where S, 8 er denotes the Kronecker product of the vectors 8, and er. 
Linear restrictions on the vector of regression coefficients, 

RP=r, 

are easily handled by transforming the variables. If R is a g X k matrix of rank 
g, it is possible to express g of the elements of /3 in terms of the remaining 
k - g elements. Thus, by reordering the variables in x,,~ if necessary, we can 
partition /3 in such a way that 

Rlj3* + R2P** = r, 

were R 2 is a non-singular g X g matrix. Solving for /!I * * yields 

/3** = R;‘r - R;‘R,P*, 

so that 

B=[ _;~Rl]~*+[R~lr]=R-B*+r*. 
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Substituting this expression into the regression model yields 

q* = z,*p* + q, 
where 

y* = x - Z,r* and Zi* = Z,R*. 

Thus homogeneity and symmetry restrictions are easily handled for linear 
systems of demand equations. 

The standard assumptions about the error components, namely, 

E(4,) = 0, 

E(‘,,aik) =A,,, 

imply that 

E(q)=O, 

and 

E(~U,‘)=9=fi@I,+A@J,, 

where I, is a T x T identity matrix and JT = eTe$ is a T x T matrix with each 
element equal to one. These assumptions allow for correlation among the 
individual specific effects aij as well as contemporaneous correlation of the 
disturbances E;,~ across equations. The assumption that the error components 
are normally distributed and independent across individuals completes the 
specification of the model. 

It is shown in the appendix that maximum likelihood estimates of the 
parameters fi (or j3*), A = (Ajk), and 52 = (Gjk) can be obtained by iterating 
the usual generalized least squares estimation procedure until convergence is 
achieved. In addition the structure of the covariance matrix ?P can be used to 
simplify estimation of the elements in A and 0. A relatively simple expression 
for 9-l which is needed to calculate the generalized least squares estimates of 
j3 is also given in the appendix. 
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5. Empirical results 

We now turn to an investigation of the demand for electricity by time-of-day. 
We consider a two-stage budgeting process of the form 

4, = qi(pl, p2, p3,e), e = e(+,, %, y), 

where 

qi = demand for electricity during period i (i = 1,2,3), 
p, = price of electricity during period i, 

e = expenditure on electricity, 
+r = price index of electricity, 
& = price index of all other goods, and 
y = household income. 

Our empirical results are based on data collected in 1976 by the Arizona 
Public Service Company. A random sample of 80 households in the Phoenix 
and Yuma service areas were assigned at random to the sixteen time-of-day 

rates shown in table 1. Electricity usage of these households was recorded for a 
six-month interval. The following results are based on the records of sixty of 
these households for the last five months of the experiment.’ 

The subutility function for electricity consumption on which our empirical 
results are based is of the CES form described earlier. 

( 1 
-l/r 

u(p,e) = C~,P,’ e. 

J 

This leads to the expenditure share equations 

lOg( W,JJWlkr) = lO!SP, + r l”k?( P,/Pk> + ‘,I + ‘i/f, 

for individual i at time t. Note that only two of the three share equations need 
to be estimated. The maximum likelihood estimates of the parameters are 
shown in table 2. 

These parameter estimates exhibit two interesting features. First, the varia- 
tion in the a,, across households is substantial. The estimated variance of 6,r, 
for example, is 0.1450 which is nearly the same as the estimated variance of 
E rll, which is 0.1414. Second, the estimated covariance between S,, and S,, is 
positive. Thus households that spend relatively less for electricity during one of 
these periods would also generally spend less during the other period. 

‘A detailed description of the experimental design is given in Hill et al. (1979). Incomplete data 
prevented the use of all eighty households in our analysis. 
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Table 1 

Arizona TOD experimental rate schedules (e/kWh).” 

Rate Peak 

group 2 pm-5 p.m. 

1 16 

2 15 

3 15 

4 14 

5 14 

6 13 

7 13 

8 13 

9 12 

10 12 

11 11 

12 11 

13 10 

14 10 

15 9 

16 8 

aSource: Taylor (1979). 

Periods 

Shoulder 
9 a.m.-Z p.m. Base 

5 p.m.-10 p.m. 10 p.m.-9 a.m. 

5 3 

4 2 

I 4 

4 2 

6 4 

3 3 

4 2 

I 3 

5 1 

6 3 

4 2 

7 4 

4 1 

6 3 

5 2 

4 1 

Table 2 

Maximum likelihood estimates of the expenditure 
share equations and error variances. 

Coefficient Estimate 

- 0.5551 

0.4727 

1.0335 

0.1450 

0.0912 

0.0697 

0.1414 

0.1015 

0.1047 
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6. Estimating the change in the price of electricity 

The Arizona time-of-day pricing experiments are an interesting example for 
our purposes since they were specifically conducted in order to determine the 
feasibility of time-of-day pricing of electricity. The feasibility of time-of-day 
pricing depends, at least in part, on the willingness of households to accept 
those rates. Any initial resistance to time-of-day rates would presumably 
evaporate if households were to find that they were better off with TOD rates. 
Furthermore, the optimal design of time-of-day prices depends on consumers’ 
utility functions for electricity consumption. Thus the estimation of the welfare 
impact of TOD pricing seems of considerable interest. 

Hence we consider now how to measure the expenditure necessary at some 
time varying prices p to achieve the same level of subutility for electricity 
expenditure achieved at a flat rate schedule j and initial expenditure; that is, 
we wish to calculate p( p; p, e). 

Recall the expression for the CES compensation function derived in 

section 2, 

/l(p;p,e)=e &.p’ ( j J J)“l( $aJp;)l’r’ 

Using this expression, we can compute the fraction 

which measures the relative change in the compensation function when moving 
from the flat rate jj to time-of-day rates. It measures how much money one 
would need to have at the TOD rate schedule to have the same subutility one 
had at the flat rate schedule, expressed as a fraction of the expenditure at the 
flat rate schedule. 

Since electricity consumption is only part of the entire consumption bundle, 
we cannot interpret m( p, p) as a measure of the change in overall welfare. 
However, 7r( p, I?) is related to a particular price index for electricity consump- 
tion. We will briefly describe this interpretation below. 

Recall the two-stage budgeting process mentioned earlier. The utility maxi- 
mization problem involved can be written as 
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subject to 

rx+pq=y, 

where (r, x) are the vectors of prices and quantities of non-electricity con- 
sumption, and (p, q) are the analogous vectors for electricity consumption. 
The subutility function for electricity consumption, w(q), is assumed to be 
homothetic. It follows that the compensation function will be of the form 

P(R P, e> = e4pMF). 
Using the compensation function as an indirect subutility function for 

electricity consumption, we can rewrite the consumer’s maximization problem 
as 

yy(~4PMm 

subject to 

rx+e=y. 

- - 
Letting Q = V( p, p)e 
write this problem as 

be a ‘quantity index’ for electricity consumption, we can 

subject to 

rx + @(P)/v(P> =Y. 

Thus, a( p, p) = v( p)/v( p) serves as a price index for electricity consumption. 
If 7~ is greater than 1, then the price of electricity consumption has risen in 

the move from flat to TOD rates, and if it is less than 1, the price of electricity 
has fallen. Note that this price index can be given a welfare interpretation: if 
T( p, p) is greater than 1, and no other prices change, the consumer is 
definitely worse off at time-of-day prices than at flat rate prices. 

The above discussion is true for an arbitrary homothetic subutility function. 
For the CES case used in our empirical study, n( p, j) is given by the explicit 
formula derived earlier, 

a(p,p)= [alp; +a:!p;+p;]1’r/[a1+a2+ 11”‘p. 

The value of vr(p, p) is shown in table 3 for each of the sixteen rate 
schedules of table 1 and for four different flat rates: p = 4,6,8,10. The values 
in this table are computed for the average, or ‘representative’, household in the 
sample. 
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Prior to the experiment, households faced a declining block rate schedule 
and paid an average of approximately 44 per kWh. It is clear from the entries 
in table 3 that from the point of view of households only one of the TOD rate 
schedules is superior to the 4e flat rate. Discounts of nearly 50% are required to 
make households indifferent between the TOD rates and the 4Q: flat rate. As the 
flat rate increases, several of the TOD schedules become quite attractive, as we 
would expect. All of the TOD schedules are superior to a 1OQ flat rate. 

The last column in table 3 gives the flat rate that is equivalent to the 
corresponding TOD schedule in the sense that the same expenditure on 
electricity gives the same level of subutility with the TOD rates and the 
equivalent flat rate. For example, the equivalent flat rate for rate schedule 1 is 
6.4OC per kWh. Flat rates below 6.40&/kWh are preferable to TOD schedule 1, 
whereas for flat rates above 6.40C/kWh, the TOD schedule is preferable. 

The above figures are presented for the representative household. Since our 
econometric results indicated significant dispersion of tastes across households 
we also examine the variation in willingness to pay for TOD rates across 
households. The variation in tastes induces a variation in the price index 
~7( p, p), which can be easily calculated numerically. 

Table 3 

Estimate of the change in the cost of electricity. 

Rate 
schedule 4 

Flat rates 
-- 

6 8 10 PEQ 

1 1.6007 1.0672 0.8004 0.6403 6.40 

2 1.3526 0.9018 0.6763 0.5411 5.41 

3 1.8823 1.2549 0.9412 0.7529 7.53 

4 1.3059 0.8706 0.6530 0.5224 5.22 

5 1.7103 1.1402 0.8552 0.6841 6.84 

6 1.2114 0.8076 0.6057 0.4846 4.85 

7 1.2593 0.8395 0.6297 0.5037 5.04 

8 1.7132 1.1421 0.8566 0.6853 6.85 

9 1.2630 0.8420 0.6315 0.5052 5 05 

10 1.5409 1.0272 0.7704 0.6163 6.16 

11 1.1662 0.7775 0.5x31 0.4660 4.66 

12 1.6981 1.1321 0.8490 0.6792 6.79 

13 1.0439 0.6960 0.5220 0.4176 4.18 

14 1.4487 0.9658 0.7243 0.5795 5.79 

15 1.1996 0.7997 0.5998 0.4798 4.80 

16 0.9511 0.6341 0.4756 0.3805 3.80 
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Rate 
schedule 

1 

2 

3 

4 

5 

6 

1 

8 

9 

10 

11 

12 

13 

14 

15 

16 

Table 4 

Probability of benefit from a switch from flat to TOD rates. 

Flat rates 

4 6 8 

0.000 0.198 0.996 

0.003 0.850 1.000 

0.000 0.003 0.834 

0.005 0.938 1.000 

0.000 0.013 0.995 

0.006 0.994 1.000 

0.006 0.975 1.000 

O.OOO 0.020 0.992 

0.011 0.970 1.000 

0.000 0.316 1 .oOo 

0.024 0.998 1.000 

O.OiKI 0.006 0.999 

0.301 1.000 1.000 

0.000 0.725 1.000 

0.005 0.999 1.000 

0.713 1.000 1.000 

10 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

i.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.000 

Since ai, is a normal random variable, n( p, p) will involve sums and ratios 
of lognormal variables, and its distribution function will not have a simple 
closed form expression. One useful way to characterize the variability of 
n( p, a) is to calculate the probability that r( p, jj) I 1. This is the probability 
that a household selected at random would benefit from a switch from flat to 
TOD rates. The results of this calculation are shown in table 4. 

For rate schedule 1, for example, virtually none of the households would 
benefit from a switch to TOD rates from a 4& flat rate. If the flat rate were 
6c/kWh, 19.8% of the households would benefit from a switch to the TOD 
schedule. The corresponding entry in table 3 indicates that the representative 
household would made worse off from this change. Thus while the representa- 
tive household would be made worse off with the TOD rates, nearly 20% of the 
households would be made better off. 

7. Summary 

We have shown how one can estimate the distribution of willingness to pay 
across the population using panel data. In our example, there seems to be a 
significant dispersion of willingness to pay for time-of-day pricing of electric- 
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ity. Such dispersion can be taken into account in examining the welfare 
implications of policy choices by using the methods we have described above. 

Appendix 

In this appendix we sketch the derivation of maximum likelihood estimates 
of the parameters of a set of regression equations with additive error compo- 
nents. This provides a generalization of the single-equation results given by 
Graybill (1961) for the model 

The recent work by Avery (1977) and Baltagi (1980) building on earlier results 
obtained by Wallace and Hussain (1969) Amemiya (1971) Nerlove (1971) 
and Maddala (1971) deals with systems of equations of the form 

In the model considered here, the n1 term is missing. The essential feature of 
this simpler model is that for a given value of /3, maximum likelihood estimates 
of the variances of the error components can be calculated recursively. The 
operational result is that maximum likelihood estimates can be obtained by 
iterating the usual generalized least squares estimation procedure with analysis 
of variance estimates of the covariance matrices of the error components. 

We use the notation of the text. Omitting the inessential constant term and 

multiplying by two, the (modified) log-likelihood for (Y,, Y,, . . , Y,) is 

L?= -nlogJ!P- 2 (Y-z;p)‘\k-‘(Y-Z,@. 
i=l 

Setting the derivative of Y with respect to /I equal to zero, we find the 
likelihood equation for p, 

p = t z’q-1.z (,_, I * j’( p*-%). 
Thus /? is simply the generalized least squares estimate of p based on the 
maximum likelihood estimate $ of \k. 

In order to obtain the likelihood equations for A and 9, we write the 
likelihood function as 
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where U, = Y; - Zip is a function of j3 but does not depend on A or L?. The 
following results will be used to rewrite the likelihood function in a more 
convenient form. 

Proposition 1. The determinant and the inverse of \k = L? @ I,+ A @ JT are 

given by 

)*I = IOjT-‘lLZ + TAJ, 

and 

Proof. Available from the authors by request. n 

Using these results we can rewrite 2’ as 

S’= -n(T-l)logl9)-nloglS2+TAl- ~2:(b2-‘SI)2i 
r=l 

-Te&(ti+ TA)-‘hi. 

where 

i=l 

8,j = T-’ 5 u,,~ and C,,l = uijt- 8,. 
r=l 

Thus the likelihood equation for A is 

A = n-l e 8,b,‘- T-‘Q. 
i-l 

When A is determined according to this equation, the likelihood function 

becomes 

Z=k-n(T-l)logJOl- if:(ti-‘@I)i,, 
i=l 

where k is a function of 8, and hence /3 but not a function of 9. A direct 

calculation reveals that 

2 iE:(K’@I)2,= tr(52-‘E), 
r=l 
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where the typical element of E is 

Elk = 2 i Sijriikr. 
i-l f=l 

Hence the likelihood equation for D is 

Q = n+(T- 1)-‘E. 

Collecting these results, the maximum likelihood estimates must satisfy three 
sets of equations, 

A =.-l i @,‘- T-l&?, 
r=l 

s2 = n-‘(T- l)E. 

The usual generalized least squares estimator provides the first step of an 
iterative process which, if it converges, will produce maximum likelihood 
estimates of the parameters. In particular, let b(1) be the least squares 
estimator of j3. Define q(l), b,(l) and Z,(l) corresponding to this value of j3. 
Initial estimates of 6(l) and A(1) can now be obtained from the likelihood 
equations. This yields an initial estimate @(l) of 9 which can be used to 
obtain b(2), the generalized least squares estimate of /I. This estimate can then 
be used to define G(2), a,(2), and g,(2), and from these a(2), A(2), and $(2) 
can be obtained. Continuing in this way until convergence is achieved we 
obtain the maximum likelihood estimates. 
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