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We discuss a finite method of feasible di for linear pr probl The method begins with a feasible basic
veetor for the problem, constructs a profitable direction to move using the updated column vectors of the nonbasic variables
eligible to enter this basic vector. It then moves in this direction as far as possible, while retaining feasibility. This move in
general takes it though the relative interior of a face of the set of feasible solutions. The final poim, X, obtained at the end of
this move will not in general be a basic solution. Using X, the method then constructs a basic frasible solution at which the
objective value is better than, or the same as that at &. The whole process repeats with the new basic feasible solution. We show
that this method can be implemented using basis inverses. Initial computer runs of this method in comparison with the usual

edge following primary simplex algorithms are very

linear programming * primal simplex algorithm + edge directions » interior directions * d

1. Introduction

We consider the linear program

minimize z(x}=cx
subjectto  Ax=b, (1)
x>0

where 4, b, ¢ are given matrices of orders m X n,
mx1 and 1Xn respectively, and rank(A4)=m.
Let K denote the set of its feasible solutions. If D
is any matrix, we denote its ith row by the symbol
D;. and its jth column by the symbol D;. Let
Xy = (Xp.-.-,X,,) be a feasible basic vector for this
problem. x, = (X, ..-.,%,) is the corresponding
vector of nonbasic variables. The well-known
primal simplex algorithm always begins with a
feasible basic vector like this for the problem. The
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basic feasible solution (BFS) corresponding to this
basic vector is X = (X5. Xp) = (87, 0).

If the relative cost coefficients ¢; = for all x;
nonbasic, the BFS X is optimal to the LP and we
terminate. Otherwise, the nonbasic variable x; is
eligible 1o enter the basic vector xg if ¢,<0. The
primal simplex algorithm selects exactly one of the
eligible variables and tries to bring it into the basic
vector. The selected variable is called the entering
variable. Suppose it is x,. Then it constructs a new
solution by giving the entering variable x, a value
A, leaving all other nonbasic variables equal to
zero and then reevaluating the value of the basic
variables. This leads to x{(A)= (x;(A)) where

ith basic value, x,(A)=5,~Xa,.i=1tom,
x,=A,
x; =0 for all nonbasic x, # x,;

define y = (y,)€ER" by

y, ==a; fori=1tom,
=1 fori=s,
=0 for all other i,

0167-6377,/84,/$3.00 © 1984, Elsevier Science Publishers B.V. (North-Holland) 121



Volume 3, Number 3

Fig. 1.

Table 1
Canonical tableau with respect to the basic vector x,=

basic Xyt Xy et X, -z b
variablecs

x, ! A, [ b
T

-z o &, 1 -

Then x(A)=x -+ Ay. Let 8 be the minimum ratio
for bringing x, intc the basic vector x,. This is a
nondegenerate pivot step if & > 0. In this case we
get the adjacent BFS x(#)=Xx + 6y at the end of
this pivot step. This new BFS x(#) is obtained by
moving from the current feasible solution X in the
direction y to the maximum possible step length
(while retaining feasibility) of #. This is a walk
along an edge of K, and hence the direction y used
in this step is an edge direction. In the prunal
simplex algorithm the same thing happens in each
nondegenerate pivot step., the algorithm moves
from a BFS to an adjacent BFS along the edge of
K joining them. So the primal simplex algorithm is
a feasible direction method in which the directions
chosen are always restricted to be edge directions.

Here we discuss a method which constructs a
profitable direction to move from the current BFS,

/ edge direction

the relative interior of a face
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using a weighted combination of the updated col-
umns of some or all the nonbasic columns in Table
1 which are eligible 10 enter the basis there. In
geneivl, such a move walks through the relative
interior of a face of K, and therefore is likely to go
much farther towards optimality than a walk along
an edge. See Figure 1.

Such feasible direction methods are well known,
in fact one was proposed in a 1951 paper by G.W.
Brown and T.C. Koopmans [1] which appeared in
the same volume as Dantzig’s classical simplex
paper [3). But these straight forward feasible direc-
tion methods may not even have the finite
termination property {5]. By combining these
moves in profitable directions, with an efficient
technique for finding a BFS with the same or
better objective value as a given feasible solution,
we get a method which terminates in a finite
number of steps. We also show how this whole
method can be implemented by maintaining a
basis inverse at each stage. All the computer im-
plementations of the usual edge following simplex
algorithm also depend on maintaining a basis in-
verse in some form or other. Hence this suggested
method can easily be adopted by existing large
scale implementations of the usual simplex algo-
rithm and take full advantage of the sparsity and
any other advantageous structural properties that
(1) may possess.

Fig. 1.
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2. To get a BFS of better or same objective value

from a given feasible solution

Suppose % is a feasible solution for (1), not
necessarily basic. Define J(1)= { j: &, >0}. If the
set {A.; jE€JMx)} is linearly independent, x is
itself a BFS. If { 4 : j € J(%)} are linearly depen-
dent, let a linear dependence relation among them
be S(a, 4., j € (J(%))=0. Define x(A)=(x,(A))
by

Y (X)) =&, + A, ifjet(x).
=0 otherwise.

Also, define
y =min{ %,/(—a): j€J(%) and a, <0},
02=max{fc,/(—a):je.l(i) and a,>0}.

In computing 8,, 8, define the minimum, maxi-
mum in the empty set to be +o0, — o0 respec-
tively. If either 2(c,a: jEJ(2) <0 and 8, = + oo
or E(ca; jES(1)>0 and ;= —co, making
A— +o0 or —oo, respectively, we get a feasible
half-line along which z2(x)— —c0; we terminate.
If this unboundedness criterion is not satisfied,
chose 6 =min{|8,, |6,]} if Z(a,c;: jEH i) =0,
8=0,if Z(a,c;: jJEJ RN <O. and @ =8, if Z(a,c;:
jEJ(%))> 0. Then it can be verified that x(8) is a
feasible solution of (1) satisfying z(x(8)) < z(X)
and that |[J(x(8))| <|J(%)|. We will call this pro-
cess of obtaining this x(8) beginning with the
feasible solution %, using a linear dependence rela-
tion among the columns {4 ;: j€J(X)}, arec -
tion step. The process can be repeated with x(8).
After at most n reduction steps of this type we will
cither discover that z(x) is unbounded below in
(1) or find a BFS X for it satisfying z(X) < z(X).

This move from the feasible solution £ which is
not a BFS, to the BFS X can be carried out
efficiently by the following procedure. Let J(X) =
(j: %;>0}={L...omm+1L....m+r}, say. If
(1) is nondegenerate, the number of positive varia-
bles in a feasible solution which is not basic will
always be strictly greater than m. We consider
this nondegenerate case here. The changes to be
made to resolve degeneracy are discussed in Sec-
tion 5. The procedure continually maintains a
basis B consisting of m columns from J(&). Sup-
pose the current basis B consists of columns
{Agv.d ). Let (..o, =B7'4 .\

computed using the basis inverse B ™", Then
a=(-a,....—a,.1,0....0)

are the coefficients in a linear dependence relation
among {4 : j€J(X)}.

Note 1. At this stage, the basis is B=
(A,....,4.,) and the columns A4, ,,,.... 4.,
are those corresponding to variables which are
positive in the present feasible solution, but not
contained in the present basis. In general, one can
determine weights, ¥,,, ;... Yp . ,» associated with
these columns, where (Y4 44+ -+ Yy ) # 0, define
(aa,) = B(E(y, 4 j=m+ 1 tlom+r)),
A= (=0eaes = Oy Yms 12--+Ymsr) - and use this
a as the vector of coefficients in a linear depen-
dence relation among { 4. : j € J(%)).

Using a linear dependence relation obtained
either way, carry out a reduction step and obtain
the feasible solution x(#) as discussed above. In
x(8), one or more of the variables x; with j € J(%)
have value zero. If all these j are among m + 1 to
m + r, drop all of them from further consideration
and keep the same basis. On the other hand, if
some of x, to x,, are zero in x(#), replace the
columns A, corresponding to them from the basis,
one at a time, by columns from 4.,,,, 0o 4.,
corresponding to variables which are positive in
x(@). Update the basis inverse and repeat the
process with the new feasible solution x(8), until a
BFS is reached.

So this whole procedure of moving from a
feasible solution to a BFS with the same or better
objective value can be carried out using pivot steps
and maintaining a basis inverse as in the usual
simplex algorithm,

3. The feasible direction method

It starts with a BFS & for (1) associated with the
feasible basic vector, xp = (Xy,...,X,,), say, for (1)
(if such a BFS for (1) is not available, it can be
found, if (1) is feasible, by solving a Phase I
problem corresponding to (1) using the same
method). If the relative cost coefficients ¢, are >0
for all nonbasic x;, X is optimal for (1} and we
terminate. Otherwise, separate the nonbasic varia-
bles x,,....X, into two parts, say, x, =
[€ TSI S and Xp, = (Xppranre s X, )
where the relative cost coefficient ;<0 for j=
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m+lom+r,andc,>0forj=m+r+1ton
Let 4. denote the updated column of x; with
respect to x . Define y =(y,.....y,)" by

Vv,

v, =w, forj=m+ltom+r,

(2)

=0 forj=m+r+1,...n,

and
(Foeeorn) = =S(wd,t=m+11om +r)

where the w,’s are positive weights whose choice is
discussed in Section 6.

Now we move from % in the direction y. that is,
look at points ¥+ Ay, A= 0. This continues to
satisfy the equality constraints in (1). The step
length of the move is the maximum possible length
determined so as to keep all the variables = 0.
Define

0= min{ % /(~y): j such that y, < 0}. (3)

If (1) is nondegenerate, this @ will be strictly
positive, that is, we will take a step of positive
length when we move in the direction y, and this
results in a strict decrease in the objective value. If
# = + o0, z(x) is unbounded below in (1) and we
terminate. Otherwise this move in the direction y
takes us either through the interior of K or the
relative interior of a boundary face of K to the
point % + 8y = %, say. In general, £ may not be a
BFS of (1). Using & obtain a BFS X of (1) satisfy-
ing 2(X)<z(%) by the procedure described in
Section 2. Repeat the whole process again begin-
ning with the BFS x.

4. Finiteness under nondegeneracy

Each step in the feasible direction method dis-
cussed above begins with a BFS for (1), makes a
move in a profitable direction to a feasible solu-
tion, then goes through several reduction steps
until a new BFS is obtained. The process is re-
peated with the new BFS. Assume that (1) is
nondegenerate. In this case, if % is the initial BFS
associated with the basic vector x5 = (x,....Xx,,)
in a step of this method, we have %;> 0 for all
Jj=1tom. Let {j: &; <0 in the canonical tableau
with respect to xp} be {m+1.....m+r), say.
From the deftnition of the profitable direction to
move, y, in (), we see that y; can be <0 only for
Jj€{1,2,...,m). From these facts we conclude
that 8 > 0 in (3). The change in the objective value
as we move from the BFS X to x+fy=23% is
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HZ(cw: j=m+1 to m+r)) and since 8> 0.
w;>0 and ¢ <0 for all j=m+1 10 m+r, the
objective value strictly decreases in this move in
the profitable direction y. The reduction steps may
result in lowering the objective value further. Thus,
if X is the BFS obtained at the end of this step, we
have z(X)<:z(X). Since the objective value de-
creases in each step, a BFS cannot reappear in this
method. Since there are only a finite number of
BFS’s for (1), the method must terminate after a
finite number of steps.

5. Resolution of degeneracy

If (1) is degenerate, we might get a feasible
basic vector x ., for which some of the basic varia-
bles have zero value in the BFS associated with it.
If this happens, the step length in the profitable
direction of move computed as in (3) could be
zero. This would result in no change in the objec-
tive value or even the feasible solution in a profita-
ble direction of move, and the method could get
stuck.

This problem under degeneracy in this method
can be resolved using perturbations of the right-
hand side constants vector in (1), just as it is done
in the usual edge following primal simplex algo-
rithm. It is well known that when b in (1) is
replaced by b(e)=b+ » where »=(e, €, ¢,...,
€™)7, and & is a small positive number, it becomes
nondegenerate for all ¢ positive but sufficiently
small. It is not necessary to give a specific numeri-
cal value for e, but it is left as a small positive
parameter. In every feasible solution, x = (x,) of
the perturbed problem, each variable x; will have a
value which is of the form afj+ afe + ... +ale™
and we can represent this by the corresponding
vector of coefficients (af. af,...,aZ,). This solution
is feasible for the perturbed problem for suffi-
ciently small positive values of ¢ if the vector
(af, af,...,a}) is either zero or lexicopositive for
all j. For example, if X = (x,) is the solution of the
perturbed problem corresponding to the basic vec-
tor xy =(x,....,x,,) associated with the basis B,
and B=B~', b= B""b, then

% =b+Bv.
=0 i=m+1lton,

and so we represent &, by the vector (,, 8,.) for
each i=1 to m, and by the vector 0 € R"*! for
eachi=m+1ton.

i=1tom,
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We apply the method on the perturbed prob-
lem, treating ¢ as a sufficiently small positive
parameter without giving any specific value to it
representing each variable in a solution by a vector
in R™* ! in this manner, initiating the method with
a lexicofeasible basic vector. Under this scheme,
the computation of # in (3) would involve taking
the lexicominimum along the appropriate vectors
instead of the usual minimum, and 4 itself will be
represented by a lexicopositive vector in R”* ', In
this scheme, in carrying out reduction steps, the
computation of 8, 8, will involve taking the
lexicominimum, lexicomaximum respectively, in-
stead of the usual minimum and maximum, and
these 8, @, will themselves be represented by the
corresponding vectors in B™* !, Using this (essen-
tially replacing the minimum, maximum in each
place by the appropriate lexicominimum, lexi-
comaximum). the method can be carried out on
the perturbed problem without giving any specific
value to the parameter e. Since the perturbed
problem is nondegenerate for positive but suffi-
ciently small values of the parameter e, the method
must terminate after a finite number of steps. At
termination, we get the same termination condi-
tion for the original problem by setting the param-
cter € = 0 in the terminal output for the perturbed
problem,

6. Choice of weights

The natural choice for the weights w; in (2) for
determining the profitable direction of move seems
to be w,=1 or —¢, The choice of w,= ¢, is
similar to the dlrecuons chosen in reduced gl‘ddl-
ent methods (see Wolfe [6]). It is not necessary to
choose w; > 0 for all j & J = { j: j such that & < 0}).
The method can be executed by choosing w, >0
for only a subset of j€J, in particular subsets
with cardinalities ranging from 2 to 5 may be more
attractive than the option of making w; > 0 for all
jelt.

In many packages for large scale linear pro-
gramming, they usually select a number (about 5)
of columns with significantly negative relative cost
coefficients and process the subproblem consisting
of the present basic columns and the selected 5 or
so columns only, ignoring all the other columns
temporarily (see Section 3.6.3, Muttiple Pricing, in
[4]. Once an optimum basis for the subproblem is
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obtained, the whole process is repeated with i1
Instead of the usual edge following simplex algo-
rithm, we can use the feasible direction method
discussed above to solve each subproblem in this
process, thereby improving the efficiency.

7. Alternate procedures

Consider BFS % for (1) associated with the
feasible basic vector xz=(x,,....x,,). 5ay. As in
Section 3, suppose the relative cost coefficients of

X,,4q O Ky ATE < 0, and those of x,,,,.; 0 X,
are >0, in the canonical tableau with respect to
. Define 4., ,,=2(wAd :j=m+1tom+r),
,,,,—2(wc:j=M+l to m + r). Introduce the
new variable x,,__, associated with the column vec-
tor A ,,, and the cost coefficient ¢, , into (1). In
the canonical tableau for the augmented problem
with respect to x, the updated column of x,,, , will
be

A

s+l

E-n +1
where 4.,,,, = 2(w; A pi=m+ltom+r)é,.,
=B(wi, j= m+l to m+r), with 4, .o ¢; being
the updated column and the relative cost coeffi-
cient of x, for j=m+1 to m +r. For this aug-
mented problem, x, ., is an eligible variable to
enter the feasible basic vector xz. When x, ., is
brought into the basic vector x g in this augmented
problem, suppose we get the new feasible solution
x'=(x}.....x}, x}, ). It can be verified that the
step length 8 computed in (3) is actually x, |, and
that the feasible solution for the original problem
X obtained in Section 3 at the end of the move in
direction y is (xl....xh, xL., + woxhi

X T W Xk Xhira e 0T, So the
feasible solution x' for the augmented problem
leads to the feasible solution % for the original
problem by remembering that the new variable

X401 corresponds to Z(wx;: j=m+1tom+r).
Now x' is of course a BFS for the augmented
problem. If the current basic vector for the aug-
mented problem satisfies the primal simplex opti-
mality criterion in the augmented problem, x' is
optimal for it and correspondingly £ is optimal for
the original problem. If the optimality criterion is
not satisfied in the canonical tableau for the aug-
mented problem with respect to the present basic
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vector we can identify all nonbasic variables eligi-
ble to enter, and repeat the same procedure again.

It should be noted that the set of nonbasic
variables eligible to enter the basic vector for this
augmented problem is different from the set
{Xmatre--1Xpmer ), Which was the set of eligible
variables in the previous step. This is true because
after the pivot step of bringing x,,.; into the basic
vector xg, the updated cost coefficient of x,,,, is
zero, and from the definition of the column vector
associated with x,,, we notice that the updated
cost coefficient of x,,, will always be equal to
3(w, [updated cost coefficient of x;J: j=m +1 to
n + r). Therefore in every canonical tableau with
x,.1 a5 a basic variable, at least onc of the vari-
ables x,,,1,.-..X,,,, will have a nonnegative up-
dated cost coefficient.

After several steps of this, we will have a canon-
ical tableau for an augmented problem with one or
more new variables, say, x,,\.....X,,,. The col-
umn associated with any of these new variables is
a positive combination of the columns of the non-
basic variables among x,,...,x,. which were eligi-
ble to enter at the stage that this new variable was
created. Whenever one of these new variables be-
comes the dropping variable in some step of this
process, that new variable is totally discarded after
the updating process in this pivot step. Because of
this, all nonbasic variables at any stage will be
original problem variables. Each of these new vari-
ables x,,, to x,,, in the augmented problem at
this stage corresponds to a weighted combination
of some original problem variables; using this we
can obtain a feasible solution (not necessary basic)
of the original problem from the current BFS of
the present augmented problem.

Using this process of adding new variables to
the problem we can identify two different proce-
dures to solve the original problem. Both these
procedures are guaranteed to terminate after a
finite number of steps.

Alternate Procedure [ - After some chosen
number of steps of this process we can stop the
process, identify the feasible solution % of the
original problem corresponding to the present BFS
of the current augmented problem, and go to the
reduction steps with % as in Section 2. We then
discard all rew variables, and start all over again
with the BFS of the original problem obtained at
the end of these reduction steps. Finite termina-
tion of this procedure can be guaranteed using
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similar arguments as presented in Sections 4 and
5.

Alternate Procedure 2 - Continue the process of
adding new columns until a1 some stage either the
optimality criterion is satisfied for the current
augmented problem, in which case an optimal
solutjon to the original problem is readily availa-
ble, or an unbounded ray is identified for the
current augmented problem, in which case we can
conclude that the original problem is unbounded.
In either case lerminate the procedure.

Finite termination of this algorithm can be
guaranteed if all w;’s are taken to be equal to 1 (or
any other preselected positive values) throughout
the algorithm. To see this let A= { N}, N,.... N, }.
where s= —1+2" be the set of all nonempty
subsets of N = {1, 2,...,n}, and consider the fol-
lowing maximal augmented LP corresponding to
(.

minimize

2(5)= Z (Z,cmme, )
k=1

subject to Z( ¥ w,A_,){k=b, @
K=tV e,
Giz0fork=1t0s.

The variable {; in (4) corresponds to Z,; v, x, in
(1). Clearly every new column that we may intro-
duce in alternate procedure 2 is a column associ-
ated with a variable in (4), and every new variable
introduced in the alternate procedure 2 is one of
the {,’s, and thus every feasible basic vector ob-
tained in this procedure, is a feasible basic vector
for (4).

The total number of basic vectors for (4) is
finite. Alternate procedure 2 is the same as ex-
ecuting the primal simplex algorithm on (4), and
when it is executed using the lexico-dropping vari-
able choice rules, it is guaranteed to terminate
finitely.

8. Computational experiment

We are in the process of conducting a computa-
tional experiment comparing these methods with
the usual edge following primal simplex algorithm
on randomly generated problems of various sizes.
Initial results are very encouraging. The experi-
ment is also being designed to identify the best
choices for various alternatives in the method. We



Volume 3. Number 3

are also investigating better techniques for resolv.
ing degeneracy and ways of handling degeneracy
in computer implementations of the method.
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