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We discuss a finite method of feasible direction for linear programming problems. The method begins with it feasible basic 
vector for the problem, constructs a profitable direction to move using the updated column vectors of the nonbasic variables 
eligible to enter this basic vector, h then moves in this direction as far as possible, while retaining feasibility. This move in 
general takes it though the relative interior of a face of the set of feasible solutions. The final point, ~, obtained at the end of 
this move will not in general be a basic solution. Using ~, the method then consuucts a basic f,:asibl¢ solution at which the 
objective value is better than, or the same as that at .L The whole process repeats with the new basic feasible solution. We show 
that this method can be implemented using basis inverses. Initial computer runs of this method in comparison with the usual 
edge following primary simplex algorithms are very enconraging. 

linear programming * primal simplex algorithm * edge directions * interior directions * degeneracy * finite termination 

I .  Introduct ion 

W e  cons ider  the l inear  p r o g r a m  

minimize  z (  x ) = cx  

subject  to A x  = b ,  (1)  

x>~O 

where  .4, b. c are  given mat r ices  o f  o rders  m × n,  
m × 1 and  1 × n  respectively,  and  r a n k ( A ) =  m. 
Let  K deno te  the set  o f  its feasible solutions.  I f  D 
is any  matr ix ,  we deno te  i ts  i t h  row by the  symbol  
D,. and  its j t h  co lumn by the symbol  D.~. Le t  
x n = ( x  t . . . . .  xm) be  a feasible basic  vector  for this  
p roblem,  x a  = (Xm+ t . . . . .  x . )  is the  cor responding  
vec tor  o f  nonbas ic  var iables .  T h e  wel l -known 
p r im a l  s implex a lgor i thm always begins  wi th  a 
feasible bas ic  vec tor  l ike  this for the problem.  T h e  
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bas ic  feasible so lu t ion  (BFS)  cor responding  to this 
bas ic  vec tor  is .~ = ( x g ,  , ~ )  = ( ~ T  0).  

I f  the re la t ive  cost  coeff ic ients  ¢ ) ~ - f o r  a l l  % 
nonbasic ,  the BFS  .~ is op t ima l  to  the LP  and  we 
te rminate .  Otherwise ,  the  nonbas ic  va r iab le  xj  is 
eligible to enter  the  basic  vector x a i f  ~j < 0. T h e  
p r ima l  s implex a lgor i thm selects exact ly  one o f  the 
e l igible  var iab les  and  tries to b r i n g  i t  in to  the  bas ic  
vector .  T h e  selected var iab le  is ca l led  the enter ing 

variable.  Suppose  it is x~. T h e n  i t  const ructs  a new 
solut ion by g iv ing  the  en te r ing  var iab le  x s a va lue  
X, leaving all  o the r  nonbas ic  var iables  equa l  to 
zero  and  then reeva lua t ing  the va lue  o f  the  basic  
variables .  T h i s  lead~ to x ( ~ )  ffi ( x j ( ~ ) )  where  

i t h  bas ic  value,  x i ( g )  = b, - , ~ ,  i = 1 to m ,  ] 

xs  = ~., 1 % = 0 for a l l  nonbas ic  xj  # x~; 

de f ine  y = ( y , ) ~  R "  by 

y, = - ~ for  i = 1 to m ,  

= 1  for i =  s .  
= 0 for  a l l  o the r  i .  
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Fig. l. 

Table l 
Canonical tableau with respect to the basic vector x a = 
(xt,. , , ,x.,) 

basic x I . -. x m • - • xj . . . .  2 b 
variablen 

x I I . .  - A., ... 0 

x',,. 
- z  O ""  ct -.- I - i  

Then x ( A ) =  Y, + by. Let 0 be the minimum ratio 
for bringing x.~ into the basic vector x n. This is a 
nondegenerate pivot step if 0 > O. In this case we 
get the adjacent BFS x (O)=  ~ + Oy at the end of 
this pivot step. This new BFS x(O) is obtained by 
moving from the current feasible solution ,~ in the 
direction y to the maximum possible step length 
(while retaining feasibility) of 0. This is a walk 
along an edge of K, and hence the direction .v used 
in this step is an edge direction. In the pri,aal 
simplex algorithm the same thing happens in each 
nondegenerate pivot step. the algorithm moves 
from a BFS to an adjacent BFS along the edge of 
K joining them. So the primal simplex algorithm is 
a feasible direction method in which the directions 
chosen are always restricted to be edge directions. 

Here we discuss a method which constructs a 
profitable direction to move from the current BFS, 

using a weighted combination of the updated col- 
umns of some or all the nonbasic columns in Table 
1 which are eligible to enter the basis there. In 
gener:,l, such a move walks through the relative 
interior of a face of K, and therefore is likely to go 
much farther towards optimality than a walk along 
an edge. See Figure 1. 

Such feasible direction methods are well known, 
in fact one was proposed in a 1951 paper by G.W. 
Brown and T.C. Koopmans [ll which appeared in 
the same volume as Dantzig's classical simplex 
paper [3]. But these straight forward feasible direc- 
tion methods may not even have the finite 
termination property 15]. By combining these 
moves in profitable directions, with an efficient 
technique for finding a BFS with the same or 
better objective value as a given feasible solution. 
we get a method which terminates in a finite 
number of steps. We also show how this whole 
method can be implemented by maintaining a 
basis inverse at each stage. All the computer im- 
plementations of the usual edge following simplex 
algorithm also depend on maintaining a basis in- 
verse in some form or other. Hence this suggested 
method can easily be adopted by existing large 
scale implementations of the usual simplex algo- 
rithm and take full advantage of the sparsity and 
any other advantageous structural properties that 
(1) may possess. 

edge direct ion 

! 

Fig. |. 
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2. To get a BFS of better or same objective value 
from a given feasible solution 

Suppose ,t is a feasible solution for (1), not 
necessarily basic. Define J ( . t ) =  { j :  3c s > 0}. If the 
set {A j: j ~ d ( x ) }  is linearly independent, x is 
itself a BFS. If { A ~: j ~ d(~)} are linearly depen- 
dent, let a linear dependence relation among them 
h e S " ( % A f i j ~ ( d ( Y c ) ) = O .  Define .x'(~.) = (xfl  h)) 
by 

.~j{X) =.q't+3.nt i f j ~ J ( ~ ' ) .  

= 0 otherwise. 

Also, define 

O, = min{ L / ( - a ) :  j ~ J ( Y ~ )  and a, < 0},  

02 = max{ . ~ , / ( - a ) : j  ~ J(Yc) and % > 0}.  

In computing 0~, 0: define the minimum, maxi- 
mum in the empty set to be + ~ ,  - o o  respec- 
tively. If  either ~(cs%: j ~ $(~))  < 0 and 01 = + 0o 
or "2(cj%: j ~ . / ( . t ) ) > 0  and 02= - ~ ,  making 

~ + ~ or - o o ,  respectively, we get a feasible 
half-line along which z ( x )  ~ - 0o; we terminate. 
If  this unboundedness criterion is not satisfied, 
chose 0 = min{10d, 1021} if 2(njcs: j EJ(Yc))= O, 
0 = 01 if Z(%cs: j ~ .l(Yc)) < O, and 0 = 02 if "¢(%Cs: 
j ~ J(,~)) > 0. Then it can be verified that x(O) is a 
feasible solution of (1) satisfying z(x(O))<~ z ( J )  
and that IJ(x(O))[ < l s ( ~ ) l .  We will call this pro- 
cess of obtaining this :c(0) beginning with the 
feasible solution ~, using a linear dependence rela- 
lion among the columns { A.s: J ~ J(3c)}, a re¢ . 
tion step. The process can be repeated with x(O). 
After at most n reduction stel0s of this type we will 
either discover that z ( x )  is unbounded below in 
(1) or find a BFS .~ for it satisfying z (~)  < z(.~). 

This move from the feasible solution .~ which is 
not a BFS. to the BFS ~ can be carried out 
efficiently by the following procedure. Let . / ( J ) =  
{ j :  . ~ j > 0 } = { l  . . . . .  m , m + l  . . . . .  r e + r } ,  say. If  
(1) is nondegenerate, the number of positive varia- 
bles in a feasible solution which is not basic will 
always be strictly greater than m. We consider 
this nondegenerate case here. The changes to be 
made to resolve degeneracy are discussed in Sec- 
tion 5. The procedure continually maintains a 
basis B consisting of m columns from J ( J ) .  Sup- 
pose the current basis B consists of columns 
{ A  I . . . . .  A.m}. Let ( a  t . . . . .  am)T=Bl lA. , , ,~- i ,  
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computed using tile basis inverse B - t .  Then 

a =  ( - n  t . . . . .  - n , . ,  1 ,0  . . . . .  0) T 

are the coefficients in a linear dependence relation 
among { A .s: -/E ./(5")}. 

Note 1. At this stage, the basis is B =  
( A  t . . . . .  A.. , )  and the columns A.m÷ t . . . . .  A . m .  , 
are those corresponding to variables which are 
positive in the present feasible solution, but not 
contained in the present basis. In general, one can 
determine weights, 3'.,÷ t . . . . .  Vm +,, associated with 
these colunms, where (?.,+t . . . . .  ¥ . + , ) ~  0, define 
( a  I . . . . .  a.,)T = B.-#(~.(¥jA s: J = m + 1 to m + r)), 
a = ( - a  t . . . . .  - a m .  Y.+l . . . . .  "Ira+,) T, and use this 
a as the vector of coefficients in a linear depen- 
dence relation among { A .~: j ~ J(. t)}.  

Using a linear dependence relation obtained 
either way, carry out a reduction step and obtain 
the feasible solution x(O) as discussed above. In 
x (0  ), one or more of the variables x i wi th j  ~ ./(.~) 
have value zero. If  all these j  are among m + 1 to 
m + r,  drop all of them from further consideration 
and keep the same basis. On the other hand. ~f 
some of x t to x,,, are zero in x(O). replace the 
columns A -s corresponding to them from the basis, 
one at a time, by columns from A.m+ 1 to A.m~. r 
corresponding to variables which are positive in 
x(O). Update the basis inverse and repeat the 
process with the new feasible solution x(0) .  until a 
BFS is reached. 

So this whole procedure of moving from a 
feasible solution to a BFS with the same or better 
objective value can be carried out using pivot steps 
and maintaining a basis inverse as in the usual 
simplex algorithm. 

3. The feasible direction method 

It starts with a BFS .~ for (1) associated with the 
feasible basic vector, x B = (x~ . . . . .  x . ) ,  say. for (1) 
(if such a BFS for (1) is not available, it can be 
found, if  (1) is feasible, by solving a Phase 1 
problem corresponding to (1) using the same 
method). I f  the relative cost coefficients ?s are ~- 0 
for all nonbasic x s, Y¢ is optimal for (1) and we 
terminate. Otherwise, separate the nonbasic varia- 
bles x . +  1 . . . . .  xn into two parts, say, Xn, = 
( x . +  I . . . . .  xm+.) and xo ,  = ( x  . . . .  ~ . . . . .  x . ) ,  
where the relative cost coefficient ~s < 0 for j = 
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m +  1 to r e + r ,  and ~ - 0  f o r j = m + r +  1 to n. 
Let ~ j  denote the updated column of x,  with 
respect to x m Define y = (y~ . . . . .  y,, )T by 

v~ = % f o r j  = nr + I to m + r,  
(2) 

= 0  f o r j = m + r +  l . . . . .  n,  

and 

( r ,  . . . . .  Y,,, )1' = -- V ( ~; A-., t = ~ + f to ,,, + , ') 

where the ~; 's are positive weights whose choice is 
discussed in Secti<.,n 6. 

Now we move from .~ in the direction y, that is, 
look at points ~ + ),y,  ~ >10. This continues to 
satisfy the equality constraints in (1). The step 
length of the move is the maximum possible length 
determined so as to keep all the variables ~ 0. 
Define 

0 = rain( .~,/{ - ) ) ) :  j such that )) < 0}.  (3) 

I f  (1) is nondegenerate, this 0 will be strictly 
positive, that is, we will take a step of positive 
length when we move in the direction y, and this 
results in a strict decrease in the objective value. If  
0 =  + ~ ,  z ( x )  is unbounded below in (1) and we 
terminate. Otherwise this move in the direction y 
takes us either through the interior of K or the 
relative interior of a boundary face of K to the 
point .~ + Oy = .~-, say. In general, .~ may not be a 
BFS of (1). Using ~? obtain a BFS .~ of el) satisfy- 
ing z(~)~<z(~)  by the procedure described in 
Section 2. Repeat the whole process again begin- 
ning with the BFS ~. 

4. Finiteness under nondegeneraey 

Each step in the feasible direction method dis- 
cussed above begins with a BFS for (1), makes a 
move in a profitable direction to a feasible solu- 
tion, then goes through several reduction steps 
until a new BFS is obtained. The process is re- 
pealed with the new BFS. Assume that ( i )  is 
nondegenerate. In this case, if .~ is the initial BFS 
associated with the basic vector x s = (xt  ...... x , , )  
in a step of  this method, we have .~j > 0 for all 
j = 1 to m. Let { j :  gj < 0 in the canonical tableau 
with respect to x s }  be { m +  1 . . . . .  m + r } ,  say. 
From the definition of the profitable direction to 
move, y, in (2), we see that yj can be < 0 only for 
j E { 1 , 2  . . . . .  m}. From these facts we conclude 
that 0 > 0 in (3). The change in the objective value 
as we move from the BFS .~ to .~+0) ;= .~  is 
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0(~(~:i%: j = m + l  to r e + r ) )  and since 0 > 0 ,  
w , > 0  and ~ < 0  for a l l j = m + l  to r e + r ,  the 
objective value strictly decreases in this move in 
the profitable direction y. The reduction steps may 
result in lowering the objective value further. Thus, 
if .~ is the BFS obtained at the end of this step, we 
have z ( ~ ) <  z(,~'). Since the objective value de- 
creases in each step, a BFS cannot reappear in this 
method. Since there are only a finite number of 
BFS's for (I), the method must terminate after a 
finite number of steps. 

5. Resolution of degeneracy 

If (1) is degenerate, we might get a feasible 
basic vector x t ,  for which some of the basic varia- 
bles have zero value in the BFS associated with it. 
I f  this happens, the step length in the profitable 
direction of move computed as in (3) could he 
zero. This would result in no change in the objec- 
tive value or even the feasible solution in a profita- 
ble direction of move, and the method could get 
stuck. 

This problem under degeneracy in this method 
can be resolved using perturbations of the right- 
hand side constants vector in (1), just  as it is done 
in the usual edge following primal simplex algo- 
rithm. It is well known that when b in (1) is 
replaced by b ( e ) = b +  ~, where p = ( r ,  e 2, e J . . . . .  
era) T, and e is a small positive number, it becomes 
nondegenerate for all ~ positive but sufficiently 
small. It is not necessary to give a specific numeri- 
cal value for r, but it is left as a small positive 
parameter. In every feasible solution, x = (xj )  of 
the perturbed problem, each variable x i will have a 
value which is of the form a~ + a~e + . . .  + a).,,d " 
and we can represent this by the corresponding 
vector of coefficients (ao j ,  a~ . . . . .  a~,). This solution 
is feasible for the perturbed problem for suffi- 
ciently small positive values of e if the vector 

J i J (a  o, a I . . . . .  a . , )  is either zero or lexicopositive for 
allj .  For example, if ~" = (.~i) is the solution of the 
perturbed problem corresponding to the basic vec- 
tor x a = (x  t . . . . .  x . , )  associated with the basis B, 
and fl = B - I ,  b = B - I b ,  then 

.~, = b , + f l ,  v, i = 1  t o m .  

= 0  i = n : + l  t o n ,  

and so we represent ~ by the vector (b~, fl,.) for 
each i =  1 to m, and by the vector 0 ~ R "+~ for 
e a c h i = m + l  ton .  
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We apply the method on the perturbed prob- 
lem, treating t as a sufficiently small positive 
parameter without giving any specific value to it, 
representing each variable in a solution by a vector 
in R "  t i in this manner, initiating the method with 
a lexlcofeaslble basic vector. Under this scheme, 
the computation of 0 in (3) would involve taking 
the lexlcominimum along the appropriate vectors 
instead of the usual minimum, and 0 itself will be 
represented by a lexicopositive vector in R "~ l. In 
this scheme, in carrying oat reduction steps, the 
computation of 01, 02 will involve taking the 
Icxicominimum, lexicomaximum respectively, in- 
stead of the usual minimum and m a x i m u m ,  and 
Khese 0 I. 0 z will themselves be represented by the 
corresponding vectors in H ' ' '  ~. Using this (essen- 
tially replacing the minimum, maximum in each 
place by the appropriate l ex icomin imum,  lexi- 
comaximum), the method can be carried out on 
the perturbed problem without giving any specific 
value to the parameter e. Since the perturbed 
problem is nondegenerate for positive but suffi- 
ciently small values of the parameter e, the method 
must terminate after a finite number of steps. At 
termination, we get the same termination condi- 
tion for the original problem by setting the param- 
eter e ~ 0 in the terminal output for the perturbed 
problem. 

6. Choice of weights 

The natural choice for the weights n) in (2) for 
determining the profitable direction of move seems 
to be ~ = 1 or -/~s" The choice of wj = - ~  is 
similar to the directions chosen in reduced gradi- 
ent methods (see Wolfe [6]). It is not necessary to 
choose w~ > 0 for all j ¢ J = { j :  j such that ~s < 0}. 
The method can be executed by choosing w s > 0 
for only a subset of j ~  J,  in particular subsets 
with cardinalities ranging from 2 to 5 may be more 
attractive than the option of making w s > 0 for all 
j ~ J .  

In many packages for large scale linear pro- 
grumming, they usually select a number (about 5) 
of columns with significantly negative relative cost 
coefficients and process the subproblem consisting 
of the present basic columns and the selected 5 or 
so columns only, ignoring all the other columns 
temporarily (see Section 3.6.3, Multiple Pricing, in 
[4]). Once an optimum basis for the subproblem is 
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obtained, the whole process is repeated with it. 
Instead of the usual edge following simplex algo- 
rithm, we can use the feasible direction method 
discussed above to solve each subproblem in this 
process, thereby improving the efficiency. 

7. Alternate procedures 

Consider BFS .~ for |1) associated with the 
feasible basic vector x 8 = (x  I . . . . .  x. ,) .  say. As in 
Section 3, suppose the relative cost coefficients of 
x . ,~  1 to x . ,+ .  are < 0, and those of xm+,+ I to x n 
are /> 0, in the canonical tableau with respect to 
x~. Define A ..+ ~ = 2(wjA .~: j = m + 1 to m + r) ,  
c.+ ~ = 2(wsej:  j ffi M + 1 to m + r) .  Introduce the 
new variable x . _  ~ associated with the column vec- 
tor A .,,4 1 and the cost coefficient c.+ i into (1). In 
the canonical tableau for the augmented problem 
with respect to x~ the updated column of x .+  ~ will 
be 

where ~, ,÷1 = 5~(wsAs J = m + 1 to m + r) .  c,,*l 
>-?,(~j: j = m + 1 to m + r) ,  with 3-~j. cs being 

the updated column and the relative cost coeffi- 
cient of % for j = m +  1 to m + r .  For this aug- 
mented problem, xn+ I is an eligible variable to 
enter the feasible basic vector x B. When x~+~ is 
brought into the basic vector x 8 in this augmented 
problem, suppose we get the new feasible solution 
x ~ = (x~ . . . . .  x~, xt.+~) T. It  can be verified that the 
step length 0 computed in (3) is actually x~÷ i. and 
that the feasible solution for the original problem 
.~ obtained in Section 3 at the end of the move in 
direction y is (x~ . . . . . .  L,  x L + ,  + . . . . .  I~+ t, 
. . . .  x'.÷, + . . . . .  '~ . . . .  L . . . . . . . . .  x D  ~. so  the 
feasible solution x I for the augmented problem 
leads to the feasible solution .~ for the original 
problem by remembering that the new variable 

x ,, + l correspond,~ to 2 (  ~ x s :  j = m + 1 to m + r ). 
Now x 1 is of vourse a BFS for the augmented 
problem. I f  the current basic vector for the aug- 
mented problem satisfies the primal simplex opti- 
mality criterion in the augmented problem, x 1 is 
optimal for it and correspondingly ~ is optimal for 
the original problem. If  the optimality criterion is 
not satisfied in the canonical tableau for the aug- 
mented problem with respect to the present basic 
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vector we can identify all nonbasic variables eligi- 
ble to enter, and repeat the same procedure again. 

It should be noted that the set of nonbasic 
variables eligible to enter the basic vector for this 
augmented problem is different from the set 
{x.,+l . . . . .  Xm+r} ,  which was the set of eligible 
variables in the previous step. This is true because 
after the pivot step of bringing x,,÷ ~ into the basic 
vector x,~, the updated cost coefficient of x .  ~ j is 
zero, and from the definition of the column vector 
associated with xn+ I we notice that the updated 
cost coefficient of x . ~  t will always be equal to 
Z ( ~  [updated cost coefficient of  xj]: j = m + 1 to 
m + r) .  Therefore in every canonical tableau with 
x~+ I as a basic variable, at least one of the vari- 
ables x, .+t  . . . . .  x. ,+r will have a nonnegative up- 
dated cost coefficient. 

After several steps of this, we will have a canon- 
ical tableau for an augmented problem with one or 
more n ew  variables,  say. x.,+l . . . . .  x . + .  The col- 
umn associated with any of these new variables is 
a positive combination of the columns of the non- 
basic variables among x~ . . . . .  x , ,  which were eligi- 
ble to enter at the stage that this new variable was 
created. Whenever one of these new  varialdes be- 
comes the dropping variable in some step of this 
process, that new  variable is totally discarded after 
the updating process in this pivot step. Because of 
this. all nonbasic variables at any stage will be 
original problem variables. Each of these new wtri- 

ables  x , .  I to x~+~ in the augmented problem at 
this stage corresponds to a weighted combination 
of some original problem variables; using this we 
can obtain a feasible solution (not necessary basic) 
of  the original problem from the current BFS of 
the present augmented problem. 

Using this process of adding new variables to 
the problem we cap_ identify two different proce- 
dures to solve the original problem. Both these 
procedures are guaranteed to terminate after a 
finite number of steps. 

Al t e rna te  Procedure  1 - After some chosen 
number  of steps of this process we can stop the 
process, identify the feasible solution 3,- of the 
original problem corresponding to the present BFS 
of  the current augmented problem, and go to the 
reduction steps with ,~ as in Section 2. We then 
discard all n e w  variables,  and start all over again 
with the BFS of the original problem obtained at 
the end of these reduction steps. Finite termina- 
tion of this procedure can be guaranteed using 
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similar arguments as presented in Sections 4 and 
5, 

Al terna te  Procedure 2 - Continue the process of 
adding new columns until at some stage either the 
optimality criterion is satisfied for the current 
augmented problem, in which case an optimal 
solution to the original problem is readily availa- 
ble, or an unbounded ray is identified for the 
current augmented problem, in which case we can 
conclude that the original problem is unbounded. 
In either case "enninate the procedure. 

Finite termination of this algorithm can be 
guaranteed if all ~4~,'s are taken to be equal to 1 (or 
any other preselected positive values) throughout 
the algorithm. To see this let,A/'= {N  I. N 2 . . . . .  N, }, 
where s = - 1  + 2", be the set of all nonempty 
subsets of N = { 1, 2 . . . . .  n }, and consider the fol- 
lowing maximal augmented LP corresponding to 
(1). 

minimize z ' (~ ' )=  ~ ( ~ , ~ k " : , ) ~  
k~l 

subject to A~I (j~N P,) A t)~,~ ~ b, (4) 

~'~ ~> 0 fo rk  = 1 tos .  

The variable ~',~ in (4) corresponds to ~ j ~ m ~ ) x ~  in 
(1). Clearly every new column that we may intro- 
duce in alternate procedure 2 is a column associ- 
ated with a variable in (4), and every new variable 

introduced in the alternate procedure 2 is one of 
the ~'k's, and thus every feasible basic vector ob- 
tained in this procedure, is a feasible basic vector 
for (4). 

The total number of basic vectors for (4) is 
finite. Alternate procedure 2 is the same as ex- 
ecuting the primal simplex algorithm on (4). and 
when it is executed using the lexico-dropping vari- 
able choice rules, it is guaranteed to terminate 
finitely. 

8. Computational experiment 

We are in the process of conducting a computa- 
tional experiment comparing these methods with 
the usual edge following primal simplex algorithm 
on randomly generated problems of various sizes. 
Initial results are very encouraging. The experi- 
ment is also being designed to identify the best 
choices for various alternatives in the method. We 
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are  a lso  i n v es t i ga t i ng  be t te r  t echn iques  for  resolv-  

ing  degene racy  a n d  ways  of  h a n d l i n g  d eg en e racy  

in c o m p u t e r  i m p l e m e n t a t i o n s  o f  the  m e t h o d .  
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