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Steady axially symmetric three-dimensional thermoelastic stresses in solid rods having space dependent energy generation 
are given in terms of the Goodier and the Love-Galerkin or the Boussinesq-Papkovich potentials. Results find applications in 
nuclear technology. 

1. Introduction 

Although the subject of thermoelasticity has been 
well understood for more than a century, early consider- 
ations on three-dimensional problems are scarce and are 
usually of mathematical nature. The literature on these 
problems may be found in the texts by Parkus [1], Boley 
and Wiener [2]~ Nowacki [3] and Lur'e [4]. During the 
last two decades, increased attention has been given to 
three-dimensional problems, especially to those involv- 
ing cylindrical geometry. These cylindrical problems 
find application in the rapidly developing field of nuclear 
technology. The literature, up to 1971, may be found in 
the comprehensive survey by Boley [5]. Also, for the 
latest developments on cylindrical geometry, one may 
refer, for example, to Chen [6] for the end effect, to 
Huang and Cozzarelli [7] for the cladding effect, to 
Sugano [8] for transient and anisotropic effects, to Spiga 
and Lorenzini [9] for the radial neutron distribution, to 
Amada and Yang [10] for the nonlinear thermal stresses 
resulting from phase changes in materials, to Thompson 
[11] for a general study on cylinders of arbitrary cross- 
section. 

As is well known, the temperature distribution in 
three-dimensional problems associated with cylindrical 
geometry is available in terms of the Fourier-Bessel 
series (or integrals). The stresses resulting from this 
temperature distribution may be obtained analytically 
by the Goodier and Love-Galerkin displacement poten- 
tials. However, this approach involves rather lengthy 
algebraic manipulations and /o r  numerical computa- 
tions (see, for example, Sundara Raja Tyengar and 
Chandrasekhara [12]). This fact led researchers to the 

development of a convenient but approximate mathe- 
matical procedure based on the use of Chebyshev poly- 
nomials (see, for example, Chen [13,14]). Another con- 
venient approach, which has not received much atten- 
tion, deals with the formulation rather than the solution 
of these problems. The first objective of the present 
study to simplify the formulation of a temperature 
problem with some nuclear application, and to show the 
relative simplicity of the stress solution to be obtained 
by the use of Goodier and Love-Galerkin potentials. 
The second, and equally important, objective of the 
study is to obtain the same stress solution in terms of 
the Goodier and Boussinesq-Papkovich potentials. Since 
the Boussinesq-Papkovich potential satisfies the 
harmonic equation, it is relatively easy to obtain a 
solution in terms of this potential. 

2. Formulation of the problem 

Let the cylindrical core of a heterogeneous nuclear 
reactor be made of a number of solid fuel rods sur- 
rounded by a coolant (fig. 1). The formulation of the 
problem is based on the assumptions that the fuel rods 
have (a) constant thermal conductivity, (b) constant 
coefficient of thermal expansion, and (c) negligible axial 
conduction, because 

Change in axial conduction k ( O / L  2 ) (~_)2 << 1, 
Change in radial conduction k ( O/R 2 ) 

0, R and 2L being the temperature, radius and length of 
rods, respectively, (d) elastic stresses under all condi- 
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Fig. 1. Neutron flux distribution 

tions, (e) energy generation proportional to neutron 
flux, (f) energy generation with negligible radial varia- 
tion, because the cross-section of a fuel rod is negligibly 
small compared with the cross-section of the core, (g) 
energy generation varying sinusoidally in the axial di- 
rection, (h) negligible axial extrapolation of the energy 
generation, (i) negligible mechanical influence of clad- 
ding, (j) negligible effects from inertial and thermoelas- 
tic coupling terms. 

Based on the foregoing assumptions, the axially sym- 
metric three-dimensional temperature of the fuel rods 
satisfies, after neglecting the effect of axial conduction, 

1 0 { 30) U,"o 
r ~r [ r -~ r .  + ~---- cos X*z =0 ,  (1) 

O(O,z)=finite, O(R,z)= r(R,z),  (2) 

where r and z are the radial and axial variables, T is the 
coolant temperature, k the thermal conductivity of the 
fuel rods, Uo'" the maximum value of the energy gener- 
ation, and X* = ~r/2L. 

In the absence of any body force, elastic deforma- 
tions associated with the foregoing temperature problem 
are governed by the displacement equations of equi- 
librium (see, for example, Timoshenko and Goodier [4], 

02Vi 1 3 ( OVJ l _ 2( l + u ~fl O0 
OxjSx~ +1-72v Ox i[axj] \ l - u ]  3 x , = 0 '  (3) 

where V,, fl and v denote the displacement vector, the 
coefficient of thermal expansion and the Poisson ratio 
of the fuel rods, respectively. 

The solution of eq. (3), in view of its linearity, may 
be written as a superposition of two solutions, 

V, = V,P + V, ~ , ( 4 )  

where ~P and ~c denote a particular solution of eq. (3) 
and the complementary solution of the homogeneous 
part of eq. (3), respectively. A particular solution of eq. 
(3) may be obtained in terms of the scalar displacement 
potential given by Goodier [5] 

~p = o~,/Ox,. (s) 

Inserting eq. (5) into eq. (3), the governing equation to 
be satisfied by this particular solution is found to be 

l + v  32q'  (f~_u)flO. (6) 
OxiOx, 

The complementary solution for the homogeneous part 
of eq. (3) may be found in terms of the displacement 
potential X~ given by Love-Galerkin [6], [7], 

02X, 3(OXJ) 
~ = 2(1 - . )  0xj0xj Ox, 0x-~- ' (7 )  

or that ~Pi given by Boussinesq-Papkovich [8,9], 

x 02~i 0% ~ =  4(1 - . )  - -  ax, Oxj , (xj%), (8) 

where xj is the position vector. The Love-Galerkin and 
Boussinesq-Papkovich potentials satisfy the biharmonic 
and harmonic equations 

0 2 [ O2Xk 1 
axiOx, ~ ~ ] = O, (9) 

02qjjOxiOx, = 0. (10) 

Axially symmetric problems require only the third 
component of these potentials, Xi(0,0,X) and ~bi(0,0,qJ). 
Then, the stresses expressed in terms of Goodier and 
Love-Galerkin potentials, and Goodier and Bous- 
sinesq-Papkovich potentials become, respectively, 

Oq°~ 2G[( 1 ~F-0~ ~[72~b)..1.. _~.z (p ~72X. 1 ~0x )1, 
%=2G[/a2q~[,3-~- V 2 q ~ ) + ~ (  ( 2 - v )  V2X-3z']j'=a2xl] 

, 

(11) 
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and 

o r = 2 G  ~ r -  ~72. + 2 r 3 z  7 3r ' 

Oz 2 ~ z  ~z21 ' 

[o%+¢a -~°%] (12) 

3. Solution of the problem 

The temperature problem is trivial, The solution of 
eq. (1) which satisfies eq. (2) is readily found to be 

O(r ,z )  = O(R ,z ) + ( U o ' " / 4 k ) ( R  2 - r 2 ) cos h 'z ,  (13) 

where the interface temperature O(R,z) varies depend- 
ing on (single or two phase, laminar or turbulent) flow 
conditions. However, the simple temperature distribu- 
tion given by eq. (13) results in three-dimensional ther- 
mal stresses of considerable complexity. The prime ob- 
jective of this study is to determine these stresses. 

The linearity of the problem suggests separate con- 
sideration of stresses resulting from each term of eq. 
(13). For the fuel rods fixed at both ends, O(R,z) yields 
a uniform compressive stress 

= - -  ( Efl/L)fo2LO ( R ,z  )dz .  (14) % 

Only the second term of eq. (13) gives axially symmetric 
three-dimensional stresses. The particular solution of 
this stress problem will now be determined in terms of 
the Goodier potential. Inserting the second term of eq. 
(13) into eq. (6) results in 

V2ck = m(  R 2 - r 2) cos X'z, (15) 

where m = (Uo'"fl/4k)(1 + r ) / (1  - r). A particular 
solution of eq. (15) may be obtained by the method of 
the variation of parameters or, more conveniently, by 
the assumption that 

q~( r,z ) = ( Ar 2 + B)  cos X*z. (16) 

Introducing eq. (16) into eq. (15) gives 

, ( r , z )  = ( , , / X * ' ) [ 4  + (X ' r )  2 - (X 'R)  2] cos X*z. (17) 

Here the complementary solution will be obtained in 

terms of the Love-Galerkin potential (see section 4 for 
the  a l t e r n a t i v e  so lu t i on  in t e rms  of  the 
Boussinesq-Papkovich potential). Let the third compo- 
nent of eq. (9), 

v '2 xrZx = 0, (18)  

be expressed in two steps as follows: 

~72X = I ,  (19) 

w2f = 0. (20) 

The appropriate solution of eq. (20) in polar coordinates 
may readily be obtained by the separation of variables. 
The result, noting that 

lim K0 (h*r)  ~ 
r ~ 0  

may be written as 

(s in X*z ~ t  t~*,X (21) 
f ( r , z )  = I cos X*z]*°~'" "," 

Inserting eq. (21) into eq. (19) gives 

~72x= ( Sin X*z ) I°(  X*z (22) 

Since the right-hand side of eq. (22) is composed of 
product terms, an appropriate form of x(r , z )  is 

sin X*z 
x ( r,z ) = ( cos X.z ) F( r ). (23) 

Introducing eq. (23) into eq. (22) results in 

1_ d ( r d F l _ x . 2 F = i o ( X . r ) .  (24) 
r d r  \ d r  ] 

The solution of eq. (24) may be obtained by the varia- 
tion of parameters (see, for example, Wylie and Barrett 
[10]). The result is 

F ( r )  = f I0 (X'r*) K0(X*r) - l o ( h * r ) K o ( X * r * )  
Wl lo(X*r*) ,Ko(h*r*) l  

× lo(X*r*)dr* , (25) 

where W is the usual Wronskian. Noting that 

WIIo(X*r*), K0(h*r*) l  = -- 1 / h ' r * ,  

eq. (25) may be rearranged as 

F ( r )  = - k*Ko(~,*r) frr*lZ(X*r *)dr* 

+X*Io(h*r) frr*Io(X*r*)KoQt*r*)dr  *. (26) 
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The integrals involved in eq. (26) may be found in texts 
on Bessel functions (see, for example, Wylie and Barrett 
[10]). Using these integrals, eq. (26) is reduced to 

F( r) = ½(X*r)l,()~*r). (27) 

Inserting eq. (27) into eq. (23) yields 

l ( sin )~*z )()~*r)l,(X*r). (28) 
x ( r ' z )  = 5 cos )~*z 

Since eq. (20) is satisfied by eq. (21) and eq. (19) by eq. 
(28), and (eq. (18) is equivalent to eq. (19) plus eq. (20), 
then eq. (18) is satisfied by eq. (21) and eq. (28). Thus, 
the solution of eq. (18) may be written as 

x(r 'z)=(sinX*z)  X*z 

(29) 

where coefficients C and D to be evaluated from the 
boundary conditions. 

Leaving the boundary conditions in z to section 5(e), 
only the boundary conditions in r are considered here. 
Thus 

o,(R,z)=r(R,z)=O. (30) 

Note from the first and last equations of eq. (11), and 
from eq. (17) and eq. (29) that the conditions given by 
eq. (30) are valid for all values of z provided eq. (29) has 
the form 

x(r ,z)= [Clo(,~*r)+D(X*r)l,(X*r)] sinX*z. (31) 

Now introducing eq. (17) and eq. (31) into the first and 
last equations of eq. (11), and using eq. (30) gives the 
following algebraic equations in terms of C and D: 

[ X10 ()k) - I, ()~)] C + )~[(1 - 2v) I0 ()~) + X/, ()~)1D 

= 2mRS/X 4, 

/ i (X)C + [2(1 - v) l l ( h )  + X/0 ( a ) ]  D = 2mRS/)k 4 

where ;k = )~*R. Solving these equations for C and D 
yields 

C = (  2mRs]X4 1 ( ~ - - - ~ / 1 2 - ~  ) , 2 v X I ° ( X ) - Y I ' ( X )  

(2toRSI[ Xlo(X) - 2I , (X)  

where 8 = X 2 + 2(1 - v) and y = X 2 - 2(1 - v). 
Inserting the values of C and D into eq. (31) and the 

result together with eq. (17) into eq. (11) gives the stress 

distribution in the fuel rods as follows: 

Or(r,z) 

# c  (Uo"' ,~/k) 

= (1 + v ) {  2 - X2(1 - p 2 ) \  1 - ~ 2)~2 

-{[2~Xlo(X )- ,,l(X )][ Zo(Xo)-~ ,,(xo )] 

+ [X,o (x) - 2& (x)][(1 - 2.) lo(Xp ) + Xp&(Xp)]} 

× { x [ v z g ( x ) - a # ( x ) ]  }- '}  cos,,t, (32) 

%(r,z) 
BC(Uo'"R2/k ) 

= { l + v ) {  2A 2 

+ [X/o(X) - 21,(x)][(1 - 2~11o(X0)l} 

× { x [ V io l (X)-  8#(x ) ]  } - ' }  cos ,~:, (33) 

o,(,',z) 
flG ( Uo'" RE /k  ) 

1 
\ l - u ]  

2 +{[2vXlo(X)_.zl,(X)]io(Xp) x - ~  

+ [ X l o ( X ) - 2 6 ( x ) ]  

X [2(2 - v)lo(Xp) +XpI,(Xp)]} 

x { ~, [ X~/o~(X) - 8#(x ) ]  } - ' }  cos ~t, (34) 

#O( Uo"R~/k ) 
= / l + v ]  

\ l - v ]  

x {  - p  + { [2vhI0()~ ) -YII(~)]II(XP) 
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+ [ X l o ( X )  - 2 I , ( X ) ]  

× [ 2 ( 1  - . ) / , (xp)  + Xp/o(Xp)]} 

)< { ~k [ } k 2 / O 2 ( X ) - - ~ / ? ( X ) ]  } 1 }  s i n  try" (35) 

where  p = r/R and  ~ = z/2L. Since the ax ia l  d i s t r i bu -  

t i on  of these stresses is trivial, only the radial distribu- 
t ions are plot ted in figs, 2, 3, 4 and  5 for the values 0.05, 
0.5, 0.8 and  1.0 of ?~, and  for the c o m m o n  value ~ of p 
cor responding  to the elastic media. 

A n u m b e r  of comments  can be made  now on the 
radial  d is t r ibut ion of various stresses shown in these 
figures. Since the tempera ture  of rods increases as p ~ 0, 
the compressive normal  stresses (o r, o~0 and  %) found at 
the center of rods are to be expected. This result ex- 
plains also the tension in % and % as p ~ 1. Note  that  a 
load free surface is also stress free. Accordingly, o, --, 0 
and  ~- ~ 0 as p ~ 1 which have been used as boundary  
condit ions.  Since the "ods should be in equil ibrium in 
the z-direction, % satisties 

2 rr foRro:dr = O, 

as expected. Finally, ~"--, 0 as p ~ 0 is a result of the 
assumed axial symmetry.  
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eq. (37), respectively. Note that 4~1, d~2 . . . .  and 4% . . . .  
are harmonic functions. There are a number of ways of 
constructing harmonic functions from a given harmonic 
function. For example, if ~,a is harmonic, 

0t~ l ~ ]  O~l 
dpz=x,--0x i = r ~ r  r + z  (38) 

is also harmonic. For the problem under consideration 

q)l = lo ( ~*r ) cos )~*z 

is an appropriate harmonic function. Then eq. (38) 
readily reveals 

4~2 = X*rl, ( X*r ) cos )t*z - X*zlo ( )t*r ) sin ;k*z. 

Fig. 5. 

4. Alternative solution of the problem 

As indicated in section 2, the complementary solu- 
tion of the stress problem may also be obtained in terms 
of the Boussinesq-Papkovich poteptial which, for axi- 
ally symmetric problems, satisfies 

~72~b = 0. (36) 

The appropriate harmonic function satisfying eq. (36) 
may easily be found, by the separation of variables and 
the consideration of eq. (12), as 

~ (  r , z  ) = C~lo( ~*r ) sin )~*z. (37) 

However ~ or q, should involve at least one more 
coefficient to be determined, together with C~, from the 
use of eq. (30). Furthermore, since some terms of eq. 
(12) are multiplied by z, eq. (30) can only be satisfied by 
rearranging it in powers of z, and equating the coeffi- 
cients of z to zero. This of course gives more than two 
relations, and suggests that the combination of ,/, and ~b 
should involve more than two coefficients. It follows 
that 

~b = ~0 + Alq~l + Bl4P2 + . . . .  

q~ = C N ~ o  + . . -  

w h e r e  q~o and ~b 0 may be assumed equal to eq. (17) and 

After some algebra and by inspection of eq. (12), it is 
found that q%, qh, q'2 and ~0 are sufficient in number for 
the present problem. Thus the new form of q~ is 

q~(r , z )  = (m/)~*4) [4 + (?~*r) 2 - ()~*R) 2] cos ?~*z 

+ A l l o (  X*r ) cos X*z 

+ B 1 [ ?t*r!,( ~t*r ) cos )~*z 

- X*zl 0 (•*r) sin X'z].  (39) 

Introducing eq. (37) and eq. (39) into the first and last 
equations of eq. (12), rearranging the result in powers of 
z, equating the coefficients of z to zero, and the consid- 
eration of eq. (30) give the values of A 1, B 1 , and C t . The 
result of this procedure indicates that B 1 = C r Thus 
obtained stresses are exactly identical to eqs. (32), (33), 
(34) and (35), and the details of the algebra are not 
given here. 

5. Extension of the problem 

The actual problem is somewhat more complicated 
than the model considered here. The addition of a 
number of effects to the present model, and their in- 
fluence on the solution are briefly discussed below: 

(a) The existence of fuel rods affects and depresses 
the neutron flux distribution at the locations of the fuel 
rods. This in turn gives rise to a radially distributed 
energy generation. This distribution is small relative to 
the axial distribution, and can be neglected. However, a 
radially symmetric distribution included into the energy 
equation presents neither conceptual nor algebraic diffi- 
culty. Only eqs. (1), (13), (15), (17), and (39), and the 
resulting stresses, should be modified accordingly. Ra- 
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dially asymmetric distributions are rather involved, and 
are beyond the scope of this study. 

(b) The presence of a reflector leads to chopped 
radial and axial energy generations. This effect, how- 
ever, can be included in the problem without any diffi- 
culty. The order of the algebra remains the same. 

(c) The effect of cladding and that of the gap be- 
tween rods and cladding present no conceptual but 
increased algebraic complexity. The temperature prob- 
lem still remains simple. However, when included, the 
radial temperature distribution in cladding requires the 
consideration of the second complementary solutions 
for the Love-Galerk in  and Boussinesq-Papkovich 
potentials in terms of the modified Bessel functions of 
the second kind. 

(d) The effect of axial conduction considerably in- 
creases the algebraic complexity of both the tempera- 
ture and stress problems. However, since this effect is 
small, a parametric study of its effect on temperature 
should be done first, rather than proceeding to the stress 
problem. 

(e) The method of solution considered in this paper 
uses no axial boundary conditions. This method gives 
stresses whose mean, but not necessarily local, value is 
zero on the axial boundaries. However, these stresses 
diminish at very short (Saint-Venant) distances from the 
ends, and are negligible. At the expense of some alge- 
bra, these may be exactly eliminated by a suitable 
isothermal problem to be superimposed on the present 
problem. 
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