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A characterization of triplet EPR spectra in terms of the eight phenomenological pa- 
rameters of the spin Hamiltonian is given. Closed-form solutions for the three possible 
resonant fields between triplet energy levels are presented, and thus the calculation is 
valid over a wide range of spin-spin interaction strengths. The importance of the half- 
field (g = 4) spectra for extracting information about the Hamiltonian parameters is 
demonstrated, and a recipe is presented for fitting triplet EPR data using computer- 
generated spectra. 

INTRODUCTION 

Triplet EPR spectra reflect the strong spin-spin interaction between two spin-l/2 
species. The spectroscopist may use the parameters which characterize the spin-spin 
interaction to infer information about the paramagnetic site, such as interaction 
distance or the relative orientation of the interacting species-information which 
could suggest chemical bonding, for example. 

The study of triplet systems has a long history so this paper will not present any 
new fundamental results. It does demonstrate how to obtain more information from 
triplet EPR spectra than was realized previously. Reference (I) contains an extensive 
list of papers on triplet systems. Included in the theoretical discussions is a list of 
special cases where the resonant fields reduce to relatively simple expressions. In Ref. 
(2), the triplet eigenvalues are obtained in the same manner as presented here. In 
Ref. (3) the eigenvalue problem is formulated in an invariant geometric notation 
similar to that below. Reference (4) presents some computer simulations for a 
spin-l EPR spectra except that the Hamiltonian is not as general as here. 

The triplet Hamiltonian Z-nur discussed below assumes all field-independent in- 
teractions arise from electronic spin interactions. One could imagine adding to the 
Hamiltonian an applied field-independent term proportional to spin, say C. S. This 
term would imply that there is some fixed magnet within the molecule. For instance, 
the vector C could be proportional to the average magnetic field due to nuclear spins 
within and around the electron paramagnetic site. This paper assumes that regardless 
of how C. S may arise, it is negligible compared to the other terms in the Hamiltonian. 

A spin-l triplet system is, mathematically, the simplest spin system above spin 
l/2: one can readily perform a closed-form diagonalization of the 3 X 3 Hamiltonian 
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matrix operator. Furthermore, from the closed-form expressions for the energy levels, 
the paper derives closed-form expressions for resonant fields. These expressions are 
cumbersome for hand calculations, but they are quite reasonable to implement for 
a computer calculation. 

There is also a discussion of the results of computer experiments, performed with 
a computer program called TRIPLET, into the behavior of triplet spectra with respect 
to the Hamiltonian parameters. These simulations reveal the importance of the half- 
field (or 84) data to the spectroscopist. One may obtain, without simulation, good 
initial estimates of the principal triplet g values from the g4 data if the investigator 
has g4 data at two frequencies. Also, the g4 lineshape can be a sensitive indicator of 
the relative orientation of the principal axis system of the spin-spin interaction tensor 
and the principal axes of the g tensor. The g = 2 (or 82) data reflects the strength of 
the spin-spin interaction, i.e., the diagonal elements of the spin-spin interaction. 
The g4 intensity offers a check on the estimate for the largest diagonal element, since 
the g4 intensity goes as the square of that diagonal element. These estimates of the 
diagonal elements of the spin-spin interaction, coupled with the information contained 
in the g4 data, allow one to extract all Hamiltonian parameters after only a few 
simulations. 

This procedure for fitting triplet data restricts a possibly lengthy search through a 
parameter space of 11 variables (8 Hamiltonian parameters and 3 linewidth variables). 
The reader is directed to Ref. (5) for an alternative approach to computer simulations 
of triplet data using a least-squares type of fitting algorithm. 

THE METHOD 

For EPR powder spectra calculations, one must perform the following sequence 
of steps: 

(a) Choose a suitable spin Hamiltonian. 
(b) Calculate the energy eigenvalues and eigenvectors; i.e., diagonalize the spin 

Hamiltonian. 
(c) Calculate transition rates between states. This process involves 

(i) solving the resonance condition for the resonant fields, and 
(ii) finding the matrix elements of the magnetic dipole transition operator. 

(d) Sum over all possible orientations of the spin system with respect to the applied 
magnetic field to produce a powder spectrum. 

These steps are outlined below for the spin-l Hamiltonian. 

Step (a): Dejining the Parameters of the Triplet Hamiltonian 

The physical model assumes that there are two unpaired spins, S, and !$, at sites 
a and b within a molecule and that these two spins represent spin- l/2 species. In 
addition to the unpaired spin angular momentum at each site, there are also g tensors, 
G, and Gb, (assumed to be symmetric) associated with each spin. Reference (6) 
discusses the case for an asymmetric g tensor. Because these are electronic systems, 
each site has a magnetic moment. For sites a and b 

and &‘b = -&‘sb. [II 
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The energy of interaction of the two magnetic moments with an applied magnetic 
field B is the Zeeman interaction x0, where 

&“o = -pa-B - pb.B, PI 
or, expressed as the sum of a symmetric term and an antisymmetric term, 

Ga + Gb) 
~O=B(%+sb) 2 *B+PC%-Sb). 2 

(Ga-GdB 
. [31 

The two spins may also interact through a tensor J (here of unspecified origin). 
This spin-spin interaction is 

eTl = S,.J-s. [41 

J is a rank 2 Cartesian tensor (nine degrees of freedom) and, one may decompose J 
into the sum of its three irreducible parts. 

J = -2J1 transforms like a scalar under a 
one-dimensional representation of O+(3) 

-2K X 1 transforms like a vector under a 
three-dimensional representation of Of( 3) 
(antisymmetric term) 

+2D 

Therefore, 

transforms like a (traceless) symmetric tensor under 
a five-dimensional representation of O+(3) when the five 
independent components are written as a column vector. PI 

&“, = -2J& + 2K.(S, X ,!&a> + 2S,.D.!5,. PI 
One generally assumes that 

IJI ti IKI b 11D11. 171 

Moriya (7) gives a justification for this ordering. 
If IJI satisfies the inequality [7] and IIG, + Gb]l % l]Ga - Gbl], total spin is a good 

quantum number; the basis set with which to expand the Hamiltonians Z. and A?, 
is the total spin basis set, that is, the eigenfunctions of the scalar spin-spin interaction 
(see Table 1). One then extracts the triplet Hamiltonian from the S = l(3 X 3) 

TABLE I 

EIGENSTATES AND EIGENVALUES OF SCALAR SPIN-SPIN INTERACTION 

State IS, 44%) Energy 

Triplet 11, 1) = IT), @ IT),, -J/2 
11, 0) = (IT). @ ll)b + II). @ IT@ 

IL -1) = II). Q ll)b 

Singlet IO, 0) = (IT). Q ll)b - 11). @ IT)d/fi 3J/2 

IT) = (;) 11) = (9 
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subspace of A?‘,, and Xi. Because the S = 1 basis states are symmetric under interchange 
of spin, the expectation of any terms antisymmetric under interchange of spin must 
vanish, only symmetric terms from 9Y0 + X1 remain upon projection onto the 
S = 1 subspace. The scalar term in J may be dropped under demand of zero trace. 
Using the spin- l/2 algebra and the traceless and symmetry properties of the tensor 
D, one may write the triplet Hamiltonian as 

ZTRIp = @-G-B + S-DOS. PI 
The vector S is the total spin. Written in matrix form, it becomes 

^ 

where 

and G exists in 3 X 3 Cartesian space, where 

G = (G, + G&2. t111 
Thus, the triplet Hamiltonian retains only information about the average of the two 
original g tensors and the weakest portion, generally, of the spin-spin interaction 
(reduced by a factor of 2). 

The triplet g tensor is symmetric since, by assumption, it is the average of two g 
symmetric tensors. Therefore, G has three principal values, which define a coordinate 
frame, called the body frame, attached to the molecule. The diagonal form of G is 

GI 

Here, 
&~gy~gz- 

One can rewrite the triplet Zeeman interaction 

RzEE = j3S-G-B 
as 

Zz,EE = g/3Bs - fi, 
where 

g = g(i) = IG-il. 
Inthiscase 

iI21 

1131 

El41 

[I51 

[161 

B lx iz-s 

[I 
4 

B 1 
and ii = G 9 F/g. 

t 
1171 

See Fig. 1 for a representation of i and n^ in the body frame. 
The number of degrees of freedom in the triplet spin-spin or zero-field splitting 

(ZFS) interaction 
&“zFs = S-D-S WI 
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FIG. I. Representation of unit vectors i and n^ in the body frame. 

is five, a more reasonable number in terms of the ability to fit parameters than the 
nine degrees of freedom of J. D, because it is symmetric, also has a diagonal form, 
Do, where 

iI91 

Note that the 3 X 3 matrices of G in Eq. [ 121 and D,-, in Eq. [ 191 exist in Cartesian 
space and do not operate in the 3 X 3 spin space of the matrix of S. Because D is 
traceless, 
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x+y+z=o, PO1 
so that Eq. [ 191 accounts for two degrees of freedom. One may parameter&e the 
remaining three degrees of freedom by an Euler rotation R((Y, /3, y) of D,,: 

D = Na, B, r)DoR=(a, 8, Y). WI 
One may interpret &a, p, y) as actively rotating DO from a position where its principal 
axes are coincident with the body frame axis 2, f, and z^ to new positions 

(4 7 g22, ;3,> = w, B, Y)K A a. WI 

The ZFS interaction has a very simple form imposed upon it by the constraints 
of hermiticity, tracelessness, and the allowance of only five degrees of freedom. These 
constraints restrict G3Yzrs to the general form 

! 

Do D: 03 
2 ZFS= D, -2Do -0: . [231 

02 -0 Do i 

Do is real and D, and D2 are complex. If one were to expand SYzrs in terms of 
irreducible tensor operators, Do, 07, Df would be proportional to the coefficients of 
the tensors of rank 0, + 1, and +2 (0, and 02 are proportional to the coefficients of 
the tensors of rank -1 and -2). 

All parts of the triplet Hamiltonian have now been specified. 

Step (b): Diagonalization of XTRIp 

To calculate transition rates, one needs to know energy levels and normalized 
eigenstates of the paramagnetic system. The next step toward the construction of the 
spin-coupled spectra is the diagonal&&ion of 3’ TRIP given in essentially closed form 
expressions. 

The characteristic equation for zrNp is 

IxTRIP - x1 1 = 0, 

or 
[241 

P51 
n=O 

where tr,@?rr& is the nth generalized trace of X’rruP. For the cubic polynomial of 
Eq. [25] these traces are tro = 1; tr, = ordinary trace; tr2 = sum of all 2 X 2 determinants 
whose diagonal elements are diagonal elements of ,%rRIp; tr3 = ordinary determinant. 
The trace of flmrp is zero by design. One can show that the second trace tr2 is 

where 

and 

P61 

t271 

t2 = tr$Yz& = XY + xz + YZ. m31 
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Thus, the second trace of Z?rrup factors to a sum of the second trace from Zeeman 
interaction, plus the second trace of the triplet spin-spin interaction. As for the 
determinant of XrRIP, one can show that 

det (+%‘rRlp) = -b = 2&A2 + t3, ~291 
where 

Do = (l/2);-D-i, [301 
and 

t3 = det (&“zFs) = XYZ. [3ll 

By expressing the second trace and the determinant in the manner above, one can 
organize a somewhat confusing collection of parameters in a manageable form for 
both evaluation in a computer program and further algebraic manipulation. Because 
t2 and t3 are invariants, their values do not change regardless of the orientation of 
the magnetic field with respect to the spin system. Hence, they need only be evaluated 
once in the calculation of powder spectra. The characteristic equation then has the 
form 

X3 + aX + b = 0. [321 

Because one seeks the real roots of Eq. [32], the trigonometric solution to the cubic 
equation (8) is the most convenient form for two reasons: (1) One can readily check 
the reality of the roots, and (2) the trigonometric solution allows one to solve for the 
resonance conditions in a straightforward manner. The three roots are 

and 
A, = m * cos (cl), x2 = m * cos (0 + 4*/3), 

X3=m-cos Cl+? , 
( 1 

[331 

where 

and cos (38) = -g ; 0 G 8 G u/3. [341 

These roots satisfy the following relations: 

A, + x2 + x3 = 0; A, > x2 > x3; A, > 0 and x3 < 0. [351 

After finding the eigenvalues, one must then calculate the eigenvectors. TRIPLET 
calculates one solution for the unnormalized eigenvector I@)), corresponding to the 
eigenvalue Xi, where 

r d) i 

by findmg the pseudomverse of Z’rRIP - Xii; i.e., 

247) = COfjj(XTRIp - Ail)* 

1361 

[371 

One must then normalize the set of 1~~‘)) with any desired phase. 
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Step (c): Transition Rates 

To induce transitions from an initial normalized magnetic state Ii) to a final 
normalized magnetic state 1 f ), the EPR spectrometer applies a polarized microwave 
field of frequency u, which couples the magnetic component of that field, with amplitude 
B,, to the magnetic moment p of the triplet spin system, where 

jt = -j3G-S. 

This coupling is the magnetic dipole transition operator 

z’(t) = 2; cos (d), 
where 

ST; = -N.B,. 

1381 

WI 

[401 

Fermi’s golden rule, to a good approximation, gives the (absorption) transition rate 
W, as 

W&4 = ~I(fl(~)ji)l’p.(h/- Ai - hv). 

To include all possible transitions, one must sum over initial states. The total frequency 
space transition rate is 

W-r+) = c w&9. [421 
i-e/ 

The transition rate has two parts which require nontrivial manipulation to place 
the two expressions in a form suitable for calculation. They are 

(1) the density of final states p., which contains the resonance condition: 

Af/- Xi - hv = 0; 

(2) the magnitude of the matrix element (fjA?“,li) squared. 
Let us consider the density function. 

1431 

Most EPR spectrometers are field-swept spectrometers, instead of frequency-swept 
spectrometers; consequently, one needs to transform py from frequency space to field 
space. There is a well-defined procedure for doing this type of transformation from 
the theory of statistical density functions (9). This procedure, a fundamental theorem 
of density functions, stated in a nonrigorous form, says that if&(y) is a density function 
for a random variable y, and y is a function of another random variable x, 

then 
Y = g(x), WI 

f,(Y) = i &, [451 

wherexi,i= l,..., n, are the n real roots of Eq. [44]. 
To convert the density function p from frequency space to field space, one must 

solve the equation 
AEi/= hv, [461 
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which corresponds to Eq. [44], for the resonant field that satisfies this equation. 
Because there are three possible energy levels, there are three possible transitions: 

A, - X2 = hv = n&3 cos (8 + r/6), 

and 
X2 - X3 = hu = mfi cos (8 + 3?r/6), 1471 

A, - X3 = hv = r& cos (8 - r/6). 

One comes to the expressions in Eq. [47] after applying standard trigonometric identities 
to the expressions in Eq. [33]. See Fig. 2 for a typical triplet energy-level scheme and 
the three resonances. 

All three resonance conditions in Eq. [47] have the same form, namely, 

hv 
cos (8 + a) = - 

d3’ 

where the angle 8 is a function of the magnetic field: 8 = e<B). To find the resonant 
fields, one must solve Eq. [48] for B. Using a multiangle trigonometric identity one 
may easily show that 

sin2 (30) = (4 ~08~ (8 + (Y) - 3 cos (8 + a))2 1491 

is true for (Y = -u/6, n/6, or 3x/6. Combining Eqs. [34], [48], and [49], one can 
show that all three resonance conditions invert (i.e., one can eliminate 8) to 

4a3 + 9a2(hv)2 + 6a(hv)4 + (h# + 27b2 = 0. WI 

Inserting Eqs. [26] and [29] for a and b in terms of A = gbB, one finds that EQ. [50] 
reduces to 

(A2)3 + p(A2)2 + q(A2) + r = 0. 1511 

ENERGY 

I 
MAGNETIC FIELD 

FIG. 2. Typical energy-level d&am for a single-powder orientation and the three corresponding resonances. 
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The coefficients of this cubic equation in A’, with 6’ = (hv)’ + t2, are 

p = - ; [3a2 + t2] - 27L& 

q = 3 [(sy + 3t, * 621 - 27D&, 

I = $ [(S2)3 + 3t2 * (s2)2] - y t:. 1521 

Note from Eq. [52] the rather curious fact that the product of the three roots of Eq. 
[51] is 

(Al*A2*A3)= r, 1531 

a number independent of the projection Da. The resonant fields occur in the cubic 
Eq. [5 11 in A2; this situation reflects the fact that the resonance condition is insensitive 
to which direction the spectrometer applies the magnetic field. To obtain the resonant 
fields, one should again use the trigonometric solutions to the cubic equation. In this 
case the equation has a “trace” term p, so that all trigonometric solutions must be 
shifted by -p/3 (l/3 of the trace). Equations [5 I] and [52] are the only known (to 
this author) closed-form expressions for the triplet resonant fields. 

The next portion of the density function transformation theorem which one must 
calculate is the renormalization factor lg’(xi)l. In terms of frequency, the resonance 
condition is 

v(B) = &lh, 1541 

so that the renormalization factors are 

Igy4.1 H 1$1,eB,, i = 1, 2, Or 3. 
I 

1551 

The Appendix gives a closed-form expression for these three derivatives. Consequently, 
the transition rate, for a single species, from frequency space to field space, is 

W-&J) - W+(B) = C - [561 

Generally, the modeling of pdB,) is phenomenological; one picks a lineshape that 
is convenient and gives a good fit to the data. A Gaussian density function is a popular 
choice; for a Gaussian, 

1571 

The linewidth or variance a& is a phenomenological parameter which one must 
determine experimentally. However, if one assumes that the density function p,(u) 
has a variance u,, independent of frequency, then one can show that the approximate 
relationship between the variance of the frequency space density function and the 
field space density function (9, p. 152) is 
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or 

1581 

Thus, renormalization also affects the linewidths in the transition from frequency 
space to field space. 

The second part of the transition rate is the matrix element of Z’, between an 
initial and final state. Because 

A?‘, = m.G.B1, [W 
then 

(fI&“‘,li) = /3(flS]i).G.B, = @+G.B,. 

If the components of the eigenvectors, from Eq. [37] say, are 

WI 

then 

C+1 
Ii) = co [ 1 and If)= 4’ 

c-1 Body c I d-1 ace’ 

+ c-,)4 + co@:, + d’dl 

I 
- cc,)dz - c,(d*,, - df,)] . [611 

L c+,d*+, - c-,dZ, J 

The standard convention places Br along the i axis of the laboratory coordinate 
frame, so that in the body frame 

Bll~ody = wwh 4 4w, 

where R(&, 6, #) is an active three-space rotation. Thus, 

l(fl~~li>li&dy = B ‘B:S,* G - (R(4, 8, 1,&3=R=(4,8, J/)) - G * S$, WI 
where 

cos qi cos 6 cos J/ - sin C#I sin $ 
RCA 8, $6 = 

[ 
cos 4 sin 8 cos + - cos 4 sin # 

-sin e cos $ I 
. E31 

If one defines the dyadic M(& 8, $) to be 

~(4, 4 ti) = ~(d, 8, ~wT~T(9,e, a F41 

then the total transition rate for a single species becomes 

W51 
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Step (d): Powder Spectra 

EPR samples, especially biological samples, are typically amorphous and one gen- 
erally ignores magnetic interaction of one molecule with another. Thus, one assumes 
that the paramagnetic molecules are randomly oriented. For any molecule, the prob- 
ability density (that the body frame assumes some orientation 8, 9, $ in dQ& with 
respect to the laboratory frame) is constant and equal to 1/(4a. 2~). The expected 
value I(B) of Wr(B) for N independent molecules is then 

In practice, because of field modulation, the spectrometer measures W3B. One can 
perform the integral over the third angle # in closed form because the only quantity 
which depends on $ in W+(B) is the dyadic M(& 8, #). A computer must perform 
the remaining integral over solid angle. Averaging M($, 8, 1+5) over J/ one finds that 

2L %’ d+nm(4, 8, $1 = ~(4, e) = i/2(1 - ;tT). - 

Therefore, the total triplet powder derivative spectrum is 

i3I N/V2B: 3 
as- - 7 T [ dQ[f+ G . M(& 6). G . S$],. apz)‘aB , 

I I 
r-l - 

a3 B, 

WI 

or 
ar - 
dB 

a: ;: j- dQ{S&g2(1 - AAT)].S$}..ap$?)‘aB. 

I I 

W91 
r=l 

z B, 

The FORTRAN program, TRIPLET, calculates aI/aB according to Eq. [69] (see 
(IO) for a listing of TRIPLET). Because the eigenvalues and eigenvectors of %rmp, 
as well as the resonant fields, have closed-form expressions, the computer program 
can calculate triplet spectra over a wide range of input parameters. 

TYPICAL BEHAVIOR 0~ azjas 

If a triplet EPR computer simulation program is to be useful in modeling data, 
then one should not blindly search through the parameter space. One needs insight 
into the behavior of the function aZ/aB. The next sections discuss typical behavior 
of aZ/aB and how the various Hamiltonian parameters manifest themselves in the 
powder spectra. 

If the Zeeman interaction is the dominant interaction, then for fairly accurate 
expressions for the eigenvalues of ‘%?mip, to order l/A, 

A, = A + DIJ - (1/2)(t2 + 3&Q/A, 

X2 = 2Do, 



36 R. C. STEVENSON 

and 
x3 = -A + Do + (l/2)(& + 3d&4. 

The three resonant conditions, to first order, are 
[701 

hv = X2 - X3 = A - 3Do - B, = (hv + 3&,)/(g@), 
hv = A, - X2 = A + 30,, - B2 = (hv - 3D,,)/(g/3), 

and 
hv = Al - Xx = 2A - B3 = hv/(2g/3). 1711 

The first two equations of Eq. [71] imply that for each “powder orientation,” at 
normal EPR frequencies, say X band to Q band, there are two resonances B, and 
BZ, which are split by about 6D0 (Do in units of gauss). The center of this splitting 
is approximately at the field value corresponding to g, i.e., hv/(gS). The third resonance, 
B3, is the half-field or g4 resonance. Its position on the field scan is close to midway 
between zero field and the center of splitting for B, and BZ . Each of the three resonances 
depends on the solid angle fl only through the dependence on Do and g. Note also 
that the ratio of dv/dBj to av/dB, or &+3B2 is about 2: 1. From Eq. [58], this renor- 
malization implies that the g4 linewidth is about half that of the g2 linewidths. 

If the anisotropy of the tensor D is much larger than the g tensor, then the parameter 
D,, dominates the variation of the two g2 resonances with solid angle. A powder g2 
spectrum reflects quite plainly the anisotropy of D. To see this one strips the expression 
for the intensity I(B) to its bare essentials, the powder spectrum becomes the sum of 
many “sticks”; i.e., it is determined only by the resonance condition; therefore, 

bale 

Z(B)lgz -2” s dM(B - B,(Q)) + s &6(B - B*(Q)). 1721 

Since the delta function is a density function, one may apply the density function 
transformation theorem, in a slightly modified form, to evaluate the integrals in Eq. 
[72] over solid angle. Hence, 

r is a curve on the 4, B plane, determined by the constraint equationf(n) = 0. Also, 

I a v,=s$++- 
sin 0 a4 ' 

and 
f(Q) = B - Bi(Q), i= 1,2. 1751 

The integrand of Eq. [73] will diverge when 

IV8i(fi)I = 0, i= 1,2. 1761 
These poles dominate the appearance of derivative powder spectra. If one refers to 
the first-order solutions for the g2 resonances and also assumes that the first-order 
behavior reflects a generally monotonic behavior of B, and B2 with respect to Do, 
then VnBi = 0 when V&, = 0, assuming that the anisotropy of g is negligible 



TRIPLET STATE EPR SPECTRA 37 

compared to Do. The angles C#J and 8 for which V&, = 0 are precisely those angles 
for which D attains its extreme values. Thus, one expects that the integrand of Z(B) 
for a real powder spectrum to diverge whenever, during the powder integration, the 
angles C/J, and 0 are such that Do = X, Y, or 2. However, the integration over Q can 
reduce the poles from spikes to steps. A finite linewidth rounds the comers of the 
steps, as well as damps any further poles not reduced by the integration over solid 
angle. Typically then, the g2 powder spectrum exhibits six turning points or “lines” 
(two resonances, three lines per resonance) with three corresponding “splittings,” 
called principal splittings, of magnitude (in gauss) of 

IB, - &1 a 61X(, 6lYl, and 6121. 1771 

The centers of splittings vary with the Euler rotation R(a, 8, y). Table 2 gives the 
approximate g values for the centers; they must lie between g, and g, because by Eq. 
[ 131 g, and g, are the extremes of the g tensor 

gx d g,, g2, g3, G gz. t7f31 

Note that if in real data g, , g2, or g3 are not the principal g values, then there must 
be an Euler rotation R(a, 8, y). Figure 3 shows a typical absorption and derivative 
spectra generated by TRIPLET. 

Data from the g4 region of triplet spectrum is very important to the spectroscopist 
because it contains much information about magnitudes of many of the phenome- 
nological parameters. Equation [7 l] shows that the g tensor dominates the half-field 
resonant positions to first order. From this approximation, one would expect the g4 
resonance to look much like an anisotropic spin- l/2 powder spectrum with three 
principal turning points determined by the g values. Indeed, these two spectra do 
have similar features. However, there are important differences due to second-order 
contributions from D to the line positions or resonance condition. 

Using the second-order expressions for the eigenvalues hI and X3, one finds a 
second-order expression for the g4 resonance: 

second 
order hv 

B3=-+ V2 + 3%) 
a@ gS& * 

[791 

One can show that the second-order correction 

02 + 3~~YC&&) WV 

TABLE 2 

APPROXIMATE g2 SPLITTINGS AND THE EFFECTIVE g VALUES 

Splitting Center of splitting Direction 

61x1 81 = g@,) 6 = &a, 8, rti 
6lYI &?2 = g@22) 4 = &a, B, YS 

614 g3 = g(d3)  4 = Ra, 0, r)f 
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FIG. 3. Typical triplet spectra. The top tigure is an absorption spectrum which includes g4 and g2 powder 
resonances. The bottom 6gure is the corresponding derivative spectrum. In the bottom fiv are noted 
the principal splittings and centers of splitting. 

is negative for all powder orientations; thus, the second-order term shifts the g4 
powder spectrum to lower fields, and, generally, the larger the principal values of D, 
then the larger the shifts. In addition, the second-order expression demonstrates that 
the higher the microwave frequency, the smaller the contributions from second-order 
corrections and the more the g tensor dominates the turning points at g4 (see 
Fig. 4). 

The second-order correction can also profoundly a&c% lineshape. Generated g4 
spectra show that the g4 lineshape is sensitive to variations in the Euler angles a, B, 
and y. Figure 5 demonstrates this variation with a few combinations of the three 
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angles. These variations are essentially the only visual handle one has to extract the 
Euler angles from the data independently of the other parameters. Variations in the 
Euler angles do not generally manifest themselves at g2 as readily as at 84. 

Equation [79] also permits one to calculate a fairly accurate formula for the triplet 
g values, if there exist g4 data for at least two frequencies Y” > Y*. Suppose that the 
three principal turning points at Y’ are B&, i = x, y, or z, with corresponding turning 
point fields at vII. The principal g values, to second order, from Eq. [79] are 

second 
order h B\‘$’ - Biid 

gi = ‘I2 2 (B5.2 - (B5)2 * 
0 

1811 

To show how well this approximate formula works, consider the simulated Q-band 
(33 GHz) and the P-band (15 GHz) g4 simulations of Fig. 4. The turning points 
measured from these two g4 spectra are those listed in Table 3. Table 4 illustrates 
the accuracy of the formula of Eq. [S l] by comparing the g values used to simulate 
the spectra with the g values calculated from Eq. [81] using the numbers in 
Table 3. 

Many laboratories do not have multifrequency capability, but when studying spin- 
spin interaction it is almost mandatory to have data at at least two frequencies to be 
able to separate field-dependent interactions from field-independent interactions. 

RECIPE FOR FITTING DATA 

The qualitative behavior of triplet EPR spectra, as reviewed above, suggests a 
procedure or recipe for fitting EPR spectra suspected or known to be triplet data. 

Step 1. (a) Find the first estimate for the principal g values from the half-field data 
at two well-separated frequencies; or one might use Eq. [ 1 l] if one knows the two g 
tensors and their relative orientations. Indeed, if the principal g values from the data 
satisfy Eq. [ 1 I], this is strong evidence for a triplet interaction. 

(b) Determine the principal splittings in gauss, and thus the first estimate of the 
principal values of the ZFS tensor. 

(c) Determine the centers of splitting for the three principal splittings, and if the 
corresponding g values for these centers are much different than the principal g values 
determined in Step la, then there clearly is a rotation R(cY, 0, y) f 1. 

(d) Measure the linewidths of the turning points at g4 and g2. The g4 linewidths 
should be approximately half the g2 linewidths. The full linewidths at half maximum 

TABLE 3 

MEASURED TURNING POINTS FROM g4 
SIMULATIONS FROM FIG. 5” 

(33 GHz) Y” 5856 6034 6131 
(15 GHz) v’ 2641 2719 2769 

’ All fields in gauss. 
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TABLE 4 

SEWND-ORDER EXPRESSION FOR g VALUES AND COMPARISON OF 
CALCULATED WITH PRFWFUBED g VALUES 

For Fig. 4 value used in simulation 2.010 1.950 1.920 

Calculated g values from data in Table 3 2.009 1.949 1.920 

at g4 are good first estimates for Us and a,; ay requires more trial and error 
guess work. 

Step 2. With the initial estimates for g,, g,, and g,, X, Y, and Z, and a,, a,,, and 
uz, simulate the g4 data for various choices for the Euler angles (Y, 8, and y. 

Step 3. After obtaining a “reasonable” fit at 84, with possibly some alterations in 
principal g values and linewidths from the initial estimates, next simulate the g2 
region, refining the estimates for the ZFS parameters X, Y, and Z during successive 
simulations. 

Step 4. Work back and forth between the g2 and g4 refining parameters until one 
obtains the desired degree of accuracy in the fit. 

The recipe for fitting given above, in some sense, constitutes a statement of the 
uniqueness of the fitting parameters; there are degeneracies in the Euler angles due 
to the symmetries of the trigonometric functions of the Euler rotation, but generally 
a fit is possible with all angles restricted to the first quadrant. The reader is referred 
to Ref. (21) for an example of the simulation of spin-coupled data using TRIPLET 
and the recipe above. 

CONCLUSIONS 

The calculation of EPR spectra from the triplet Hamiltonian is an interesting 
exercise in quantum mechanics. Closed-form expressions exist for many of the desired 
quantities; the 3 X 3 problem is tractable when compared to higher dimensions. The 
behavior of triplet EPR spectra plainly reflects the Hamiltonian parameters, if one 
knows how to look. 

APPENDIX: TRIPLET RENORMALIZATION 

All resonances have the form 

AE = hu = v%n cos (8 + 6,). 
where 

6, = *?r/6 and 3~16 

(see Eq. [48]). The corrections are 
au 

I I zi’ 

[AlI 
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where 

h $j = V$d*/dB) cos (0 + 6,) + &$-sin (8 + 6,)). g . WI 

The various derivatives one must insert into Eq. [A21 are 

dm 2& -= --- 
dB 3m dB ’ 

de 1 b 2b 1 da -= ----- 2D -- 
dB sin 38 a 3m2 ‘amdB 

and finally, 

[A41 

WI 
Here, 

a = -Af + t2 and -b = 2DoAf + t3. [A61 
The sequence of steps that a computer program must perform to calculate the cor- 
rections goes as follows: 

Calculate (a) 8 and A,, (see Eqs. [34] and [5 I]). 

(b) daldB, 

Cc) aId& 

(4 dmld& 

(e) duldB. 
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