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Smoluchowski's coagulation equation with a collection kernel K(x, y) ~ (xy) ~ with t/: < co < 1 
describes a gelation transition (formation of an infinite cluster after a finite time tc (gel point)). For 
general 60 and t > tc the size distribution is c(x, t) ~ x -T for x ~ oo with r = ~0 + 3/2. For ~o = 1, we 
determine c(x, t) and the time dependent sol mass M(t) for arbitrary initial distribution in pre- and 
post-gel stage, where c(x, t) ~ x -5/2 exp(-x/xc) for large x and t < to; c(x, t) ~ (-2Q)1/2x-5/2 for large 
xt and t > t~. Here x¢ is a critical cluster size diverging as (t - t¢) -2 as t T to. For initial distributions 
such that c(x, O) ~ x p-2 as x --* O, we find M(t) ~ t -p/tp+') as t --~ ~ .  New explicit post-gel solutions 
are obtained for initial gamma distributions, c(x, O) ~ xP-Ze -px (p > 0) in the form of a power series 
(convergent for all t), and reducing for p = oo to the solution for monodisperse initial conditions. For 
p = 1, the solution is found in closed form. 

1. INTRODUCTION 

Smoluchowski ' s  equa t ion  for r ap id  coag- 
u la t ion (1) describes the  evo lu t ion  o f  a system 
of  part icles which  are  con t inuous ly  growing 
as a result  o f  pairs  o f  part icles  coming  into  
contac t  and  adher ing  or  bond ing  to form clus- 
ters. Examples  inc lude  the coagula t ion  o f  
aerosols and  col loidal  suspensions,  and  the 
fo rmat ion  o f  polymers .  These systems may,  
in general,  be descr ibed by  the kinet ic  equa-  
t ion:  

ct(x, t) = ~ d y K ( y ,  x - y ) c ( y ,  t ) c ( x  - y ,  t) 

~0  °° 
- c ( x ,  t) d y K ( x ,  y ) c ( y ,  t), [1.1] 

where c ( x ,  t ) d x  represents  the  n u m b e r  o f  clus- 
ters with size in (x ,  x + dx )  at  t ime  t. A sub- 
script, as in ct, denotes  a par t ia l  derivat ive.  
The  two te rms  represent  the  gain and  loss o f  
x-clusters,  the  rate  at  which Xl-Clusters x2- 
clusters comb ine  to fo rm (x~ + x2)-clusters 
being given by  K ( X l ,  x 2 ) c ( x l ,  t ) c (x2 ,  t ) d x l d x 2 .  
The coagula t ion  kernels  o f  interest  in this  pa-  
per  are o f  the  general  form K ( x ,  y)  = Ko(xy )% 

Firs t  we cons ider  the special  case 00 = 1. I t  
was bel ieved for a long t ime  (1-6)  tha t  solu- 
t ions o f  Smoluchowski ' s  coagulat ion equat ion  
with the  col lect ion kernel  K ( x ,  y)  ~ x y  exist 
only  for small  t imes.  This  bel ief  was based  
upon  the behav ior  o f  the  m o m e n t s ,  which in 
general  are def ined by  

Mn( t )  = d x x n c ( x ,  t). [ 1.2] 

At  some point ,  342 becomes  infinite,  and  at  
a later  t ime,  M0 seems to become  negative.  
However,  it turns  out  that  past  the po in t  where 
Mz is infinite, the formal ly  der ived  m o m e n t  
equat ions  are no  longer  valid,  and  there  exists 
solutions for which M0 (the n u m b e r  o f  clusters) 
r emains  posi t ive for all t ime.  In  the  case o f  
discrete mass  dis t r ibut ions ,  Zif f  et  al. (7, 8) 
and  Leyvraz  and  Tschund i  (9) have recent ly  
given the explici t  global  so lu t ion  for a m o n o -  
disperse ini t ia l  d i s t r ibu t ion  and  discuss the  
ensuing phase t rans i t ion  (gelation); Leyvraz  
and  Tschudi  have p roved  the existence o f  so- 
lut ions for all t imes,  and  Ziff  et  al. (10) have 
given the explici t  global  so lu t ions  for a rb i t ra ry  
ini t ial  d is t r ibut ions ,  and  extensively ana lyzed  
the singulari t ies occurr ing  in the  size dis t i l -  
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but ion and  its m o m e n t s  near  the t ransi t ion 
t ime.  

In this pape r  we will discuss the case o f  
general cont inuous  initial mass  spectra, c(x, 
0), for the coagulat ion kernel  K(x, y) = Koxy. 
Here  some propert ies  of  the solut ion differ 
strongly f rom those in the discrete case, in 
part icular  the long t ime  properties.  Note  tha t  
we m a y  set Ko = M~(0) = M2(0) = 1 wi thout  
loss of  generali ty by choosing p roper  units  for 
x, t and  c(x, t): M2(O)/MI(O), 1/KoM2(0), and  
MI(O)3/M2(O) 2, respectively. For  the kernel  
K(xy) = xy  we m a k e  a pre l iminary  investi- 
gat ion of  the m o m e n t  equat ions  (1): 

yo t(4~(t) = ~ dx  d y [ ( x  q- y ) n  _ X n _ y n  l 

× xyc(x,  t)c(y, t). [1.3] 

These can be derived f rom the coagulat ion 
equat ion if  one assumes that  orders o f  inte- 
gration can be freely interchanged.  

For  n = 1 it follows that  the total  mass  of  
all clusters M(t) =- Ml(t)  is conserved: 

~/1 = 0  or M ~ ( t ) = M ( t ) =  1 [1.4] 

provided M2(t) < ~ .  This  condi t ion is nec- 
essary to give a well-defined mean ing  to [1.3], 
as the r ight-hand side equals MI(M2 - M2). 
When  c(x, t) is such that  M2 = ~ ,  the de- 
t e rmina t ion  of  ~ / r e q u i r e s  more  care, as dis- 
cussed below. 

For  n = 0 one finds 
h)1o = -V2M 2. [1.51 

As long as M(t) = 1, the general solut ion of  
[1.5] is 

Mo(t) = M0(0) - '/2t, [1.61 

where Mo(0) is the n u m b e r  of  clusters at the 
initial t ime. Note  the unphysical  predict ion 
by [1.6] that  Mo(t) becomes  negative for t 
> to = 2/Mo(0). 

For  n = 2 one finds J ~ r  2 = M2 z, p rovided  
M3(t) < ~ .  This  yields 

Mz(t) = M2(0)(1 - tM2(0)) l 

= (1 -- t) - l ,  [1.7] 

where M2(t) approaches  infinity within a finite 

t ime tc = l /M2(0) = 1. (Recall  tha t  units  are 
chosen such that  M1(0) = M2(0) = 1.) 

For  n = 3 one finds 

M3(t) = M3(0)(1 - t) -3, [1.8] 

provided M4(t) < ~ .  
Similar peculiar properties become  manifest  

for the somewha t  different situation, where 
c(x, 0) = 0 and  where clusters o f  size x are 
generated by  a source of  strength Q(x), for 
convenience  taken to be t ime  independen t  (4, 
11-17). After adding the source t e rm  Q(x) to 
the f ight-hand side of  the coagulat ion equat ion 
[ 1.1 ], one finds 

1 
Mo(t) = Jot - -~ t3; M(t) = M~(t) = t 

M2(t) = tan t; 

1 (sint)3} ' [1.9] M3(t) = J3(cost) 3 s i n t  - ~ 

where the m o m e n t s  of  the source are defined 
as Jn = f o  dxxnQ(x) • Here  we have chosen 
units such that  Ko = J 1  = J 2  = 1. The  results 
[1.91 for Mn(t) are valid p rov ided  M~+l(t) 
< oo(n >/1). We note again that  Mo(t) becomes  
negative for t > to = (6Jo)1/2; and  M2(t) diverges 
at t = tc = a-/2, with tc < to. 

In Sections 2 and 3 we will obta in  the so- 
lut ion of  the coagulat ion equa t ion  [ 1.1 ] (with- 
out  a source term) with K(x, y) = xy  for all 
times and for general initial conditions, and 
show that  they are physically meaningfu l  for 
all t imes. The  above results for Mn(t) will ap- 
pear  to be valid only for t < te = 1. We will 
further see (Section 2) that  for t > 1 the total  
mass  M(t), conta ined  in the clusters o f  finite 
size (sol particles) is no longer conserved,  im-  
plying the fo rmat ion  o f  an infinite cluster (gel, 
superparticle),  which contains  a finite fract ion 
of  the total mass  in the system. In other words, 
at t ime  t~ there occurs a phase transit ion,  
known as gelation in po lymer  science. 

In the absence o f  sources the size distri- 
but ion  (see Section 3) past  the t ransi t ion point  
(t > 1) is found  to have an algebraic tail c(x, 
t) ~ x - r  with r = 5/2 independent  o f  the 
initial size distribution, as in Junge ' s  law (33). 
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The Smoluchowski equation [1.1] with K(x, 
y) = x y  excludes for t > tc the possibility that 
finite clusters or sol particles coalesce with the 
infinite cluster or gel (8, 10). A modified co- 
agulation equation, which accounts for sol-  
gel interactions, is discussed in Section 4. 

In Section 5 we will briefly discuss coagu- 
lation kernels of  the form K(x, y) = (xy) °~. I f  
w satisfies the inequalities l/z < w < 1 a similar 
phase transition occurs (18-21). Past the tran- 
sition point the size distribution has an al- 
gebraic tail with an exponent ~- = w + 3/2. 
The results are summarized in Section 6. 

For the case of  a stationary source it is well 
known (4, 1 I, 13, 16, 17)that the coagulation 
equation with K(x, y) = (xy) ~ admits stationary 
solutions c(x, ~ )  "-~ x-* with ~" = w + 3/2, 
and it was pointed out (21, 17) that this cor- 
responds for 1/2 < w < 1 to the formation of  
an infinite cluster. 

In this paper we discuss the coagulation 
equation without source terms. In a separate 
paper the effects of  sources on coagulation 
and gelation will be considered (22). 

2. TIME DEPENDENCE OF THE SOL MASS 

By calculating the mass flux across a certain 
mass L, and by taking the limit as L --~ ~ ,  
we show the possibility o fa  nonvanishing mass 
flux for L ~ o% indicating the appearance of  
an infinite cluster or gel at the gel point to. 
From the general solution of the coagulation 
equation, a functional equation for the (time 
dependent) total mass M(t) of  sol particles is 
derived, and applied to examples of  special 
initial distributions. Finally, we determine the 
asymptotic properties of  M(t) as t ~ t~ and 
a s / - - - ,  ~ .  

Violation o f  Mass  Conservation 

In order to understand what is happening 
at t~ = 1 we reconsider the derivation of  the 
law of  mass conservation. Call M <L) the total 
mass of  sol particles with size x < L, i.e., 

M~L)(t) = dxxe(x,  t), [2.1 ] 

then the loss of  mass from smaller clusters 

with x < L to larger clusters can be calculated 
from the coagulation equation [ 1.1 ] with K(x, 
y) = xy  as 

f0 I; M~L)(t) = - dxx2c(x, t) dyyc(y, t) 
--X 

[2.2]  

and it follows that ~ ; / =  0 only if the right- 
hand side vanishes in the limit L --, ~ .  The 
value of  3~/tL)(tc) at large L depends on the 
large x-behavior ofc(x,  t~). The first factor on 
the right-hand side of  [2.2] is part  of  M2(t), 
which diverges at to; the second factor is part  
of  Ml ,  which remains finite at tc. I f  we rep- 
resent the large x-behavior of  c(x, tc) by x -~ 
then r must  satisfy the inequalities 2 < r 
< 3. Simple power counting predicts that 
h)af(L)(tc) ~ L 5-2~ for L ~ ~ .  For r > 5/2 the 
limit of)Q(L)(t~) as L ~ ~ vanishes, and the 
total mass of  sol particles is still conserved at 
tc. If, however, z ~< 5/2, then k:/(L)(t~) ap- 
proaches for L ~ ~ a (finite or infinite) neg- 
ative value, indicating that there is a loss of  
mass from finite size clusters (sol particles) to 
the infinite cluster (gel, or super particle). 

In the next section we will solve the co- 
agulation equation and determine the large x- 
behavior of  c(x, t). It will turn out to yield 
c(x, tc) ~ x -5/2, indicating that a phase tran- 
sition occurs at the point tc = 1 with af ini te  
mass loss rate of  sol particles. 

General Solution 

In order to solve M(t) we consider first the 
equation of  motion for the Laplace transform 
of the mass distribution xc(x,  t), defined as 

f (z ,  t) = dxxc(x,  t)e -zx. [2.31 

After multiplying [ 1.1 ] with x and taking the 
Laplace transform we obtain 

f t  = - f z ( f  - M).  [2.41 

It is a quasilinear partial differential equation 
which has to be solved subject to the initial 
condition: 

f (z ,  o) =- u(z) (u(O) = - u ' ( O )  = 1). [2.5]  
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This equation can be solved by introducing 
the inverse function, z(f, t). Using fz = (zf)-I 
and ft  = - z t / z f  we see that z satisfies zt = f 
- M(t), with the initial condition z(f ,  O) 
= u-10c), the solution of which is given by 

Z = u - l ( f )  -]- ft  - T [2.6a] 
o r  

f : u(z - f t  + t) = f (z ,  t) [2.6b] 
where 

T = d-cM(r). [2.6c] 

The function u -1 is the inverse of u. The La- 
place transform f ( z ,  t) is implicitly given by 
[2.6] as a function of (z, t) for a given initial 
distribution f ( z ,  O) = u(z). 

The equation of motion [2.4] and the gen- 
eral solution [2.6] for the Laplace transform 
f ( z ,  t) of  the continuous size distribution c(x, 
t), and for the generating function f ( z ,  t) 

oo 

= ~ Ck(t)e -kz in the case of  discrete masses 
k=l 

are identical (10). However, the initial value 
f (z ,  O) = u(z) is an ordinary Laplace transform 
for continuous mass spectra and a discrete 
transform for discrete mass spectra. The prop- 
erties of the functions u(z) are markedly dif- 
ferent at large z, resulting from the differences 
in the initial mass spectra (between the con- 
tinuous and the discrete case) at the fine 
grained side of the spectrum. 

Functional Equation for  M(t) 

The solution [2.6] still contains the un- 
known mass of sol particles, M(t)  = f(O, t), 
which may be determined self-consistently by 
putting z = 0 to yield the functional equation 

m = u ( T -  tm) .  [2.7] 

It can be solved by differentiating [2.7] with 
respect to time: 

= - t ~ l .  u ' (T  - tM) .  [2.81 

This equation has two solutions for all t, pro- 
vided the first singularity of u(z) in the complex 
z-plane with Rez  < 0 is (i) located at a point 
Zo < 0, a finite distance away from the origin, 
and (ii) has the property u'(zo) = oo (10), i.e., 

the initial size distribution can be bounded 
by an exponential. At the end of Section 3 
more general initial distributions will be con- 
sidered. 

Returning to [2.8] we have a constant so- 
lution: 

Ma(t) = M(0) = 1, [2.91 

and a time-dependent solution, parametrically 
given by 

Mb = u(s) 

t 1=- -u ' ( s )  [2.10] 
with s > Zo. 

The two solutions indicate that f ( z ,  t) is a 
double valued function of  z. The physical 
branch of  f (z ,  t )--being a Laplace transform 
of  a positive function xc(x ,  t)--is  a monoton- 
ically decreasing function o f  z, and vanishes 
as z ~ + oo. Therefore, the physically relevant 
root of [2.8] is the smaller one of Ma and Mb. 
From a graphical solution of  [2.10], using the 
property that u(z) is monotonically decreasing 
(with u(0) = 1 and u'(O) = -1) ,  it follows that 
Mb(t) > 1 for t < 1 and Mb(t) < 1 for t > 1. 
Therefore the sol mass is given by 

M(t)  = min{Ma, Mb} 

= ~1 (t < 1) 
( mb(t) (t > 1). [2.111 

There occurs a phase transition (gelation) at 
the gel point tc = 1. In the sol phase (t < 1) 
M(t) is constant; in the gel phase (t > 1) M(t)  
decreases to zero as time progresses. The loss 
of mass, starting at t = 1, is associated with 
the formation of an infinite cluster (gel, su- 
perparticle). It is a loss to infinity due to the 
cascading growth of  larger and larger clusters, 
where the process accelerates, as the clusters 
grow larger, since the rate is given by K(x, y) 
= xy. The mass deficit, G(t) = 1 - M(t),  is 
called the gel fraction, which is only nonvan- 
ishing past the gel point tc = 1. 

Examples  o f  Init ial  Distribution 

For monodisperse initial conditions, c(x, O) 
= 6(x - 1), it follows from [2.3] and [2.5] that 
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u(z) = e -z. One deduces f rom [2.10] and [2.11] 
that  the sol mass  is 

1 (t < 1) 
M(t)  = 

t -1 (t > 1). [2.12] 

The  corresponding result for the total  n u m b e r  
o f  clusters follows f rom [1.5]: 

IM0(0) - VEt (t < 1) 

Mo(t) = (M0(0) 1 + 1/(2t) (t > 1). 
[2.13] 

I f  the initial mass  distr ibution is a g a m m a -  
distribution xc(x ,  O) = pPxP-le-PX/I'(p) with 
p > 0, then u(z) = (p / ( z  + p))P. The  sol mass  
is given by 

f l (t < 1) 
M(t)  = t_p/(p+o (t > 1), [2.14] 

and  the corresponding total n u m b e r  o f  clusters 
is 

Mo(t) 

{ rM0(0) - l/2t (t < 1) 

_ ~ + 1 ( p  + l~t_(p_,)/¢p+l) 
= Mo(0) p - l  2 k p - l /  

( t >  1). 

[2.15] 

Note  that  the g a m m a  distr ibution in the large 
p- l imit  reduces to the monodisperse  initial 
condit ion,  as can be seen mos t  easily f rom the 
relation lira (1 + z/p) -p = e -z. 

The  initial g a m m a  distr ibutions have phys-  
ical significance for p > 0, a l though c(x,  O) 

xp-2e -px with p > 2 becomes  infinite as 
x ~ 0. F o r p  > I the total  a m o u n t  o f  particles, 
Mo(0), conta ined  in c(x,  0), is still finite, bu t  
for p ~< 1 there is an infinite a m o u n t  o f  grit 
(minute  particles o f  size x ~ 0), so that  Mo(0) 
= ~ .  However ,  the corresponding mass  dis- 
t r ibut ion xc(x ,  0 ) - - w h i c h  is the physically sig- 
nificant d is t r ibut ion--conta ins  afinite a m o u n t  
o f  material ,  m l (0 )  as long as p > 0. Conse-  
quent ly  initial g a m m a  distr ibutions with 0 
< p < 1 are physically meaningful ,  bu t  Mo(t) 
is undefined (infinite). 

Asympto t ic  Properties o f  M(t)  

We discuss the behavior  near  t = tc and  t 
= 0% starting with the first case. 

For  the class of  initial distr ibutions consid- 
ered, the behav ior  o f  the sol mass  for t J. tc 
= 1 can be obta ined  by  expanding the right- 
hand  side o f  bo th  equat ions  in [2.10] abou t  
s = 0, yielding 

M(t)  = 1 - G(t) 

1 - ( t -  1)/m3(0) (t~ 1), [2.16] 

where the relation u"(O) = M3(0) has been 
used. The  corresponding behav ior  of  Mo(t) 
follows f rom [1.5] 

Mo(t) ~- Mo(0) - 1/2t 

+ ( t -  1)2/2M3(0) (t ~ 1). [2.17] 

For  t ---* oo the relevant mass  is given by [2.10], 
in which the pa rame te r  s ~ oo. Thus  we need 
u(s) and u'(s) for s ---* 0% corresponding to 
the small  x -behavior  o f  the initial size distri- 
but ion.  I f  c(x, O) ~ AxP-2/F(p)  (with p > 0) 
for x --- 0, then  u(s) ~- As  -p for s ~ 0% and 
the resulting sol mass  decreases asymptot ical ly 
a s  

M(t)  ~- A(Apt)  -p/(p+~) (t ~ oo). [2.18] 

I f  the initial size distr ibution c(x, 0) = 0 for  
x < x0, one finds asymptot ica l ly  

M(t)  ~- (Xot) -1 (t ~ oo). [2.19] 

This  result is s imilar  to the discrete mass  case. 
I f  the mass  spec t rum is con t inuous  down to 
x = 0, the sol mass  decreases m o r e  slowly due 
to the abundance  o f  grit. The  explicit examples  
o f  [2.12] and [2.14] are special cases of  [2.19] 
and  [2.18], respectively. The  long t ime  be- 
havior  o f  Mo(t) can be inferred f rom [1.5] and  
[2.18-191. 

3. SIZE D I S T R I B U T I O N  

In  this section we derive the general expres- 
sion for the size distribution, valid for all t imes, 
and  apply it to the monodisperse  and  the 
g a m m a  initial distributions. Next  we deter- 
mine  the large x-behavior  o f  c(x, t) by  means  

Journal of Colloid and Interface Science, Vol. 97, No. I, January 1984 



C O A G U L A T I O N  W I T H  G E L A T I O N  271 

of the saddle point method, and study in par- 
ticular its behavior near the gel point tc. The 
effects of initial distributions with algebraic 
tails on the pre- and post-gelation behavior of 
c(x, t) is also briefly discussed. We finish with 
the long time behavior of c(x, t). 

General Form and Examples  

Having determined M(t) we take the inverse 
Laplace transform of f (z ,  t) in [2.6b] to find 
the mass distribution: 

fc 
s+iov  

xc(x,  t) = (2~ri) -1 dzeXZf(z, t), [3.1] 
s - i ~  

where the contour is a straight line parallel to 
the imaginary axis and to the right of all sin- 
gularities in f (z ,  t). After introducing a new 
integration variable ~', such that 

f = u ( ~ ) ;  z =  ~ ' + t u ( ~ ) - T ,  [3.2] 

and calculating the Jacobian dz = (1 + tu'(~)d~), 
we obtain from [3.1] after performing two 
partial integrations with respect to ~" (boundary 
terms are vanishing): 

c(x, t) = (X2t)e-xT(27ri) -1 

f 
s+ic~  

× dz exp[x(z + tu(z))]. [3.3] 
s - i ~  

The contour is a straight line to the right of 
all singularities in u(z). Equation [3.3] rep- 
resents the solution of our coagulation equa- 
tion for all times, and T(t) is given through 
[2.6c] and [2.11]. 

As an example we consider first xc(x,  O) 
= e -x, i.e., the gamma distribution for p = 1, 
so that u(z) -- (z + 1) 1. With the help of the 
following integral representation of the mod- 
ified Bessel function (23): 

~ s+ioo  

I1(2x) = (2~ri) -1 dz exp[x(z + z-l)] 
s - i ~  

= (1Dr) dO cos 0 exp(2x cos 0), [3.41 

we obtain the solution: 

e ( x ,  t) = e - ~ l + r ) x l l ( 2 x ~ t ) / x 2 f t  [3.5a] 

where, according to [2.6c] and [2.14], 

1 + t (t < 1) 
I + T  = 

2 ~  (t > 1). [3.5b1 

For t ~< 1 this solution has been obtained before 
by McLeod (3). For t >i 1 it represents a new 
solution to the coagulation equation. 

The general solution [3.3] can also be rep- 
resented in the form of a series expansion: 

e-Xr % (xt)k f'+'°~ dz 
c ( x ,  t) = - -  x2t k~=O ~ ~s-i~ 2rci (U(z))kexz" 

[3.6] 

For the initial gamma distribution (see above 
[2.14]), u(z) = [p/(z + p)]P, and [3.6] yields 
the solution: 

e-(P+r)x ~ (xt)l(PX)P(l+l) 
c(x, t) - x----5--- (l + 1)!r(p(l + 1))" 

1=0 

[3.7a] 

This series converges for all t. We further have 

fp + t (t < 1) 

p +  T = ~ ( ( p +  1)t 1/(p+1) ( t >  1) [3.7b] 

on account of [2.6e] and [2.14]. F o r p  = 1 it 
reduces to the previous example [3.5], where 
[3.7a] is the series expansion of 11. This so- 
lution for t < 1 is known (1, 3); the solution 
for t > 1 is new. Its large x- and t-behavior is 
discussed below. One may also formulate these 
results in terms of the variable M0 instead of 
t, using [2.15], as has been done in (1). 

Another example is supplied by the mono- 
disperse initial condition, where u(z) = e -z 
(see above [2.12]). The series expansion [3.6] 
yields in this case 

e-xT oo (xt) k-1 
c(x, t) = ~ ~ 6(x - k), [3.8a] 

X k=l 

where, according to [2.12] and [2.6c], 

T = { ;  ( t~<l)  

+ log t (t >~ 1). [3.8b] 

It is actually the solution for the discrete mass 
case, where 
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ck(t) = e-kt(kt)k-~/kk! (t <<. 1) 

= e-gkk-2/ tk!  (t >~ 1). [3.9] 

For  t ~< 1 the solution has been known  for a 
long t ime (2, 24, 25); for t >t 1 this solution 
has been recently given by Ziff  et al. (7, 10) 
and Leyvraz and Tschudi  (9). 

As an example we take the initial g a m m a  dis- 
tribution, where Zo follows f rom [2.6c], [3.10], 
and [3.12] as 

Zo(t) = p + t - (p  + 1)t I/(p+I) (t < 1) [3.14a] 

and 

£o(t) = -~ / ( t )  

Sadd le  Poin t  M e t h o d  

The integral representation [3.3] for c(x,  t) 
is very convenient  to derive the asymptot ic  
behavior  o f  c(x,  t) at large x, using the saddle 
p o i n t  m e t h o d .  To  ob ta in  an a s y m p t o t i c  
expression for the integral in [3.3] we choose 
s such that  F(z)  =-- z + tu(z)  is at a m a x i m u m  
when the contour  crosses the real axis. Then,  
s is determined as the solution o f  

F'(s)  = 1 + tu'(s) = 0. [3.101 

Observe that  [3.10] is identical to the second 
equation o f  [2.10]. Hence  u(s) = Mb(t). 

By expanding F(z)  about  s and writing 
z = s + iy we find that  [3.3] at large x is 
approximated by f_o 
c(x,  t) = (27rxZt)-le - x r  dy  

oo 

× exp[xF(s )  - 1/2xy2F"(s)] 

_~ (27rt3u,,(S))-l/2X 5/2 

× exp[x (F( s )  - T)]. [3.11] 

In this expression we have for t ~< 1 

Zo =- T -  F(s)  = t(1 - u(s)) - s 

Zo =- (t3u"(s)) - l ,  [3.12a] 

where Eqs. [2.6c], [2.11], and [3.10] have been 
used. For  t >/ 1 we have according to [2.6c] 
and [2.10] 

zo = - d r r M ( r )  - s = O, [3.12b] 

since dr  = rZu"(s)ds and  _t;/(r) = - ( rZu"(s ) )  -1. 
In summary ,  we have for large x:  

((~o/27r)l/2x-5/2e-X~° (t <~ 1) 

c(x,  t) ~ ~ ((-3;1/2~r)l/2x-5/2 (t >1 1) . .  

[3.13] 

= [p / (p  + 1)]t (2p+l)](p+l). [3.14b] 

Note  that  for times past the transition time, 
tc = 1, the mass spectrum has a universal shape 
~ x  -T with r = 5/2, independent  o f  the initial 
size distribution. Similar long tailed distri- 
butions occur in Junge 's  power low distri- 
butions for a tmospheric  aerosols (1, 4), al- 
though the typical r-  values ~ given in (1) are 
smaller than 5/2. 

For  an analysis o f  the behavior  o f  [3.14] in 
the close vicinity o f  the gel point  tc = 1 we 
need the behavior  o f  Zo(t), which is paramet-  
rically given by [3.12] and [3.10]. By expand- 
ing [3.10] about  s = 0 and using u(0) = - u ' ( 0 )  
= 1 and u"(0) = M3(0), we find s ~_ (t - 1)/ 
M3(0) as t T 1. Subsequent  expansion o f  [3.12] 
about  s = 0 and t = 1 yields finally: Zo(t) 
- (t - 1)2/23//3(0) as t T 1. The  behavior  o f  
[3.14] pas t  the gel point  depends on A;/(t), 
which has been calculated in [2.16]. Hence 
the asymptot ic  behavior  for the size distri- 
but ion c(x,  t) in the coupled limit x ~ ~ and 
t ---, t~ = 1 with x ( t  - t~) 2 = fixed is given by 

c(x,  t) = (2rcM3(O))-mx -5/2 

~exp[ -x ( t  - t~)Z/2M3(O)] (t < to) × 
1 (t > t~). [3.151 

Therefore, the size distribution for t < 1 (sol 
phase) decreases exponential ly at large x, so 
that  all momen t s  Mn(t)  remain finite for 
t < 1. For  t >/1 (gel phase) the size distribution 
decays algebraically at large x, c(x ,  t) ~ x -~ 
with r = 5/2, so that  all m o m e n t s  with n 
> 3/2 are divergent, whereas the sol mass, 
M~(t), starts to decrease at a finite rate, as 

i The relation between r and the exponent/3 in Junge's 
power law is/3 = 3r - 3 [see (1)]. 
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indicated in the beginning of  Section 2. For 
t < tc the crossover from exponential to x s/ 
2-behavior occurs at a critical cluster-size xc 
with xc - M3(0)(t - tc) -2 as t T tc. For x >> Xc 
we have c(x ,  t) ~ x -~ e x p ( - x / x o ) ,  while in 
the intermediate range 0 ~ x ~ x~ we have 
c(x ,  t) ~ x -T. As t T t~, x~ ~ ~ ,  and the x -r- 
behavior extends to infinity for all t >~ t~. 

The results obtained so far apply to initial 
distributions, c(x ,  0), decaying exponentially 
at large x (see below [2.8]). A general discus- 
sion of the effects of  initial distributions with 
algebraic tails has been given in (10). Here we 
only quote the results for a typical example, 
namely, c(x ,  0) ~ x -2-x with 1 < X < 2. At 
any fixed t < 1 the algebraic tail, c(x ,  t) 

Ax-Z-X(x ~ oo), remains, but as t ---, 1 the 
amplitude, A, diverges as (1 - t)-x-l; at 
the transition point t = 1 one finds c(x ,  t) 

x -2-1/x with a nonvanishing amplitude; and 
for t > 1 one finds c(x ,  t) ~ x -5/2 with an 
amplitude, vanishing like (t - 1)~ as t I 1 with 
,,,, = ( 1  - , / 2 x ) / ( x  - 1 ) .  

If  the initial distribution has an exponent 
in the range 0 < X < 1, so that 3//2(0) = ~ ,  

then u'(0) = oo, and the gelation transition 
occurs instantaneously. 

L a r g e  T i m e  B e h a v i o r  o f  c(x, t) 

It follows from [3.3] that the behavior of  
c(x ,  t) at large t and fixed x is similar to that 
at large x and fixed t with t > l, as given in 
[3.14]. One only needs to insert the large t- 
behavior of  .M(t) from [2.18-19]. 

An illustrative example is provided by the 
initial g a m m a  distributions. Here we have on 
account of  [2.14] and [3.13]: 

c(x ,  t) _~ [27r(p + 1)/p]-l/2x-5/Et-(2p+l)/E(p+l) 

(t ~ o% x fixed). [3.16] 

It reduces in the limit p --, m to the well- 
known result for monodisperse initial con- 
ditions (9, 10). For general initial conditions, 
as discussed below [2.17], the same long t ime 
behavior [3.16] is found with a different mul- 
tiplicative constant with a t-exponent de- 
pending on the shape ofc(x,  0). This behavior 

differs strongly from the corresponding result 
in the discrete  m a s s  case, where Ck(t) 
OC k-51zt-l( t  ~ oo) for general initial condi- 
tions. The abundance of  grit at the fine grained 
end of  the con t inuous  initial mass spectrum 
is slowing down the coagulation and gelation 
reactions. 

4. MODIFIED COAGULATION EQUATION 

In this section we discuss a different co- 
agulation problem with a phase transition, in 
which the loss term in the kinetic equation is 
modified past the transition point. We deter- 
mine the Laplace transform of the size dis- 
tribution and the t ime dependence of  the sol 
mass. The ensuing behavior of  c(x, t) and Mn(t ) 
with n >/2  is quoted. Consider the loss term, 
- x c ( x ,  t )M(t) ,  in the coagulation equation 
[1.1 ] for the kernel K(x ,  y)  = xy .  For t < 1 it 
is proportional to the total  m a s s  in the system, 
( M ( t )  = 1). For t > 1, the loss term only con- 
tains sol particles, with M ( t )  < 1. Therefore, 
in the coagulation process, described by [1.1 ] 
with K = xy ,  sol particles are only allowed to 
coalesce with other finite clusters, but not with 
the infinite cluster or superparticle. This cor- 
responds to the situation in which the infinite 
cluster is continuously removed from the co- 
agulating sol system (e.g., through precipita- 
tion). 

One may also envisage the situation in 
which the finite clusters in the system can co- 
alesce both with other finite clusters a n d  with 
the infinite cluster; i.e., all mass, MI(0), ini- 
tially present in the system, whether bonded 
in sol or gel, remains available for bonding 
sol particles. Therefore, the quantity M l ( t )  in 
the loss t e rm of  the kinetic equation for K 
= x y  equals unity at all times before and past 
to. The above model is described by the m o d -  
i f ied coagula t ion  equat ion:  

ct(x, t) = -~ d y y ( x  - y) 

× c(y,  t ) c (x  - y,  t) - x c ( x ,  t). [4.1] 

For t < tc = 1 this equation is identical to 
[ 1.1 ] with K = xy .  In the case of  discrete masses 
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the modified coagulation equation has been 
discussed by Dusek (26) and Ziffet  al. (7, 10) 
in connection with the gelation transition in 
reacting polymer systems. In polymer physics 
the modified coagulation equation [4.1] cor- 
responds to Flory's theory (24) of gelation, 
and the usual coagulation equation with 
K = x y  to Stockmayer's (25), as discussed in 
(8, 10). Both theories yield different results 
only in the gel phase (t >~ to). In the former 
theory sol-gel interactions are allowed; in the 
latter theory such interactions are absent. 

In the aerosol physics the gelation transition 
has been discussed by Lushnikov and co- 
workers (14, 27, 28). Following the method 
of Marcus [see (1), Section 2.4] a master equa- 
tion is constructed for the probability distri- 
bution P(ClC2 " • • Ck" " " ; t), in which the tran- 
sition probabilities are constructed from the 
coagulation rates K #  = i j  in Smoluchowski's 
coagulation equation. Here {Ck} are the (fluc- 
tuating) numbers of k-clusters per unit vol- 
ume, and the macroscopic size distribution is 
then an average Ck(0- At and past the gel point 
the fluctuations become of macroscopic size, 
and modify the average rate equations to yield 
effectively [4.1 ]. This procedure looks very dif- 
ferent from the arguments leading to [4.1]. 
However, Ziff et aL (10) have shown for the 
case of discrete masses that Lushnikov pro- 
cedure yields results, identical to those ob- 
tained from [4.1 ]. 

In the case of a continuous initial mass 
spectrum the modified coagulation equation 
can be discussed along the same lines as in 
the discrete case. However, the time depen- 
dence of the sol mass for t > 1 differs quali- 
tatively from the discrete case. (Similar dif- 
ferences occur in the solutions of the usual 
coagulation equation, as already discussed in 
Section 2). This will be briefly elucidated. 

The Laplace transform of [4.1 ] is given by 
[2.4] with M p u t  equal to unity for all t. Hence, 
its solution for all t is 

f ( z ,  t) = u ( z  - t f  + t). [4.21 

This follows from [2.6]. In the present case 
the mass of sol particles, M ( t )  = f (O,  t), can 

be obtained from [4.2] by setting z = 0, and 
yields the functional equation: 

M = u( t  - t M ) .  [4.3] 

This equation has two solutions: a constant 
solution Ma(t) = 1, and a solution Me(t ) ,  that 
decreases with increasing t. The physical mass 
of sol particles is again the smaller one of the 
two, i.e, M ( t )  = min (1, Mc(t ) ) .  The large t- 
behavior is given by M ( t )  ~ u(t),  where u(z )  

at z ~ ~ is determined by the small x be- 
havior of c ( x ,  0).  

The different behavior of M ( t )  = 1 - G( t )  

in the usual and modified coagulation equa- 
tion is best illustrated by the example of  the 
initial gamma distributions with u(z)  given 
below [2.13]. The mass deficit or gel fraction, 
G = 1 - M, is according to [4.3] determined 
by 

G = 1 - (1 + t G / p )  -p [4.4] 

and leads to the long time behavior: 

M ( t )  = 1 -  G( t )  _~ ( p / t )  p (t  ~ oo). [4.5] 

This result should be compared with the sol 
mass [2.14] in the usual coagulation equation, 
which has a slower decay at large t. The reason 
is the larger loss rate of sol particles in the 
modified coagulation equation due to the 
bonding of sol particles by the gel. 

The discrete mass case with monodisperse 
initial conditions can be obtained by taking 
p ~ ~ in [4.4] with the result 

G = 1 - exp(-tG). [4.6] 

This relation was first obtained by Hory (24) 
and Lushnikov (27). The large t-behavior of 
G(t)  in [4.6] decays exponentially: 

M ( t )  = 1 - G( t )  ~- e - t  [4.7] 

to be compared with the algebraic decay [2.12]. 
For an extensive comparison of results from 
the usual and modified coagulation equation 
we refer to (10). 

The size distribution from the modified co- 
agulation for t > 1 has the same function form 
as for t < 1; and is found by setting 
T = t in Eqs. [3.3-8]. It always decays ex- 
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ponentially at large x, except at the transition 
point t¢ = 1, where the size distribution has 
an algebraic tail c(x ,  to) oc x -5/2 as x --~ Go. 
Therefore, all moments  Mn(t)  with n >t 2 in 
the solut ion  o f  the modi f ied  coagula t ion  
equation exist for t 4: to = 1, and behave in 
the close vicinity of  the gel point as 

Mz(I) oc I t -  l[-a; 

M3(t) oc I t -  11-3 (t--, 1). [4.81 

5. C O A G U L A T I O N  K E R N E L S  K ( x ,  y )  = ( xy )  ~ 

The coagulation coefficient K(x ,  y)  = x y  
represents a reaction rate for coalescing clus- 
ters, proportional to their volumes. In many  
types of  reactions the effective surface area 
of  the reacting clusters determines their reac- 
tion rate so that we have typically K(x ,  y)  
,~ (xy)  2/3. Some further examples of  coagu- 
lation kernels for selected coagulation pro- 
cesses can be found in (1, 16, 17). Here we 
will study coagulation processes in which the 
coagulation rates have the general form K(x ,  
y) = (xy)  ~ with co < 1. Smoluchowski 's co- 
agulation equation takes the form 

O~c(x, t) 

= -~ d y I y ( x  - y ) f f c ( y ,  t ) c (x  - y,  t) 

fo - x~°c(x, t) dyy~°c(y,  t). [5.11 

From the extensive literature on the subject 
it is known that the asymptotic dependence 
of K(x ,  y)  on the duster  size at large x and y 
is of  crucial importance for the x- and t-de- 
pendence (1, 16, 29, 30), and in particular for 
the occurrence of a gelation transition within 
a finite t ime (21). For kernels K ( x , y )  
~ c (xy )  1/2 all moments  remain bounded on 
bounded time intervals (31), thus excluding 
the occurrence ofgelation within a finite time. 
For kernels K(x ,  y) = (xy)"  with 1/2 < co < 1 
the occurrence of gelation has been established 
in (18-21) for the case of  discrete masses. Here 
we present a brief account of  the theory for 
the continuous mass spectra and we will show 

that the size distribution c(x ,  t) at and past 
the gel point tc has asymptotically a power 
law behavior: 

c(x ,  t) ~-- A x  -~ ( x  ~ oo) [5.2] 

with an exponent T = co + 3/2. This behavior 
can be found by studying the small z behavior 
of  the Laplace transform of the distribution 
function. We, therefore, introduce 

g(z ,  t) = d x c ( x ,  t)e -zx 

f ( z ,  t) = d x x ~ c ( x ,  t)e - ~  [5.31 

and take the Laplace transform of [5.1 ], which 
yields 

gt = l/2f 2 - f M ~ .  [5.4a1 

Here M~ is defined in [ 1.2]. Alternatively we 
may write 

f = M,o - [M~ + 2gt] 1/2, [5.4b] 

where the root with the minus sign is chosen 
because f ( z ,  t) is a decreasing function of  z. 
I f  we write f and g as 

g(z ,  t) = Mo - ZMl  + A(z, t) 

f ( z ,  t) = M,~ + 6(z, t), [5.5] 

then A = 0(z) and 6 = 0(1) for small z, since 
M0 < M~ < M1 < oo as the total mass of  the 
system is finite. Furthermore,  by setting 
z = 0 in [5.4a] it follows that 

g,(O, t) = M o  = --1/2M 2. [5.6] 

To discuss the solution at and past the gel 
point to, it is necessary to look for solutions 
in which the total mass of  sol particles, Ml(t), 
depends upon time, so that gt ~- M0 - z~/1 
+ • • ..  Combinat ion of this result with [5.6] 
yields through [5.4b] 

f ( z ,  t) ~ Mo  - (-2h/JtlZ) 1/2 (z ~ 0), [5.7] 

where 3;/1 is negative. The dominant  small z 
singularity in f ( z ,  t) is a square root branch 
point, implying an algebraic tail ~ x  -3/2 in the 
inverse Laplace transform, so that (18, 19) 
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c(x,  t) _~ (-~ll /21r)l /2x-~-3/2 

(x ~ ~ ) .  [5.8] 

Thus, we have determined the large x-behavior 
of the size distribution past the gel point, where 
~;/z 4: 0, and we have expressed the amplitude 
A in [5.2] in terms of  the (unknown) mass 
loss rate. The behavior [5.8] must be consistent 
with the requirements on the existence of  the 
moments in [5.5]. ForM1 to be finite we must 
have ~0 > 1/2. Therefore, only for o~ > 1/2 can 
the coagulation equation [5.1] have (post- 
gelation) solutions with a time dependent M~. 
For the kernels with 1/2 < a~ < 1 we have neither 
been able to determine the sol mass Ml(t ) ,  
nor the gel point to. Estimates, or more pre- 
cisely, lower bounds on t~ can be derived by 
studying the moments. A lower bound on 
M , ( t )  with a > 1, diverging at to, provides a 
lower bound: t~ > to. Our best lower bound 
for the gel point is 

tc > [(220'-1 -- 1)M2,~(0)] -l,  [5.9] 

as has been derived in (20, 21). 
The solution [5.8] is very similar to the 

steady-state solutions with gelation (1/2 < w 
1) (16, 17, 21) or without gelation (w < 1/2) 

(32), found  in coagulat ing systems with 
sources. In case of  a stationary monomer  
source, q(x)  = qr (x  - 1), one simply replaces 
the mass loss rate (-A;/0 in [5.8] by the source 
strength to obtain the stationary solution. 

6. SUMMARY AND CONCLUSIONS 

The coagulation equation with a rate con- 
stant K(x,  y) = (xy)  ~ with 1/2 < w < 1 shows 
a phase transition, which manifests itself for 
times larger than a critical t ime tc (gel point) 
through a violation of  mass conservation. The 
violation of this conservation law is interpreted 
as the appearance of an infinite duster  or gel, 
which accounts for the mass deficit. For t 
< t~ the sol mass is constant, and it starts to 
decrease for t > to. 

For the special case w = 1 we have obtained 
the explicit solution of the coagulation equa- 
tion for arbitrary initial distributions. The ex- 

plicit form of  the sol mass M1(O is given 
parametrically by [2.9-11]. If  the initial dis- 
tribution is monodisperse or a gamma distri- 
bution a closed expression for Ml(t) is given 
in [2.12] or [2.14]. The long t i m e  behavior 
[2.18] ofMt(t)  ~ t -p/(p+l) withp  > 0 for con- 
tinuous mass spectra is markedly different 
from Ml( t )  ~ t -1 in the discrete case. This 
difference is caused by an abundance of  min- 
ute particles of  size x ~ 0 in the continuous 
case, which slow down the coagulation process. 
The size distribution c(x,  t) for an arbitrary 
initial distribution u(z)  = f ( z ,  0), defined in 
[2.5], is obtained in the form of an integral, 
which may be expanded in powers of  t (see 
[3.6]). For the initial distribution c(x,  O) = 
x-1 exp(-x)  we have obtained a global solution 
[3.5] in the form of a modified Bessel function. 
For the family of  initial gamma distributions 
with parameter p we have obtained a global 
solution in the form of  an infinite series [3.7] 
which converges for all t. For p = 1 the mod- 
ified Bessel function is recovered; for p = oo 
one recovers the pre- and post-gelation so- 
lutions for monodisperse initial conditions. 
These explicit results constitute new solutions 
to the coagulation equation with the kernel 
K(x,  y) = xy.  

For general initial distributions we have 
calculated the large x-behavior [3.14] of  c(x,  
t) in the sol and gel phase. The  mass spectrum 
is exponentially cut-off in the sol phase, and 
has an algebraic tail ~ , x  -5/2 in the gel phase. 
The size distribution at large x and times close 
to t = tc or close to t = ~ ,  is given in [3.15] 
and [3.16]. The coagulation equation [1.1] 
with K(x,  y) = x y  corresponds to Stockmayer's 
theory of  the gelation transition in reacting 
polymer systems. The modified coagulation 
equation [4.1] corresponds to Flory's theory 
of  gelation, in which sol and gel are allowed 
to interact. Such interactions are absent in 
Stockmayer's theory and, likewise, in [ 1.1 ] 
with K(x,  y) = xy.  The solution c(x,  t) of  the 
modified coagulation equation decays expo- 
nentially for all t 4 = to. Only at tc has the size 
distribution c(x,  to) an algebraic tail x -5/2. The 
modified coagulation equation is also equiv- 
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alent to Lushnikov's coagulation theory (27) 
with a gelation transition. For coagulation 
kernels K(x,  y)  = (xy)  ~ with 1/2 < ~0 < 1 we 
have obtained post-gelation solutions [5.8] in 
the form c(x,  t) ~ x-* with r = ~0 + 3/2, the 
amplitude of  which depends on the function 
Ml(t). We have neither been able to determine 
the sol mass Ml( t ) ,  nor the gel point to. For 
the latter quantity we have given an estimate. 
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