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Abstract The development of advanced computers with special capabilities for vectorized or parallel calculations 
demands the development of new calculational methods. The very nature of the Monte Carlo process precludes 
direct conversion of old (scalar) codes to the new machines. Instead, major changes in global algorithms and careful 
selection of compatible physics treatments are required. Recent results for Monte Carlo in multigroup shielding 
applications and in continuous-energy reactor lattice analysis have demonstrated that Monte Carlo methods can be 
successfully vectorized. The significant effort required for stylized coding and major algorithmic changes is 
worthwhile, and significant gains in computational efficiency are realized. Speedups of at least twenty to forty times 
faster than CDC-7600 scalar calculations have been achieved on the CYBER-205 without sacrificing the accuracy of 
standard Monte Carlo methods. Speedups of this magnitude provide reductions in statistical uncertainties for a 
given amount of computing time, permit more detailed and realistic problems to be analyzed, and make the Monte 
Carlo method more accessible to nuclear analysts. Following overviews of the Monte Carlo method for particle 
transport analysis and of vector computer hardware and software characteristics, both general and specific aspects 
of the vectorization of Monte Carlo are discussed. Finally, numerical results obtained from vectorized Monte Carlo 
codes run on the CYBER-205 are presented. 

I. INTRODUCTION 

Random walk Monte  Carlo calculations are a 
mainstay of radiation transport analysis in nuclear 
engineering. Although Monte  Carlo calculations of 
neutron and/or gamma-ray transport are time- 
consuming and expensive, they constitute the only 
feasible means of solving many problems with compli- 
cated geometry and/or  interaction probabilities, and 
are valuable in providing calculational standards for 
validating approximate calculational methods. For  
both fission and fusion reactor shielding analyses, 
Monte  Carlo methods can readily accommodate  
complex 3-dimensional configurations including 
cones, tori and internal voids. In reactor physics 
analysis Monte  Carlo calculations represent ' t ruth '  
against which approximate calculational methods 
may be calibrated. The Monte  Carlo method permits 
the exact modelling of problem geometry, a highly 
accurate mathematical  model for particle interactions 
with matter, and a cross-section representation that is 
as accurate as theory and measurement permit. 

Conventional  (scalar) Monte  Carlo codes simulate 
the complete history of a single particle by repeated 
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tracking through the problem geometry and by 
random sampling from probability distributions that 
represent the collision physics. The precision of Monte  
Carlo results is primarily limited by the computing 
time required to obtain acceptable statistical uncer- 
tainties. The accumulation of data from particle 
histories in the Monte  Carlo analysis of a typical 
problem may sometimes require several hours (or 
possibly days) of CDC-7600 C P U  time to achieve 
acceptable small statistical uncertainties. A straight- 
forward conversion of scalar Monte  Carlo codes to 
advanced computers such as the CYBER-205 and 
CRAY-1 may typically result in codes which run 
between one and two times faster than on a CDC-7600 
(with some tailoring of the coding). This speedup is due 
primarily to the reduced cycle time and improved 
architecture of the scalar processors. 

With computer  execution time as the only signifi- 
cant drawback to Monte  Carlo calculations, it is 
natural to consider using the vector processing capa- 
bilities of current supercomputers such as the CRAY-1 
or CYBER-205 to speed up Monte  Carlo calculations. 
There is an important  difference, however, between the 
new supercomputers and previous machines: al though 
the vector computers are much faster, their full 
potential speed is attainable only in 'vectorized'  
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calculations (i.e. non-recursive operations on ordered 
data arrays). Monte-Carlo codes, however, are ill- 
suited for direct vectorization. The random nature of 
the Monte Carlo method seems to be at odds with the 
demands of vector processing, where identical opera- 
tions must be performed on streams of contiguous data 
(vectors). The probabilistic nature of the calculation 
results in coding with few loops and very many 
conditional statements, which inhibit vector process- 
ing. This is illustrated by examining a flowchart for a 
typical Monte Carlo code, which shows little structure 
to be exploited through vector operations. To a large 
degree, this state of affairs is due to the capabilities of 
previous computers used for Monte Carlo: it is natural 
to follow the history of one particle at a time on a 
machine which can only perform one calculation at a 
time. The development of advanced computers with 
special capabilities for vectorized calculations de- 
mands the development of new calculational methods. 
The very nature of Monte Carlo calculations precludes 
direct conversion to the new machines through the use 
of automatic vectorization software or simple re- 
coding by programmers. Indeed, the effective vectoriz- 
ation of Monte Carlo can be achieved only through 
major changes in global algorithms and careful 
selection of compatible physics treatments. 

Early known efforts to vectorize Monte Carlo 
calculations for vector computers were either unsuc- 
cessful or, at best, achieved speedups on the order of 
seven to ten for highly simplified problems (see Brown, 
1981a). Recent results for Monte Carlo in multigroup 
shielding applications (Brown, 1981a; Brown et al., 
198 lb) and in continuous-energy reactor lattice analy- 
sis (Brown, 1982, 1983; Brown and Mendelson, 1984) 
have demonstrated that Monte Carlo can be success- 
fully vectorized for the CYBER-205 computer. 
Speedups in the range of 20 to 40 times faster than 
CDC-7600 scalar calculations have been achieved on 
the CYBER-205 with no degradation in the accuracy 
of the standard Monte Carlo methods. Speedups of 
this magnitude provide reductions in statistical uncer- 
tainties for a given amount of computing time, permit 
more detailed and realistic problems to be analyzed, 
and make the Monte Carlo method more accessible to 
nuclear analysts. Moreover, the impact of a 'turn- 
around time' measured in hours versus days (or even 
weeks) for a scientist/engineer cannot be minimized. 

Following overviews of the Monte Carlo method for 
particle transport analysis and of vector computer 
hardware and soflware characteristics, both general 
and specific aspects of the vectorization of Monte 
Carlo will be discussed. The primary basis for the 
methods and results discussed throughout is the 
authors' experience in developing several vectorized 

Monte Carlo codes. Seminal investigations of funda- 
mental techniques were performed at the University of 
Michigan and led to the development of MCVMG, a 
vectorized multigroup Monte Carlo code for reactor 
shielding applications intended to demonstrate the 
potential of the new methods. Later work at Knolls 
Atomic Power Laboratory (KAPL) led to the develop- 
ment of MCV, a vectorized continuous-energy Monte 
Carlo code which is used for the analysis of neutron 
transport in nuclear reactors. 

1.1. The Monte Carlo method for radiation transport 
analysis 

The Monte Carlo method is the most general and 
powerful numerical method available for solving 
neutron and gamma-ray transport problems. In sharp 
contrast to other methods such as discrete ordinates, 
integral transport, finite difference and finite element 
methods, the Monte Carlo method imposes no a priori 
restrictions on problem geometry nor on the detail 
which may be used to describe physical events. Indeed, 
the Monte Carlo method is frequently formulated as a 
stochastic numerical model of physical phenomena, 
without attempting rigorous derivation of an appro- 
priate 'transport equation' (Cashwell and Everett, 
1957). There is, however, an extensive literature 
devoted to Monte Carlo which provides a sound 
theoretical basis (Carter and Cashwell, 1975; 
Hammersley and Handscomb, 1967; Kahn, 1956a; 
McGrath et al., 1975; Schreider, 1966; Spanier and 
Gelbard, 1969). Considering the complexity of current 
designs for fission reactors, fusion devices, and radi- 
ation shielding, a growing percentage of particle 
transport calculations requires detailed 3-dimensional 
analyses. Monte Carlo is especially suited to these 
needs and is presently the only method capable of 
treating complicated 3-dimensional geometry in a 
reasonable amount of computing time. Since there are 
many references on both the physical and mathemat- 
ical bases for the Monte Carlo method, this overview 
will concentrate on summarizing the major features 
relevant to vectorizing the Monte Carlo calculations. 

A convenient starting point for discussing Monte 
Carlo is the integral form of the linear time- 
independent Boltzman transport equation, written 
here in terms of the collision density, ~, 

ip(r,v) = 

I[S ~9 (r',v')C (v '~ v ;r')dv' + Q(r',v)] T ( r ' ~ r  ;v) dr', 

where r is position, v is particle velocity, qJ is the density 
of collisions, and Q is a source term. Two kernels arise 
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in the above integral equation, a collision kernel, C, 
and a transport kernel, T. The collision kernel includes 
processes which may either alter particle energy and 
direction or lead to particle absorption and possible 
secondary particle emission. The transport kernel 
includes processes which affect particle position, i.e. 
streaming until a collision occurs or a boundary is 
crossed. The solution to the transport equation yields 
the expected behavior of a large number, or ensemble, 
of particles. In the Monte Carlo method, single 
particles are followed through their histories from 
birth to death. Each particle's behavior is tallied, 
yielding 'scores' or 'estimators' for the frequency that 
particular events occur. If enough particle histories are 
analyzed, the ensemble estimates obtained will yield an 
expected-value solution of the transport equation. The 
outcome of a Monte Carlo numerical experiment is 
similar to a real experiment in that integral quantities 
are usually obtained. The stochastic nature of particle 
behavior enters the method in modelling the collision 
and transport kernels via random sampling from 
probability densities describing the physical processes. 

A probability density function (PDF) is the mathe- 
matical expression of a stochastic physical law. A 
PDF,f(x) ,  is defined such that f (x)  dx is the probabil- 
ity that the outcome of a particular event will occur in 
dx about x. On physical grounds, f ( x )  must be 
everywhere non-negative and be normalized to a total 
probability of 1. To perform random sampling from a 
PDF, a cumulative distribution function (CDF) is 
used. The CDF, F(x), is defined as 

i 
x 

F(x) = f (x ' )  dx'. 
• - 7  

and thus F(x) is non-negative and monotonically 
increasing from 0 to 1. The procedure for sampling the 
random variable x from f ( x )  is: 

Step 1 -genera te  a random number, r, from a uniform 
distribution in the interval (0,1). 

Step 2 -ca lcu la te  x = F  l(r), where x is the desired 
sample value and F i is the inverse of the 
CDF. 

Numerous references detail techniques for random 
sampling from both discrete and continuous PDF's  
(McGrath et al., 1975; Kahn, 1956b). Step 1 is 
straightforward, since (machine-dependent) software 
for generating uniformly-distributed random numbers 
has been studied extensively; nearly every computing 
installation has standard routines for uniform random 
number generation, typically based on the multiplica- 
tive congruential method (Halton, 1970). Step 2 varies 
in complexity according to the form of the PDF 

involved. In some cases the equation can be solved 
directly for the random variable. In many cases, 
continuous PDF's  must be inverted by a table lookup 
and interpolation procedure. Discrete PDF's,  how- 
ever, are much simpler to invert and new generalized 
methods for doing so have been developed which are 
especially attractive for implementation on vector 
computers (Brown et al., 1981c; Walker, 1977). 

Monte Carlo methods for particle transport simula- 
tion may be classified in general terms according to the 
types of PDF's  used in the collision analysis: 
Continuous-energy Monte Carlo utilizes PDF 's  which 
closely model the physics of particle interactions. 
Particle energy is a continuous variable, and a separate 
PDF is used for each type of particle interaction. Thus, 
elastic scattering is modelled by a PDF derived from 
the physics of elastic scatter, inelastic scattering is 
modelled by a different PDF, fission neutron energy 
may be modelled by a Watt spectrum distribution, etc. 
In general, the continuous-energy Monte Carlo codes 
attempt to model all physical processes as accurately 
as theory and physical data permit. Discrete Monte 
Carlo or multigroup Monte Carlo simplifies the 
collision analysis by utilizing the multigroup approxi- 
mation common to other methods of radiation 
transport analysis, wherein the energy dependence is 
treated with the multigroup formalism. 

In the multigroup method (Duderstadt and Martin, 
1979) a constant cross-section is used over a range of 
particle energies (i.e. a group), with a transfer matrix 
providing average probabilities for a colliding particle 
in a particular energy group to produce a secondary 
particle in another energy group or groups. The group 
cross-sections and group-to-group transfer matrices 
are generated by preprocessing codes which use a 
priori assumptions concerning the within-group 
energy dependence of the particle flux in order to 
perform the group averaging. The main disadvantages 
of the multigroup method are that subtle energy 
dependent effects (e.g. resonance interference and 
overlap) may be masked by the group averaging and 
that the multigroup cross-sections must be specially 
tailored to specific problems by choosing an appro- 
priate within-group flux with the preprocessing code. 

In the transport of real particles, every collision can 
lead to the loss of a particle through absorption. In 
analog Monte Carlo, the same logic is used: when a 
collision occurs, the decision concerning absorption is 
made probabilistically; if the outcome is indeed 
absorption, the particle history is terminated, and if 
not, the particle history is continued. Any scoring 
during the random-walk consists of adding 1 to an 
appropriate tally bin. In non-analog Monte Carlo, the 
PDF's  derived from physical laws are altered, i.e. 
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particle behavior is biased to improve the chances of 
an eventual particle score in some place of interest. To 
avoid biasing the results, a particle weight is defined 
and this weight is altered in such a way as to conserve 
probability. It is the weight which is tallied for a 
particular event rather than 1. Thus, in analog Monte 
Carlo, all particles which undergo a particular event 
contribute a score of 1 to the tally of interest; in non- 
analog Monte Carlo, particle scores for particular 
events consist of the particle weight which may have 
been adjusted many times during the random-walk. 
The advantage of non-analog Monte Carlo is that 
more particles (with reduced weights) can be directed 
toward a phase space region of interest, increasing the 
number of particles contributing to a particular tally. 
For example, the mean score for an event denoted by k 
is 

1 N ~(k)=~. ~, w(i,k) 

where N is the number of source particles (assumed to 
have unit weight initially), and w(i,k) is the total 
contribution of particle i to event k during its random- 
walk. In analog Monte Carlo, w(i,k) is either 0 or 1, 
signifying that the particle either did or did not 
undergo the particular event. The estimated variance 
of 2(k) is given as 

a2(k) = ~ , ~ "  • ~ [w(i,k)] 2 - [X(k)] 2 
i = I  

The object of variance reduction methods is to bias the 
PDF's and adjust particle weights in such a way as to 
preserve the mean scores and reduce the variance of 
the scores. A great many variance reduction methods 
for particle transport have been developed and used 
for special applications (Carter and Cashwell, 1975). 

The general nature of a Monte Carlo calculation is 
illustrated in simplified form by Fig. 1. A source 
particle is introduced with phase space coordinates 
(r,v) which may be sampled randomly according to 
PDF's representing the spatial, directional, and energy 
distributions of source particles in the specific physical 
problem considered. In the transport portion of the 
analysis (tracking), the distance to the particle's next 
collision is sampled randomly from the PDF which 
describes the random-walk of particles in a back- 
ground medium. This can be expressed as 
f (d )=  Eexp(-Zd),  where E is the macroscopic total 
cross-section and d is the distance to collision. 
Geometric information describing material and region 
boundaries, usually in the form of first or second 
degree surface equations, is then analyzed to determine 
whether the sampled distance to collision is less than 

Transport 

*sample distance to co|Iislon 1 
t r a c k  to coll ision point I 

~ s p l l t / R u s s i a n  r o u l e t t e  --~ 
ta y ,  b ias  . . . .  

Col l  i s i o n  

~sample e x i t  g r o u p / e n e r g y  
*sample exit direction 

t a l l y ,  b i a s ,  . . .  
*secondary  particles 

leak, 
low weight 

absorb, 
--> low weight 

_ <  

= Probabilistlc Event 

Fig. 1. Simplified Monte Carlo random walk for one particle. 

the distance to a boundary. If less, the collision does 
occur, and the collision analysis proceeds by sampling 
the particle's exit energy and direction from the 
appropriate PDF's. Production of secondary particles, 
such as from (n,7) or (n,f) reactions, is also determined 
by sampling from the appropriate PDF's. The Monte 
Carlo analysis alternates between transport and colli- 
sion analysis until the particle and its progeny have 
been killed by absorption or escape from the system. 
Another source particle is then introduced and fol- 
lowed throughout its history, and so on. Typical 
problems can involve the processing of up to several 
million particle histories in order to achieve sufficiently 
accurate scores. 

The Monte Carlo method is generally used to solve 
linear particle transport problems, where geometric 
boundaries and material compositions are not altered 
during the random-walk analysis. For the analysis of 
nonlinear problems such as fuel depletion in a nuclear 
reactor or particle transport in a plasma undergoing 
density changes, a quasistatic approach may be used: 
For a short time interval, all geometric boundaries and 
material properties are fixed and particle behavior is 
analyzed using linear Monte Carlo. The particle 
histories are stopped at the end of the time step, at 
which time the geometric boundaries or material 
properties may be altered by means of auxilliary 
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calculations. The linear Monte Carlo process is then 
repeated. (Additional considerations such as timestep 
control, iteration strategy, and data management 
complicate the alternation between the Monte Carlo 
process and the auxiliary calculations. For examples, 
see Fleck and Cummings (1971), and Sanford and 
Anderson (1973).) 

Eigenvalue calculations for reactor analysis may be 
performed through an iterative Monte Carlo pro- 
cedure (Mendelson, 1968; Gast and Candelore, 1974). 
An assumed spatial distribution of fission sites is used 
to perform the initial iteration (i.e. generation 0). New 
fission sites recorded during the random-walk analysis 
are then used to provide estimates of both the 
eigenvalue and the source distribution to be used for 
the next generation. Additional generations are then 
analyzed as needed to converge the eigenvalue and the 
eigenfunction, i.e. the spatial fission source shape. 

As noted by Fig. 1 and the above discussion, a 
Monte Carlo code is basically a collection of random 
decision points with relatively simple arithmetic in 
between. The physics of a problem is contained in the 
PDF's used for the random sampling of the collision 
kernel and the transport kernel, problem geometry is 
involved in the surface equations utilized for particle 
tracking in the transport kernel, and results are 
obtained by tallying the quantities of interest. Indeed, 
for many simple calculations, special-purpose Monte 
Carlo codes following Fig. 1 can be as short as 50-100 
lines of FORTRAN code. 

Much of the complexity of standard Monte Carlo 
production codes comes from the flexibility and 
generality required of a code intended for diverse 
applications. General-purpose Monte Carlo codes 
require a general geometry treatment involving any 
combination of surfaces, a very general tally structure 
to allow the scoring of many different events, user- 
oriented input/output conveniences, flexible data- 
handling routines to prepare cross-sections, and a 
variety of variance and cost reduction options. 
Although these additional features increase code size 
to typically 15,000 lines of FORTRAN, most compu- 
tational time is spent in only several thousand lines of 
coding comprising the random-walk. 

A number of general purpose production-level 
Monte Carlo codes have been developed for neutron 
and gamma-ray transport analysis and are used exten- 
sively for both research and design applications. While 
differing somewhat in detail, they may be broadly 
categorized as follows: Monte Carlo codes which use a 
detailed pointwise cross-section representation and 
explicit collision physics models to treat particle 
energy in a continuous manner include RCP 
(Candelore et al., 1978), PACER (Candelore et al., 
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1982), VIM (Levitt and Lewis, 1970), 05R (Irving et al., 
1965), SAM-CE (Cohen et al., 1971) and MCNP 
(Thompson et al., 1979). Codes utilizing a multigroup 
treatment of cross-sections and collision physics 
include MORSE (RSIC, 1977}, KENO (West et al., 
1979), and ANDY (Harris, 1970). The TART 
(Plechaty and Kimlinger, 1971) code is a hybrid, using 
multigroup reaction cross-sections and a detailed 
continuous-energy treatment of collision s. All of these 
codes have undergone many years of development and 
represent the state-of-the-art in scalar Monte Carlo 
methods. In contrast, vectorized Monte Carlo 
methods are relatively new and are currently the 
subject of intensive development efforts. One of the 
new vectorized codes is MCV (Brown, 1983; Brown 
and Mendelson, 1984), a general-purpose neutron 
transport code for nuclear reactor analysis. This code 
uses a detailed pointwise cross-section representation, 
explicit collision physics models, and a continuous 
treatment of neutron energy. The code capabilities are 
modeled after those of the 05R, RCP, and PACER 
codes. Speedups in Monte Carlo computation rates 
with MCV on the CYBER-205 computer have been in 
the range of 20 85 times faster than the corresponding 
scalar codes on the CDC-7600 computer. While no 
production-level vectorized multigroup codes are in 
current use, a demonstration code, MCVMG (Brown, 
1981a), was developed to investigate the potential for 
Monte Carlo vectorization. This code included a 
subset of the basic capabilities of the MORSE and 
ANDY codes. For small test problems, speedups over 
comparable scalar methods were in the range of 20 40, 
indicating that further development of vectorized 
general-purpose multigroup codes is warranted. 
Many of the techniques developed for MCVMG were 
later utilized in the MCV code. 

1.2. Vector  computers  

Since the invention of high-speed digital computers 
roughly 40 years ago, there has been a continued 
dramatic increase in computational power, as evi- 
denced by Fig. 2 (Buzbee et al., 1980). Today's fastest 
computers can execute hundreds of MFLOPs (mil- 
lions of floating-point operations per second). There 
are currently many new machines in the planning 
stages which will continue this trend, with several 
machines having GFLOP (giga-FLOP) capabilities 
announced for 1985-1990 introduction. These gains 
are important to scientific and engineering appli- 
cations because higher computing speed allows the 
solution of larger and more detailed problems in 
reasonable amounts of computer time. Alternatively, 
more realistic and detailed physical models may be 
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Fig. 2. Trend in execution bandwidth of high-performance 
computers. 

incorporated into existing codes to provide even 
greater precision within a given execution time. 

The large increases in computation speed are due to 
advances in both computer hardware and computer 
architecture. One particular architecture results in a 
technique, pipelining, which is the major distinguish- 
ing feature of a relatively new class of machines called 
vector computers (Kogge, 1981). In the sections below, 
brief discussions are presented of vector computers in 
general, the modelling of vector computer instruction 
timing, general capabilities of the CRAY-I and 
CYBER-205, and programming considerations for 
vector computers. 

1.2.1. Basic concepts. Flynn (1972) proposed a 
scheme for classifying computer architectures accord- 
ing to the relationship between instruction and data 
streams. Flynn included SISD (single instruction 
stream/single data stream), SIMD (single instruction 
stream/multiple data stream), MIMD (multiple in- 
struction stream/multiple data stream) and other 
classes. A conventional computer belongs to the SISD 
class. Instructions are executed one by one, and a 
single instruction deals with at most a single data 
operation (e.g. an addition). A SIMD machine permits 
instructions which can trigger a larger number of 
identical data operations on different data. Machines 
in this category may be further subdivided into 
parallel, in which processing units are replicated, or 
pipelined, in which processing units are segmented. 
Vector computers such as the CRAY-1 and 
CYBER-205 are considered pipelined SIMD ma- 
chines. MIMD machines are essentially a set of 

processors, each with its own instruction and data 
streams, operating concurrently under the supervision 
of a master control unit. They may also be subdivided 
into parallel or pipelined categories. MIMD machines 
are currently the subject of considerable development 
work and may have important applications to Monte 
Carlo calculations in the near future. 

Vector computers of the pipelined SIMD class 
achieve their high processing rates through the heavy 
use of pipelining, concurrency, chained operations, 
and banked and interleaved memory, each of which is 
discussed briefly below (Kogge, 1981; Calahan, 
1980a). 

Pipelining is exemplified by an automobile produc- 
tion line, where a number of automobiles are in 
production concurrently, each in a different stage of 
completion. The time interval between the completion 
of successive automobiles is equal to the time for one 
stage of the assembly line, rather than the total time 
needed to traverse the entire line. Pipelined vector 
computers execute instructions in a similar fashion. A 
functional unit is segmented, or "unrolled," into nearly 
independent subtasks. A stream of data operands 
(comprising vectors) marches in lockstep through the 
unit, with successive operands undergoing successive 
sub-tasks. The first result is obtained only after a pair 
of input operands traverses the entire pipeline, with 
successive results produced only one cycle apart. The 
execution of a pipelined vector instruction thus has 
two phases, a smrtup phase, where the pipeline is filled 
and the first result is obtained, and a streaming phase, 
where results are produced rapidly and separated only 
by the small delays of a segment. Pipelined architec- 
tures are very fast and efficient if the data stream is 
sufficiently large to amortize the startup times, but 
provide penalties in the form of startup overhead for 
short data streams. 

Concurrency of operations, or overlap, occurs when 
operations involving independent data and functional 
units may proceed essentially simultaneously. Vector 
computers like the CRAY-1 and CYBER-205 allow 
the concurrent execution of vector and scalar instruc- 
tions, thus making scalar operations 'free' if they can be 
scheduled during a longer vector operation. The 
CRAY-1 also allows concurrent vector operations if 
no conflicts are involved. 

Chaining of vector operations, also called short- 
stopping and linked-triads, refers to the routing of 
output results from one pipelined functional unit 
directly into the input of another, without first 
returning to main memory or a temporary vector 
register. If successive vector operations are suitable for 
this linking, and if a number of machine-dependent 
requirements are met, significant savings in startup 



Monte Carlo methods on vector computers 

time are realized, as well as considerable overlap of 
instruction execution. 

Memory bankin9 and interleavin9 techniques are 
used to increase data transfer rates between main 
memory and the vector processing units. These 
techniques extend the parallel and pipeline techniques 
to memory accessing. Typically, the main memory 
storage is segmented into independent banks such that 
each bank can begin a memory cycle before adjacent 
banks have completed previously initiated cycles. 
Interleaving refers to the placement of successive data 
items in different banks, so that vectors of contiguous 
data may be transferred at high rates. 

1.2.2. Vector instruction timin 9 model. The execu- 
tion of a vector instruction consists of a startup phase 
followed by a high streaming rate. For a given type of 
vector instruction, the timing may be modelled in a 
straightforward way by the formula 

T(i) = S(i) + L/R (i) 

where T(i) represents the total time required to execute 
the vector instruction denoted by i, S(i) is the startup 
time for instruction i (which includes instruction setup 
and issue times as well as the time to fill the pipeline), 
R(i) is the result rate or streaming rate for instruction i 
(i.e. the number of results obtained per second after the 
pipeline has been filled) and L is the vector length or 
number of results to be obtained. The startup time S(i) 
and streaming rate R(i) are processor characteristics 
which are constant for a given machine and type of 
vector instruction, although different instructions may 
have widely different values. When L is large enough so 
that startup time may be neglected, the average time 
between results, T(i)/L, is given asymptotically by 
1/R(i). It is thus essential that algorithms be im- 
plemented using sufficiently long vectors to ensure that 
vector startup penalties are negligible and the average 
result rate approaches the streaming rate. As indicated 
in Fig. 3, the average execution rate for vector 
computer operations depends strongly on the vector 
length L. The vector length needed to obtain an 
efficient utilization of the vector processor depends on 
the particular computer and the type of instruction. 

For most applications, a variety of vector instruc- 
tion types and vector lengths will occur, necessitating a 
slightly more general model. As before, let i denote the 
type of instruction, but let i vary according to the 
sequence of instruction types encountered in program 
execution. That is, thej-th vector instruction issued, in 
a program will be of type i[j] and have length L0). 
Then the total time to execute all vector instructions in 
a program is 

275 

100 

/ 2- Pipe CY BER-205 

101 102 103 10 ~ 
Vector Length 

Fig. 3. M F L O P  rate versus vector length for the CYBER-205 
computer. 

R(i~j])J 

For a program with few scalar instructions, or one 
where most scalar instructions execute concurrently 
with vector instructions, the total time T is generally 
quite close to total program execution time. 

Several other quantities are commonly used to 
characterize the performance of a vectorized code, 
including the average vector length, average vector 
operation startup time and average vector operation 
result rate, denoted by VL, S(ave), and R(ave), 
respectively. These may be found by averaging over the 
distribution of vector instruction types which charac- 
terizes a particular code. (The distribution of instruc- 
tion types can be determined from the sequence i[j].) 
Both S(ave) and R(ave) depend strongly on processor 
characteristics (e.g. the startup times and streaming 
rates for various vector instructions) and somewhat on 
algorithmic features of a program (e.g. the relative mix 
of different types of vector operations). For Monte 
Carlo applications, S(ave) and R(ave) will be nearly 
constant for a given physical problem, essentially 
independent of the number of particle histories. The 
average vector length however, will depend strongly 
on the number of particles treated at once, with the 
result that following more particles simultaneously 
will increase VL and hence increase the efficiency of the 
vector operations. 

An important measure of the overall effectiveness of 
vectorization efforts is the overall speedup factor, 
defined as the ratio of the total time for scalar 
execution of a code to the total time for execution of 
the vectorized code. To be fair, the best scalar 
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algorithm should be compared with the best vector- 
ized algorithm, since frequently there are great differ- 
ences between optimal code for the two cases. It is 
generally meaningless to compare a vectorized al- 
gorithm run in scalar mode with the same algorithm 
run in vector mode, since vectorized code often has 
extra computations which need not be performed in an 
optimized scalar algorithm. 

1.2.3. CRAY-1 and CYBER-205 overview. The 
CRAY-1 (Cray, 1979) is both a fast scalar and a 
pipelined vector processor, with a heavily integrated 
combination of scalar and vector instructions and 
registers for both applications. The basic clock period 
governing the entire system is 12.5 nsec. A unique 
feature is the presence of eight vector registers, each 
holding 64 words of 64 bits each. Vectors are loaded 
from memory into vector registers and then stream to 
one of 12 independent segmented functional units, 
with result vectors returned to vector registers. Scalar 
operations may proceed concurrently with all vector 
operations. Main memory consists of up to four 
million 64-bit words. Vectors consisting of either 
contiguous data or data separated by a constant stride 
may be loaded into vector registers. The allowance for 
a stride (which may be negative) permits easy manipu- 
lation of rows, columns, and diagonals of matrices. The 
CRAY-1 vector instructions are characterized by 
relatively short startup times, ranging from 25 to 
175 nsec, and typical result rates of up to 
80 MFLOPs, with 160 possible if two functional units 
are active either separately or chained. Vector opera- 
tions on vectors having length greater than 64 must be 
broken into smaller vectors. (This is done by the 
FORTRAN compiler automatically (Cray, 1978).i 
The CRAY-1 has no hardware capabilities for gather/ 
scatter operations or compress/expand operations (see 
the next section). The lack of these operations makes it 
necessary to use scalar instructions for creating vectors 
from randomly stored data or manipulating sparse 
data. 

The CYBER-205 (CDC, 1980a,b) consists of a fast 
scalar processor and a multiple-pipe memory-to- 
memory vector processor. Both the scalar and vector 
processors are heavily pipelined for instruction fetch- 
ing and decoding, data operand fetching, and instruc- 
tion execution. The basic machine cycle time is 20 nsec. 
Startup times for the CYBER-205 vector instructions 
are typically 1000 nsec, but vectors reside in memory 
(contiguously) and may be any length up to 65,535 
words. The CYBER-205 main memory is typically two 
million words with two vector pipes or four million 
words with four vector pipes. Additionally, the 
CYBER-205 supports very large virtual memory 

capacity through the use of paging hardware which is 
transparent to user programs. For most vector instruc- 
tions, the result rates are proportional to the number of 
vector processing pipelines. In a vector addition on a 
two-pipe machine, for example, the first pipe adds the 
odd pairs of operands while the second pipe simul- 
taneously adds the even pairs, thus giving an average 
of one result every 10 nanoseconds. Linked triads, 
involving operations of the type 

vector • (scalar + vector) 
or 

vector + (scalar • vector), 

may be chained together without intermediate storage 
of temporary results. This reduces vector startup 
penalties and doubles result rates. A powerful non- 
numeric feature of the CYBER-205 is the bit vector 
capabilities. For decision making operations in vector 
coding, hardware and addressing are provided for bit 
vectors, with single bits representing 'true' (1) or 'false' 
(0) conditions, respectively. The bit vectors may be 
used for logical operations, as control vectors for 
selective storing of results, and for manipulation of 
sparse vectors. Microcoded vector macroinstructions 
that dynamically reconfigure the vector pipes provide 
direct vector implementation of dot products, sum- 
mation of vector elements, and many other useful 
functions not available on the CRAY-1. Additionally, 
a hardware instruction is provided for vector square 
root operations. For forming vectors from random 
data or storing vector elements randomly according to 
an index list, the CYBER-205 has gather/scatter vector 
instructions, which execute in 25 nsec per data item 
when data are randomly distributed in memory. 
Compress, expand, mask, and merge vector instruc- 
tions facilitate the vectorized manipulation of data 
under bit-control. All of these operations are discussed 
in more detail in the following section. 

1.2.4. Programming considerations. The notion of 
computing in a vector fashion is easily grasped by 
anyone who has dealt with FORTRAN programs 
making use of arrays and DO-loops. In general, DO- 
loops containing array references are directly vectoriz- 
able if the following things are not present : 

• IF statements 
• GO TO statements 
• recursive operations 
• array subscripts which do not change by a constant 

increment on each pass through the loop 
• subroutine calls 
• contraction of an array to a scalar quantity 

(accumulation or dot product) 
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There are other restrictions which vary among differ- 
ent machines. For  details on the vectorization of 
F O R T R A N  coding, see for example Kogge (1981), 
Kascic (1979) or Mossberg (1981). 

It should be noted that several different vector 
algorithms can usually be devised for a given scalar 
algorithm. Often, a particular vector algorithm will be 
efficient on one type of vector computer  and less 
efficient on another. This machine-dependence of 
vector algorithm performance is caused by differences 
in the vector computer  architecture, including short 
(CRAY-1) versus long (CYBER-205) vector startup 
time, and the presence or absence of certain types of 
vector instructions. Table 1 provides a summary of the 
vector instruction set differences between the 
CYBER-205 and CRAY-1 computers. When several 
different vector algorithms are possible, the selection of 
the 'best' one must take into consideration both the 
particular application and the target-machine char- 
acteristics. The discussions below are oriented prima- 
rily toward the CYBER-205 vector computer.  In many 
cases, however, the algorithms may be used on the 
CRAY-I  with little modification. 

Table 1. Comparison of CYBER-205 and CRAY-1 vector 
instruction sets 

CRAY-1 CYBER-205 

Vector Hardware Operations 

+, - ,*,/ yes yes 
square root no yes 
gather/scatter no yes 
compress/expand no yes 
mask yes yes 
merge no yes 
summation no a yes 
dot product no a yes 
logical yes yes 

Memory Addressing Modes word bit 
Word Size 64-bit 64- or 32-bit 

a=can be implemented by recursive use of vector func- 
tional units. 

The coding syntax for expressing array operations 
in a vectorized form is machine-dependent and there- 
fore not standard among vector computers. The 
syntax must be obtained from the F O R T R A N  refer- 
ence manuals specific to each computer  (Cray, 1978; 
CDC, 1980c). To avoid the problems caused by 
machine-dependent syntax, all descriptions of vector 
algorithms will be presented in the machine- 
independent notational standard developed by 
Iverson (1962). While the precise F O R T R A N  imple- 

mentation of the algorithms may differ (for both 
hardware and software features) between machines, 
the algorithmic features will be the same. The conven- 
tion adopted below is that vectors will be denoted by 
capital letters and scalar quantities by lower case 
letters. In the remainder of this section, emphasis is 
placed on the vectorization of data handling and 
decision making. These two items are crucial to the 
vectorization of Monte  Carlo. 

Some principal instructions for vectorized data 
handling include gather, scatter, compress, expand, 
mask, and selective-store operations. These go by 
various names, depending upon machine and degree of 
specialization, and may not even exist in some cases. 
The brief descriptions below are based on the 
CYBER-205 architecture. 

• The 9ather operation is used to form a contiguous 
vector from random data via an index list. In scalar 
F O R T R A N  and in Iverson's notation, gathering 
elements of B into a vector A according to index list 
I would be written as 

Do 10 j = 1,n 
10 (ai) j))=b(j)  ,~  A ~ B ,  

• The scatter operation disperses the elements of one 
vector to random locations in another according to 
an index list. In scalar F O R T R A N ,  

Do 10 j = l,n 
10 a(l( j ) )=b(j)  ¢¢, A t . - B  

• The compress operation reduces the length of a 
vector by removing unwanted elements, as denoted 
by the zeros in a bit vector. As an example, 
compressing vector A according to bit vector B into 
result vector C would give: 

a : 1 2 3 4 5  
b:O 1 0 0 1 ¢~, C ~ B / A  

c : 2 5  

• The expand operation creates a longer vector having 
zeros placed in elements corresponding to zeros in a 
bit vector. For  example, expanding vector C accord- 
ing to bit vector B into the result in vector A, would 
give 

c : 2 5  
b: 0 1 0 0 1 ~ A , -B ~C 

a : 0 2 0 0 5  

• A vector mask operation chooses successive vector 
elements from one or the other of two input vectors, 
according to a bit control vector. For  instance, 



278 F.B. BROWN and W. R. MARTIN 

given input vectors A1 and A2 and bit vector B, a 
mask operation may select from A 1 for '1' bits in B 
or A2 for '0" bits in B to form result vector C: 

a 1 : 1 2 3 4  
a 2 : 5 6 7 8  <:~ C~-- /A2 ,B ,A1/  

b: 0 0 1 1  

c: 5 6 3 4  

• A vector  merge  operation combines features of the 
mask and expand operations. Given input vectors 
A1 and A2 and bit vector B, a merge operation will 
select the next unused element of A 1 or A2. That is, 
merging A1 (for '1' bits in B) with A2 (for '0' bits in 
B) gives a result vector C as: 

a 1 : 1 2 3 4  
a 2 : 5 6 7  
b: 1 1 1 0 0 1  ¢~, C ~  \ A 2 , B , A I \  

c: 1 2 3 5 6 4  

• A reduct ion operation is applied recursively to 
successive elements of a vector to produce a single 
scalar result. The reduction operation for addition, 
for example, is equivalent to a summation of the 
successive elements of a vector: 

a : 1 3 5 7  
s = ( ( ( 1 ) + 3 ) + 5 ) + 7  .¢~ s .  + / A  

• A bit count  operation is a special case of the 
reduction operator and determines the number of ' l '  
bits in a logical bit vector. For example, 

b : 1 0 0 1 1 1  
n = 4  ¢~, n~- + / B  

• A vector length operation returns the current length 
of a vector. Its inverse operation may be used to set 
the vector length to a given value. 

a: 1 2 3 4 5  .¢~ s~VL(A) 
s = 5  

Decision making in a vectorized calculation is 
generally handled either by using extra computation 
followed by a vector mask or by rearranging al- 
gorithms to place conditional statements (e.g. IF 
statements) outside the vector code. As a typical 
example, consider the scalar FORTRAN coding 

Do 10 j =  l ,n 

xU)=0.0 
10 if 0c(j).gt.0.0) x(j)= 1.+ y(j) 

Each pass through the loop involves a choice between 
two values depending on the result of a comparison. In 
a vectorized calculation, the decision process must be 

completed before vector X enters a vector pipeline. 
This might be vectorized as: 

B~ F > 0  
T, 1.+Y 

x ~ - /O,B,T/  

Each of the vector operations above could be carried 
out as a single vector instruction. Note that 1. + Y0") is 
computed for all elements, rather than only the 
necessary ones. This extra work will (in this case) be 
offset by the much higher computation rates obtained 
from the vector mode calculations. In general, any 
two-way decision may be vectorized by computing 
both possible results and then selecting the correct one 
by using the masking operation. 

Short independent segments of coding may often be 
vectorized syntactically in a straightforward manner 
by programmers. The vectorization of a large, complex 
production code, however, requires the re- 
examination of many interrelated kernels and data 
structures and cannot in general be achieved effectively 
without major algorithm changes. This consideration 
is the topic of the next section. 

2. VECTORIZED MONTE CARLO~GENERAL 

[n developing new methods for solving large-scale 
problems on state-of-the-art computers, engineers and 
scientists should no longer think strictly in terms of 
equations and then depend on clever programmers or 
optimizing compilers to efficiently solve their prob- 
lems. Vector processing takes advantage of data 
structure, takes a 'larger view', in order to gain 
parallelism and enhance processing rates. This larger 
view is not available to compilers or pure pro- 
grammers due to the basic character of the program 
development process. In going from theory to equa- 
tions to algorithms to flow charts to conventional 
coding, the original problem is progressively trans- 
formed in a way that is not syntactically reversible. The 
larger view of the problem is lost. Considering the 
significant advantages of vectorization, the message is 
clear that although codes can be 'vectorized', the big 
payoffs come from vectorizing algorithms (Brown, 
1981a; Owens, 1973; Remund and Taggart, 1977; 
Smz, 1980; Wirsching and Kishi, 1977). 

After an overview of previous work in vectorizing 
Monte Carlo, a larger view of the Monte Carlo method 
will be taken to determine what structure exists. It will 
be shown that despite the random behavior of 
individual particles, vectorized global algorithms are 
readily formulated for treating sets of particles. The 
implementation of these algorithms, the 'vectorization' 
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of the coding, is later discussed in Section 3, with 
numerical examples presented in Section 4. 

2.1. Previous  work  

The first known work related to vectorizing Monte 
Carlo is that of Troubetzkoy et al. (1973), who adapted 
a version of the continuous-energy code SAM-CE for 
use on the ILLIAC-IV. The ILLIAC-IV was an 
experimental parallel SIMD processor with 64 pro- 
cessing elements. The basic approach was to follow a 
number of histories in each processing element, 
performing a given computation such as tracking only 
if 'enough' processing elements had at least one particle 
each waiting for that operation. Those processing 
elements without waiting particles were disabled for 
that operation. In essence, this approach mimics 
MIMD operation on a parallel SIMD machine by 
means of 'turning off' unwanted processing elements, 
and is not suitable for vector processors. The basic 
technique of forming queues of particles according to 
the type of next event, however, was developed. This 
technique is used (in some form) in all current 
vectorized Monte Carlo codes. The estimated overall 
efficiency was about 30~,,, leading to an estimated 
speedup of 20 over the conventional machines of the 
time. Since the ILLIAC-IV was under development 
and unavailable, Troubetzkoy's predictions were de- 
rived from simulation on a standard scalar computer. 

Recent efforts to vectorize Monte Carlo were 
initiated in 1979 by discussions between T.L. Jordan of 
LANL and D.A. Calahan of the University of 
Michigan. Jordan produced two codes--a scalar 
version and a vectorized version--which were sent to 
Michigan for further study and optimization by D.A. 
Catahan et al. (Calahan et al., 1980b,c; Brown et al., 
1981d,e). These codes and their succeeding develop- 
ment are discussed briefly below. 

A very short (300 lines) and simple scalar Monte 
Carlo code for the continuous-energy transport of 
gamma-rays served as a starting point for vectorized 
Monte Carlo investigations. In this code, a 6 MeV 
pencil-beam source was incident upon a single cylinder 
of carbon, with three collision interactions treated 
between 0.001 and 20 MeV. Compton scattering, pair 
production, and photo-electric absorption were in- 
cluded. No secondary particles were allowed (pair 
production was treated by emitting a particle with 
double weight), no variance reduction schemes were 
included, only analog absorption was permitted, and 
tallies were made with no variance calculation. This 
'bare-bones' Monte Carlo code was intended purely 

for basic algorithmic studies, and not for comparison 
with production-level codes. 

The initial attempt to vectorize the code, i.e. to 
follow many particles simultaneously, was implemen- 
ted using a particle stack comprised of vectors 
containing weight, energy, position, and direction 
components of all currently active particles. The 
particle stack was initially filled with values obtained 
from a starting source routine. A table search was 
performed to look up particle cross-sections which 
were then interpolated on particle energy. Then all 
particles were tracked simultaneously. Since only one 
geometric cell was permitted in the problem geometry, 
vectorization of the coding for particle tracking was 
straightforward. Only a few algorithmic changes were 
needed. Since there was only one cell, particles either 
collided within the cell or crossed the outer boundary. 
Particles crossing the cell boundary were tallied and 
deleted from the stack. For the remainder of the stack, 
the type of collision was sampled for each particle 
using the previously computed cross-sections, and 
particles were sorted into queues for either Compton 
scatter, pair production, or termination by absorption. 
Each interaction was vectorized in a straightforward 
manner to process the appropriate queue of particles. 
The direction and energy of the secondary particles 
due to Compton scattering and pair production were 
sampled from the appropriate PDF's and the particle 
stack was suitably modified. After deleting captured 
particles and performing a few tallies, the particle stack 
was topped off with source particles, and the entire 
process was repeated. The major algorithmic feature of 
this code relevant to vectorization is that each random 
decision point in the Monte Carlo procedure results in 
sorting particles into queues for vectorized analysis 
followed by a merging of results back into the particle 
stack. The key to the algorithm is the fundamental 
similarity of all particle interactions---each is initiated 
by particle emission at a given phase space position 
(source or collision) and proceeds to termination 
(collision or boundary crossing). Defining this portion 
of a particle history as an 'event' (emission through 
termination), the vectorized algorithm may be des- 
cribed as an 'event-based' algorithm versus the con- 
ventional 'history-based' algorithms of scalar Monte 
Carlo codes. 

To study a slightly more general geometry, the 
carbon cylinder was divided into several concentric 
cylinders. All particles, regardless of location, were 
tracked simultaneously by finding the distances to 
every surface in the cylinder. Particles crossing a cell 
boundary were stopped and merged with source 
particles for the next iteration. Since all cells were 
logically the same, only minor changes were needed in 
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the particle tracking routine. For tallying purposes, an 
extra array was used to hold the cell number for each 
particle. 

In an alternative attempt to generalize the geometric 
treatment, a cell-by-cell approach was used. The major 
algorithm change involved treating particles within a 
single cell simultaneously, with an outer iteration over 
cells. To accomplish this, a separate particle stack was 
maintained for each cell. Particles in the current cell 
which crossed a cell boundary were transferred to the 
particle stack for the 'other-side' cell. Particles collid- 
ing inside the current cell were queued up for the 
collision physics routines, and then merged back into 
the current stack after collision analysis. Although this 
code permitted only a concentric cylinder geometry, 
the algorithm was later extended in the MCVMG code 
to a more general geometry. 

Variance estimation was added via the batching 
method (RSIC, 1977). To implement batching, an 
outer loop was added so that a batch of particles was 
processed to completion before starting another batch. 
The batch mean scores are thus statistically indepen- 
dent estimates of the true mean and are used to 
estimate the variance. The introduction of batching 
has no effect on the coding of the random-walk, and 
thus introduced no changes in vectorized kernels. 

Details of the coding and algorithmic characteristics 
of the above codes can be found in Calahan et al. 
(1980b,c) for the CRAY-1 implementation, and Brown 
et al. (198 ld, e) and Martin (1983a) for the CYBER-205 
implementation. The speedups due to vectorization in 
these initial studies were in the range of 5 10 times 
faster than the original scalar code. While these 
speedups are relatively modest, the systematic investi- 
gation of new algorithms formed the basis for more 
recent efforts (the MCVMG code at the University of 
Michigan and the MCV code at KAPL) which have 
attained measured speedups of 20 85 for practical 
problems. 

The next sections describe this work in more detail. 
It should be noted that there are alternative ap- 
proaches to vectorizing Monte Carlo in addition to the 
approach considered in this paper. Bobrowicz et al. 
(1983) have vectorized a photon transport Monte 
Carlo code for the CRAY-1, wherein each distinct 
process is assigned to a separate queue and the queue is 
"executed" only when it is full (length 64) or if it is the 
longest queue when all are less than 64 in length. This 
approach is more suitable for the CRAY- 1 (which does 
not have vector hardware capabilities for gather/scat- 
ter or compress/expand) than are the CYBER-205- 
oriented methods used in MCV and MCVMG. 
Bobrowicz et al. report speedups of 7-10 over an 
optimized CRAY-1 scalar coce. (Speedups relative to a 

CDC-7600 version of the code are indicated to be in 
the range of 20-35.) Martin (1983b) has reported 
preliminary results of an independent effort to vector- 
ize a photon transport Monte Carlo code for inertial 
confinement fusion applications. Speedups on the 
CRAY-I were in the range of 7 10 relative to an 
optimized CDC-7600 code. 

2.2. General considerations for  vectorized Monte  
Carlo 

In order to achieve large speedups from vectoriz- 
ation, some restructuring of the global Monte Carlo 
algorithms is necessary. While there are no 'typical' 
Monte Carlo problems, there do exist may similar- 
ities in structure among the many existing production 
codes. All general-purpose Monte Carlo codes include 
the following major computational kernels: 

• introduction of particles from a source. 
• retrieval of cross-sections from an extensive data 

base (multigroup or continuous-energy) 
• sampling the distance to collision. 
• tracking of particles in general geometry, including 

determination of the distance to the next surface 
crossing, identification of the next surface, and 
identification of the next or current cell. 

• determining the particle energy and direction fol- 
lowing collisions from discrete and/or continuous 
PDF's. 

• determination of secondar) particle production (if 
applicable), and resulting energy and direction. 

• tallying to estimate means and variances. 
• miscellaneous variance and cost reduction tech- 

niques such as splitting/Russian roulette, weight 
cutoffs, etc. 

The above kernels are implemented in most general- 
purpose codes in roughly the same manner. Since each 
of the kernels is relatively seff-contained and straight- 
forward there are many similarities among the general- 
purpose codes. Conventional scalar Monte Carlo 
codes may be characterized as a collection of loosely 
coupled computational kernels, with individual par- 
ticle histories simulated one-at-a-time by random 
sampling to select a kernel and by further random 
sampling within individual kernels. The vectorized 
Monte Carlo codes are formulated computationally to 
follow many particles through their random-walks, 
treating many events simultaneously using vector 
instructions to speed up the computation rates. 
Syntactic (i.e. local) vectorization of a scalar Monte 
Carlo code is not effective since different particles 
would require analysis by different kernels. Instead, 
experience has shown that a comprehensive, highly 
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integrated approach is required to achiek~e significant 
gains in computational efficiency. The m~ajor elements 
of the computational structure that efficiently pro- 
cesses many particles simultaneously are noted as 
follows: 

(1) The Monte Carlo code must access a unified data 
layout. The entire cross-section and geometry 
database must be restructured to provide the 
unffied data layout. For a given portion of the 
calculation, the data should be memory-resident 
and organized so that simple and logical direct 
addressing may be used to facilitate vector gather 
operations. 

(2) The Monte Carlo code must be restructured (re- 
written). Much rearrangement of local coding and 
the global algorithm is required to permit the 
processing of many particles simultaneously. 
Large amounts of memory storage must be 
allocated to hold the descriptive data for each 
particle. These data are 'stacked' in memory so 
that corresponding components form vectors. The 
global algorithm used to manage the particle stack 
and to vectorize across random decision points is 
described in detail below in the discussion of 
implicit loops. 

(3) Deliberate and careful code development is essential. 
Scalar Monte Carlo production codes are large 
and complex and have evolved gradually over 
many years of development. Vectorized Monte 
Carlo codes must accommodate the additional 
complexity of managing the storage and shuffling 
of thousands of particles simultaneously. 
Development should begin with small codes 
having few options. As methods are verified and 
experience is accumulated, additional options and 
capabilities may be systematically added. 

The key to successful vectorization of Monte Carlo 
is that a well-defined structure must be imposed on 
both the database and Monte Carlo algorithm before 
coding is attempted. This structure may arise simply 
from the reorganization of existing data/algorithms or 
may entail the development of special mathematics or 
physics models. Careful and systematic development 
helps to preserve the structure as the vectorized code 
becomes more complex. 

2.3. Vectorization techniques 

The principal obstacle to vectorizing a conventional 
scalar Monte Carlo code is the large number of 
conditional statements ( I F . . .  GO TO) contained in 
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the coding. Examination of sections of coding shows 
that, typically, one-third of all essential FORTRAN 
statements may be IF-tests. Careful consideration of 
the Monte Carlo program logic and underlying 
physics permits categorizing these conditional state- 
ments and associating them with three general al- 
gorithmic features of Monte Carlo code~ imp l i c i t  
loops, conditional coding and optional coding. The 
techniques used in vectorizing each of these features 
are discussed below. As noted previously, the primary 
emphasis is on techniques applicable to the 
CYBER-205 vector architecture. 

2.3.1. Implicit loops. Monte Carlo codes have a 
notable absence of explicitly stated DO loops. The 
most heavily used loops are implicit. That is, they 
generally do not have a loop counter, and the number 
of iterations may not be fixed or known in advance. 
Termination is based upon the setting of some 
condition within the loop. Some examples are the 
implicit free-flight loop (i.e. track and move a particle 
repeatedly until it collides) and the implicit loop on 
particle termination (i.e. simulate particle free-flight 
and collisions until the particle escapes or is absorbed). 
Implicit loops generally occur in the global logic of a 
Monte Carlo code or in the specific coding for random 
sampling via rejection methods. I f . . .  GOTO state- 
ments that branch backward in the coding are quite 
often the terminators of implicit loops. (In a structured 
programming language, implicit loops would be 
implemented via DO-WHILE structures.) 

In the global logic, the end of an implicit loop is a 
transition between loosely connected sections of 
coding, such as tracking vs. collision analysis. In a 
vectorized algorithm, some particles being analyzed 
may (physically) exit the implicit loop on the first pass 
while others may require many passes. One general 
technique for resolving this difficulty will be termed 
'shuffling'. At the end of each pass through an implicit 
loop, the particle data are shuffled. Particles that have 
satisfied the exit condition are transferred to a storage 
queue (i.e. a 'stack') to be held until all particles have 
satisfied the exit condition of the implicit loop. 
Particles that have not satisfied the exit condition are 
left in the working stack for the implicit loop. The 
working stack is then compressed so that contiguous 
vectors are available for the next pass through the 
implicit loop. The implicit loop terminates when its 
working stack is empty. (In some cases, there may be 
advantages to terminating the implicit loop early and 
saving its stack for later use.) 

The use of shuffling in vectorized Monte Carlo is 
illustrated in Fig. 4 (Brown, 1983) which shows the 
global algorithm and neutron stacks for MCV. Due to 
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Fig. 4. Global algorithm and neutron stacks for vectorized continuous-energy reactor lattice analysis. 

the very large size of the detailed pointwise cross- 
section dataset, the energy range is segmented into 
distinct nonoverlapping ranges called 'supergroups', 
with the random-walk completed in one supergroup 
before proceeding to the next. The implicit loops are 
the collision loop and the free-flight loop. In the free- 
flight loop, all neutrons are tracked simultaneously, 
regardless of their geometric location. At the end of the 
free-flight loop, neutrons may remain in the tracking 
stack or be transferred to the collision stack. At the end 
of the collision loop, neutrons may be transferred to 
the tracking stack or to the bank stack (if the energy 
after collision falls outside the energy range of the 

current supergroup). The shuffle just prior to the 
collision loop is used to retrieve banked neutrons at 
the start of a new supergroup. 

The global algorithm and shuffling scheme for the 
MCVMG multigroup Monte Carlo code are shown in 
Fig. 5 (Brown, 1981a). Because MCVMG was inten- 
ded for shielding applications where the geometric 
cells were assumed to be large and highly irregular in 
shape and location, a cell-by-cell tracking scheme was 
used. To this end, a particle stack was required for each 
geometric cell, and an implicit loop over cells was 
introduced. After each free-flight and collision iter- 
ation within a cell, particles are sorted into the 

Batch Loop 

Source 

Cell Loop 

Event Loop 

Track 

Surface Loop 

. . . .  S h u f f l e  

Collisions 
, , .  

. , o  

celjxYiZl ... 

ce121xLYiz  
Cell n l X Y Z ... 

Fig. 5. Global algorithm and particle stacks for vectorized multigroup shielding analysis. 
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appropriate stacks for other cells. Since relatively 
compact multigroup cross-section data were used, no 
shuffling was needed for energy group consider- 
ations--all collisions could be treated simultaneously. 

2.3.2. Conditional codino. The physical laws of 
particle behavior are simulated in a Monte Carlo code 
by random sampling from probability distributions. 
The outcome of random sampling determines the next 
event in a neutron history. For a scalar code, an 
I F . . .  GOTO statement is used to test a condition and 
to branch (usually forward) to an appropriate section 
of coding. Sections of coding that are either selected or 
skipped, depending upon some particle attribute, will 
be termed conditional coding. (In a structured pro- 
gramming language, conditional coding would be 
implemented via CASE structures.) 

Conditional coding occurs often in the most 
frequently used portions of the Monte Carlo al- 
gorithm. In vectorized Monte Carlo, some particles in 
the current stack must undergo a particular set of 
operations (such as inelastic scattering), while others 
must not undergo these operations. Shuffling would 
generally introduce too much overhead and degrade 
performance. Instead, selective operations must be 
performed when vectorizing conditional coding. Four 
different means of performing selective operations on 
the CYBER-205 are described here and illustrated by 
examples in following sections. 

1. Gather/operate/scatte~Data for the selected par- 
ticles are transferred from random stack locations 
into contiguous vectors using vector gather instruc- 
tions. The necessary operations are then performed, 
and results are scattered back into the proper 
positions in the particle stack. Data for particles not 
selected remain in the stack unaffected. 

4. 

2. Compress~operate~decompress--This is similar to 
gather/operate/scatter, but uses compress and de- 
compress vector operations. Gather/scatter is more 
efficient when selected data are sparse; compress/ 
decompress is more efficient when selected data are 
dense. 

3. Bit-controlled operations--For short conditional 
coding blocks, the overhead from gather/scatter or 
compress/decompress may be greater than the 
gains from vectorization. These cases may be 
vectorized using the CYBER-205 bit-controlled 
operation capability. A vector operation is per- 
formed on all the elements of a vector, with results 
stored only for elements corresponding to a per- 
missive bit in a bit vector. 

Generalized equations--Much of the conditional 
coding in scalar Monte Carlo codes is included to 
save time for simple or specialized cases. As an 
example, isotropic scattering is a special case of 
general scattering analysis and is usually treated 
separately by simplified equations. In a vectorized 
code, it is very often more efficient to avoid separate 
coding for special cases and, instead, to use general 
equations for all particles. This should be done 
whenever it appears that the extra work resulting 
from the use of general equations is less than the 
overhead of gather/scatter or compress/decompress 
operations needed for separate analysis. In general, 
this tradeoff will depend on the specific machine 
architecture as well as on the particular coding. 

2.3.3. Optional codin 9. Monte Carlo codes permit 
many input options that specify the type of calculation 
to be performed. These options select or skip sections 
of coding for all particles and need no special 
treatment in a vectorized code. For example, a neutron 
eigenvalue problem must include operations for deter- 
mining the source shape used in succeeding batches, 
whereas a fixed-source problem utilizes a known 
source shape. One simple branch in a vectorized code 
will skip unneeded operations for all particles. This 
provides an important speedup over a scalar code 
where the branch is needed for each particle. 

2.3.4. Discussion. To summarize, implicit loops are 
vectorized using shuffling, and conditional coding is 
vectorized using selective operations. This approach to 
vectorizing Monte Carlo is effective on the 
CYBER-205 and other vector computers having 
hardware capabilities for vectorized data handling. In 
the MCVMG and MCV vectorized Monte Carlo 
codes, 40 60~/o of all vector instructions used in actual 
coding were vector data handling instructions (gather, 
compress, bit-controlled operations, etc.). 

The data-handling operations associated with shuf- 
fling and selective operations in the vectorized code 
constitute extra work that is not necessary in a scalar 
code. This extra work offsets some of the gain in speed 
achieved from vectorization. For vectorization to be 
successful, overhead from shuffling and selective 
operations should comprise only a small fraction of 
total computing time. It is thus essential that all data 
handling operations be performed with vector instruc- 
tions. Vector computers that rely on scalar data 
handling operations are severely limited in vectorized 
Monte Carlo performance. 
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3. VECTORIZED MONTE CARLO~SPEC1FIC 

Where the previous section discussed the vectoriz- 
ation of Monte Carlo in general terms, this section 
presents specific examples of vectorizing localized 
portions of a Monte Carlo code. The examples have 
been taken from either the MCVMG code, a vector- 
ized multigroup Monte Carlo demonstration code, or 
from the MCV code, a vectorized continuous-energy 
neutron transport Monte Carlo code for reactor 
analysis. 

3.1. Pseudorandom number generation 

The 'randomness' in a Monte Carlo calculation 
stems from randomly sampling probability distribu- 
tions which model physical events. On digital com- 
puters, pseudorandom number generators ((PRNG's) 
are used to supply ' random' numbers uniformly 
distributed in the interval 0-1. While PRNG's  make 
use of deterministic algorithms and hence do not yield 
truly random numbers, the sequences produced by 
PRNG's  will pass suitable tests for randomness when 
the algorithm parameters are chosen correctly. 
Although PRNG's  account for only about 5!!/, or less 
of the total CPU time for a typical Monte Carlo 
calculation, the vectorization of PRNG's  is important 
to avoid 'scalar bottlenecks' in a highly vectorized 
code. (That is, if the remainder of the coding were 
completely vectorized, the maximum speedup would 
be less than 20.) 

The most common PRNG used in scalar Monte 
Carlo for radiation transport applications is the 
multiplicative congruential method (or Lehmer 
method) (Halton, 1970; Knuth, 1981). A sequence of 
pseudorandom integers s(i) is generated according to: 

s(0),--initial integer seed 

~ + 1),--gs(i) mod p (1) 

The integers s(i), termed seeds, are in the range 
(1 ,p-  1). The modulus p is generally chosen to be 2", 
where m is the number of binary digits used to 
represent a positive integer. If the generator g is chosen 
so that g(mod 8)=3 or 5, then the sequence will have 
the maximal length of 2"-2 without repeating. (The 
initial seed s(0) must be odd to prevent the sequence 
from degenerating to repeated zeros.) The pseudoran- 
dom numbers on (0,1) produced by s(i)/p are used in 
sampling from the probability distributions which 
model a particle's physical behavior in a Monte Carlo 
code. 

Although the scalar PRNG Algorithm (1) is recur- 

sive, it may be vectorized in a straightforward way by 
either 'unrolling' or 'replicating' the recursion. 
Unrolling leads to a 'vector seed, scalar generator' 
algorithm, while replication leads to a 'scalar seed, 
vector generator' algorithm, both of which are des- 
cribed below. These vectorized algorithms preserve the 
exact sequence defined by the scalar algorithm (1). 

The 'vector seed, scalar generator' (VSSG) al- 
gorithm for generating vectors having L pseudoran- 
dom numbers is obtained by unrolling the recursion of 
Algorithm (1) L times. In this scheme, vector S(k) will 
contain the (kL+ 1) through (kL+L) elements of the 
pseudorandom sequence produced by Algorithm (1). 
The initial seed vector S(0) is generated using the scalar 
algorithm, while successive seed vectors are produced 
using vector hardware instructions. The seed vectors 
must be retained in memory for the next pass. 

S(O)~(s(O), s(1) . . . . .  s(L-  1)) 

S(k T 1)~gLS(k) rood p (2) 

/ 

The 'scalar seed, vector generator' (SSVG) al- 
gorithm for generating vectors having L pseudoran- 
dom components discards the seed vector S(k + 1 ) after 
it is used, retaining only the last element as the scalar 
seed for the next pass. A vector consisting of the 
generator g to successive powers is used in generating 
the next seed vector S(k+ 1). The generator vector is 
computed only once and retained without change 
throughout the calculation. 

s(0),--initial scalar seed 

G~(g ,  g2 . . . . .  gL)mod p 

1 
S(k+ 1 ) ~ G  s(k) rood p (3) 

s(~+ 1)* [S(k+ 1)] L 

/ 

While the VSSG and SSVG schemes are mathemat- 
ically equivalent and preserve the pseudorandom 
sequence of Algorithm (1), practical considerations 
favor the SSVG algorithm for general-purpose use. 
For Monte Carlo applications such as radiation 
transport where the vector length L varies during the 
calculation, the VSSG algorithm is inefficient due to 
the need to generate a new seed vector S(0) using scalar 
methods whenever L changes. The SSVG algorithm is 
preferable since it will accommodate varying L values 
if the generator vector is initialized for the largest 
required value of L. Although L may vary, the elements 
of G remain constant. 
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The SSVG algorithm is currently implemented in 
the MCVMG vectorized Monte Carlo code for the 
CYBER-205 computer. Initialization of G is per- 
formed once at the start of a problem using scalar 
instructions. The generation of S(k+ 1) in Algorithm 
(3) and conversion to a vector of normalized fractions 
R(k+ I) require only three vector hardware instruc- 
tions, resulting in an asymptotic timing of 30 nsec per 
pseudorandom vector element (for a 2-pipe 
CYBER-205). This timing is more than an order of 
magnitude faster than scalar implementations (which 
have measured timings of about 320 nsec). 

Recently, more general PRNG algorithms have 
been proposed by Frederickson et al. (1983) in which 
the initial seeds are chosen by means of a separate 
PRNG. Frederickson presents convincing arguments 
for the adoption of these new algorithms. 

3.2. Sampling direction cosines 

As an example of vectorizing a short, localized 

portion of a Monte Carlo code, consider part of the 
process of sampling a direction from an isotropic 
angular distribution. It is necessary to evaluate cos~b 
and sin~b, where ~b is an angle uniformly distributed on 
(0,2re). Figure 6 shows several schemes for this process. 
The direct (scalar) calculation (Fig. 6a) is straight- 
forward but somewhat slow, due to the need to 
evaluate the trigonometric functions. The rejection 
method (Fig. 6b) for indirect sampling of sintk and 
cos~b is faster, since it avoids the use of the SIN and 
COS functions, and is the method used in nearly all 
Monte Carlo codes (Carter and Cashwell, 1975). lf i t  is 
desired to produce many pairs of samples at once, the 
process should be vectorized. The rejection method 
cannot be readily vectorized, however, due to the 
conditional branch ( I F . . .  GO TO statement). 
Vectorizing the direct calculation (Fig. 6c) is possible 
and leads to the production of pairs of results 5.5 times 
faster than via rejection, and 9 times faster than via 
scalar computation, even though the trigonometric 
functions are being evaluated. Such savings are 

6a. D i r e c t  Method IScalar) 

R = 2 . *PI~RANF (1) 
u = COS (R) 
V = SIN(R) 

T i m i n g "  (microseconds) 
Amdahl 4 7 0 v / 8  17. 
CRAY-1 8 . 4  
CYBER-205 9 .1  

6b .  Rejection Method / S c a l a r )  

10 R1 = 2 . *RANF(1 )  - 1. 
R2 = 2.*RANF(1)  - 1. 
T = R1,~2 + R2~.2 
IF (  T .GT. 1 .0  ) GO TO 10 

T = ] . / T  
U = ( R 1 * ~ 2 - R 2 * * 2 ) * T  
V ~ 2 . ~ R I ~ R 2 * T  

Timing* (microseconds) 
Amdahl h7Ov/8 12. 
CRAY-I 5 .2  
CYBER-205 3 .0  

6c.  V e c t o r i z e d  D i r e c t  Method 

DO 10 I = I . N  Timing" (microseconds) 
R( f )  = 2 .~PI~RANF(1)  (per pa i r  of r e s u l t s )  
U(I )  = C O S ( R ( I )  ) Amdahl h70v /8  17. 
V ( I )  = S I N ( R ( I )  ) CRAY-1 .94 

10 CONTINUE CYBER-205 -57 

* CRAY-1 and CYBER-205: 6~ b i t  a r i t h m e t i c ,  
Amdahl 4 7 O v / 8 : 3 2  b i t  a r i t h m e t i c  

Fig. 6. Local vectorization example. 
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important in repetitive and often used parts of a larger 
calculation. 

The above discussion brings out two important 
programming considerations: First, repetitive calcula- 
tions involving trigonometric, exponential, or arith- 
metic functions may often be coded simply and directly 
due to efficient vectorized functions. It is not (always) 
necessary to use rejection methods or other tricks 
common in scalar codes. Less arithmetic does not 
necessarily mean faster code on a vector computer. 
Extra arithmetic needed to allow vectorization can 
very often result in faster overall code. 

3.3. Rejection methods 

Rejection methods are frequently used for random 
sampling from complicated probability distributions. 
In a scalar code, a rejected trial sample leads to a 
(backward) branch in order to repeat the sampling 
process. In a vector code, provision must be made for 
separating the accepted and rejected trials resulting 
from the sampling process. These methods may be 
vectorized through a shuffling procedure--accepted 
trials are appended or intermixed with previously 
accepted ones, and the necessary parameters of the 
rejected trials are collected together before repeating 
the sampling process. The overhead for the shuffling of 
accepted and rejected samples comprises extra work 
required for vectorization which is not present in 
scalar coding. Since these methods are often employed 
in frequently used portions of coding, the overhead 
from shuffling is an important consideration. In some 
cases, the additional work is minimal and does not 
significantly degrade performance. For many rejection 
sampling schemes involving only a few simple opera- 
tions, however, the amount of 'algorithmic overhead' 
required for vectorization will often outweigh the gains 
from vectorization. It is preferable to replace rejection 
methods by direct methods wherever possible, even for 
sampling from complicated probability density 
functions. 

3.4. Russian roulette vectorization example 

As a final example of vectorizing a short localized 
segment of a Monte Carlo code, a Russian roulette 
procedure common to most Monte Carlo codes will be 
considered. This procedure is used to kill off particles 
having low weight in order to reduce the total 
computing time. In order to avoid biasing the results, 
particles with low weight are killed off probabilistic- 
ally, with the weight of survivors increased so that the 
expected weight is preserved. Figure 7a illustrates this 
process as coded in FORTRAN in a typical scalar 

code. First, a test is made to see if particle weight is 
below the weight cut-off criteria. If so, the particle 
survives with probability (wgt/wrrave), where wgt is 
the particle weight and wrrave is the weight assigned to 
surviving particles. If the particle survives it is given a 
weight of wrrave; if not, it is terminated by setting the 
weight to zero. Vectorization of the Russian roulette 
game to permit many particles to play at once is 
simplified if the coding of Fig. 7a is first rewritten in the 
equivalent structured form shown in Fig. 7b, where 
FORTRAN block-IF structures have been used to 
eliminate GO TO statements. For many particles at 
once, the coding of Fig. 7c must be made compatible 
with vector processing instructions by eliminating the 
IF-slatements. To illustrate the tradeoffs involved in 
deciding between possible vector implementations, 
three different approaches are illustrated in Figs 7d--f 
along with examples of the instruction timings taken 
from the CYBER-205. 

Figure 7d illustrates the vectorization of the Russian 
roulette process through the use of vector mask 
instructions, without the use of compress/expand or 
gather/scatter operations. In this approach, bit vectors 
are formed based on both tests found in the scalar 
method, and then two vector masks are used to place 
either 0, wrrave, or the original particle weights into 
the appropriate vector element positions. The disad- 
vantage to this approach is that extra work must be 
performed (compared to scalar), since a random 
number is generated for all particles rather than just 
for the ones having low weight. 

Figure 7e illustrates one method to avoid the extra 
work of unnecessary random number generation. 
Using the initial bit vector (which flags the particles 
having low weight), the weights and random number 
seeds of particles which must undergo Russian roulette 
are compressed into shorter vectors. The Russian 
roulette process is then played only for those particles, 
and then the results are expanded back into the 
appropriate positions in the original vectors. There is 
thus some overhead due to the compress/expand 
operations, but the random process itself is played only 
for the particles which may be affected by it. Based on 
the CYBER-205 timings shown in Figs 7d and 7e (and 
neglecting vector startup times), this approach is faster 
than the vector mask approach when the number of 
particles which must undergo Russian roulette is less 
than about 31/60 of the original number of particles. 

Figure 7f illustrates another method of playing the 
Russian roulette game only on affected particles. In 
this approach, the initial bit vector (which flags 
particles with low weight) is used to create a vector 
containing the indices of affected particles (with 
respect to the start of the original vector). Using the 
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]a.  Scalar - -  One Neutron 

9O 

i f  ( wgt .gt .  wrrlow ) go to 90 
t : O .  
i f (  ranf(1)*wrrave . le .  wgt ) t = wrrave 
wgt = t 
cont i hue 

7b. Structured Scalar - -  One Neutron 

i f (  wgt . le .  wrrlow ) then 

i f (  ranf(1)*wrrave . ]e .  wgt ) 
wgt = wrrave 

else 
wgt = O. 

endif 

endif 

then 

7 c. Structured Scalar - -  Many Neutrons 

do I0 j=l,n 

if(wgt(j) .le. wrrlow ) then 

if( ranf(l)*wrrave .le. wgt(j) ) 
wgt(j) = wrrave 

else 
wgt (j) = O. 

endlf 

e n d i f  

10 continue 

Fig. 7. Russian roulette vectorizalion example for the 

then 

CYBER-205. 

index vector, the affected particles are collected into a 
shorter vector using vector gather instructions, the 
Russian roulette game is played, and then the results 
are scattered back to the appropriate positions in the 
original vectors. Based on the CYBER-205 timings 
shown in Figs 7d, 7e and 7f (and neglecting vector 
startup times), this approach is faster than the vector 
mask approach when fewer than about 51/140 of the 
original particles are to be selected, and faster than the 
compress/expand approach when fewer than about 
1/4 of the original particles are to be selected. 

The timing information discussed above for the 
three vectorization schemes is displayed in Fig. 8 as a 
function of the selection density (i.e. nr/n, where nr is 
the number of particles for which the Russian roulette 
game must be played, and n is the total number of 
particles comprising the original particle vectors). It is 
apparent from Fig. 8 that selection of the 'best' 
vectorized method depends on the physics of the 
problem being solved and on the instruction timings of 
the particular vector computer being used. In some 

problems a large fraction of the particles may need to 
undergo a process, whereas in other problems few may 
be affected. Relative timings of the compress/expand, 
vector mask, and gather/scatter operations differ 
significantly between the CYBER-205 and the 
CRAY-1 computers so that the tradeoffs of the various 
approaches are highly machine-dependent. 
Furthermore, for some heavily used processes, more 
than one vector approach may be coded. The decision 
as to which approach to use is determined by the code 
during problem execution. 

3.5. Review of  collision analysis 

Several major parts of the collision analysis are: (1) 
determining appropriate cross-sections for a particle, 
(2) altering the particle's weight in lieu of absorption 
when survival biasing is used, (3) for continuous- 
energy Monte Carlo, determining the type of interac- 
tion, (4) sampling particle exit energy from an 
appropriate PDF, and (5) sampling the particle's exit 
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7d. Vector - -  Using "Mask" 

BIT1 < - -  WGT < wrrlow 
T < - -  RANFV( SEED ) ~ wrrave 
BIT2 < - -  T < WGT 
BIT3 < - -  BITI .and. BIT2 
BIT4 < - -  BIT1 . and . . no t .B IT2  
WGT < - -  /WGT,BlT3,wrrave/ 
WGT < - -  /WGT,BIT4,O/ 

7~. Vector -- Using Compress 

BITI < ~  WGT . l e .  wrrlow 
nr < ~  +/BITI 
i f (  nr .g t .  O ) then 

SEEDI < - -  BITI/SEED 
S < - -  BITI/WGT 
R < - -  RANFV( SEEDI ) * wrrave 
BIT2 < - -  R < S 
S < - -  /O,BIT2,wrrave/ 
SEED < - -  /SEED,BITI,(BITI\SEEDI)/ 
WGT < ~  /WGT,BITI,(BITI\WGT)/ 

end i f  

7 f .  Vector - -  Using Gather 

BIT1 < - -  WGT < wrrlow 
nr < - -  +/B~TI 
i f  ( nr .g t .  O ) then 

I <-- BITI/(INTERVAL n) 

SEEDI < - -  SEED 
I 

S <-- WGT 

I 
R <-- RANFV( SEEDI ) * wrrave 
BIT2 < - -  R < S 
S <-- /O,BIT2,wrrave/ 
SEED < - -  SEEDI 

I 
WGT <-- S 

I 
e n d i f  

CYBER-205 t iming (ns) 

1 0 .  n 
4 0 * n  
1 0 ~  n 

• 625 ~ n 
• 625 * n 

IO* n 

I0" n 

t o t a l  (81.25 n s ) * ( n )  
+ (s ta r  tup) 

CYBER-205 timing (ns) 

1 0 ,  n 
0 

1 0 ,  n 
10 ~. n 
40 * nr 

IO *, nr 

IO * nr 

IO* n 

IO* n 

t o t a l  (50 n s ) * ( n  ) 
+ (60 n s ) * ( n r )  
+ (s ta r  tup) 

CYBER-205 t i m i n g  (ns) 

10 ~ n 
0 

2 0 r a n  
25 * nr  

25 * nr 

40 * nr  
10 * nr  
10 * nr  
25 * nr 

25 ~ nr 

t o t a l  (30 ns) m(n ) 
+(140 ns) * (nr) 
+ ( s ta r  tup) 

direction from an appropriate angular PDF. These 
items are discussed below for continuous-energy and 
multigroup approaches. 

5.5.1. Cross-section lookup. At a minimum, three 
data items must be found for a colliding particle--the 
total macroscopic cross-section, the non-absorption 
probability (or, alternately, the absorption or total 
scattering cross-sections) and the location of the 

PDF's for sampling the exit parameters. Additionally, 
when secondary particle production is allowed the 
appropriate cross-sections must be found. In 
continuous-energy codes, the location of partial cross- 
sections for all subclasses of reactions must also be 
found to allow determination of reaction type. The 
retrieval of these cross-section data is an important but 
subtle complication to vectorization. 

In the continuous-energy case, cross-sections are 
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Fig. 8. Timing comparison for vectorized Russian roulette 
examples on the CYBER-205. 

generally tabulated as a 'ladder' of energy/cross- 
section pairs (Thompson et al., 1979). The ladder must 
be searched to find a pair of entries which bracket the 
particle energy, and then the corresponding cross- 
sections are interpolated. Generally, all cross-sections 
are tabulated at the same energies, so that only one 
table search is required, followed by several interpol- 
ations. For small cross-section ladders, e.g. gamma-ray 
data, a linear table search is generally used, whereas for 
large cross-section ladders binary table searches are 
most common. (In some codes (Candelore et al., 1978, 
1982; Irving et al., 1965) the cross-sections are 
tabulated at regularly spaced energies in order to 
permit cross-section retrieval without a table search.) 

Table searches do not present a serious compli- 
cation to vectorization efforts--both linear and binary 
table searches are readily vectorized to permit search- 
ing for many entries at once (Brown, 1983). 

In a multigroup approach, no table searches and no 
interpolations are needed for the cross-section lookup. 
Since multigroup cross-sections are discrete, the group 
index of a particle also serves directly as the index for 
retrieving appropriate cross-sections. The only steps 
involved in cross-section retrieval in a vectorized code 
are a few gather operations. 

3.5.2. Survival biasing. The survival biasing game is 
carried out in essentially the same way in both 
multigroup and continuous-energy treatments. The 
termination of a particle due to absorption is prohib- 
ited, and, to ensure a fair game, the weight of a colliding 
particle is multiplied by a non-absorption probability. 

The form of the non-absorption probability varies, 
depending upon the method used for subsequent 
analysis of other possible reactions. Generally, 
continuous-energy codes will use a non-absorption 
probability defined by (1--O'a/fit), to decrease a 
particle's weight based solely on relative absorption, 
and then treat other possible reactions individually 
with appropriate weight modifications if needed. 

In multigroup codes, a somewhat different defini- 
tion is used (Gabriel, 1978). Neglecting the produc- 
tion of fission neutrons and secondary gamma-rays 
(which are treated separately), all remaining reactions 
are accounted for at a collision by considering what 
happens on the average. The 'non-absorption prob- 
ability' is actually a misnomer for the ratio of expected 
surviving weight to incoming weight. This ratio 
implicitly accounts for the non-absorption probability 
and explicitly accounts for weight modification in lieu 
of extra particle creation. If there are significant 
reactions which produce multiple particles, the 'non- 
absorption probability' may even be greater than one. 
In any case, the implementation of survival biasing is 
as simple as in the continuous-energy case--upon 
collision, do not terminate the particle; multiply its 
weight by a tabulated non-absorption probability. 

3.5.3. Continuous-energy interactions. Continuous- 
energy Monte Carlo codes generally use separate 
PDF's for each type of interaction. These PDF's are 
specially tailored to each physical process to ensure a 
realistic representation of the physics and an efficient 
and accurate numerical procedure. The great diversity 
of reaction physics and random sampling methods 
precludes attempting to treat all different reaction 
types simultaneously. Indeed, within the framework of 
conventional continuous-energy Monte Carlo colli- 
sion analysis there appears to be only one approach 
suitable to vectorization : First, using the interpolated 
partial cross-sections, a reaction type is selected 
randomly for each particle. This step may be readily 
vectorized. Second, for each reaction in turn, the 
relevant attributes of each particle undergoing the 
reaction must be gathered into vectors, i.e. queued for 
the reaction. Third, the vectorized analysis of the 
particular reaction is carried out. Finally, the modified 
particle attributes are scattered to the proper positions 
in the particle stack. 

While the above method is easy to implement, these 
problems are apparent: Queueing up particles for 
individual reactions results in a number of shorter 
vectors. With shorter vectors, vector startup penalties 
are more significant, and the relative gain from 
vectorization is reduced. Another problem is the 
overhead operations needed to set up and break apart 
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vector queues. The penalties from these extra opera- 
tions may somewhat offset gains from the vectorized 
collision analysis. Despite these problems, vectorized 
continuous-energy collision analysis has been found to 
be very effective in the MCV code. Brown (1983) 
details the techniques used to vectorize the collision 
analysis at epithermal energies in MCV. The types of 
interactions considered include elastic scattering (iso- 
tropic, P1, PN,), inelastic scattering, and a modified 
free-gas model to treat epithermal scattering with 
hydrogen bound in water. 

3.5.4. Multigroup collision analysis. The compli- 
cations occurring with continuous-energy collision 
analysis are absent from the multigroup approach. 
Since all reactions are averaged together in forming the 
group-to-group transfer matrix, only one type of PDF 
is necessary to sample the exit group for each 
particle--the discrete P D F  represented by one column 
of the transfer matrix. Thus, no queueing or sorting of 
particles for separate interactions is required. A similar 
situation exists with regard to PDF's  related to the 
scattering angle. The multigroup cross-section pro- 
cessing codes can average together the angular distri- 
butions of all reactions, and, although various codes 
make use of different representations, a given code will 
represent the angular PDF's  in one way. Many of the 
methods used for representing angular PDF's  for 
multigroup cross-sections have been summarized by 
Brockman (1981). The two most commonly used are 
the representation of scattering densities in the form of 
equiprobable step function PDF's  (Carter and Forest, 
1976) and in the form of moment-preserving discrete 
angles. Both of these forms are suitable for 
vectorization. 

The key requirement for vectorizing the multigroup 
collision analysis is the vectorization of random 
sampling from discrete PDF's. A method for vectoriz- 
ing discrete sampling has been developed by Brown et 
al. (1981c, 1983). The new vectorized discrete sampling 
method has been found to be equivalent to the 
'aliasing' method of Walker (1977) and is a particular 
extension of Marsaglia's (1961) method as applied to 
discrete distributions. It is faster than the usual method 
for sampling discrete distributions with large table 
length N, executes in a fixed time independent of N, 
and can be efficiently implemented into Monte Carlo 
codes for parallel and vector processing computers. 
The new vectorized method is significantly faster than 
all scalar methods and executes in a fixed time 
regardless of the size of the distribution. This new 
discrete sampling method is used for all discrete 
sampling events in the MCV and MCVMG codes. 

3.6. Vectorization of tracking 

Despite the great number of schemes for tracking 
particles through general geometry, most tracking 
modules in Monte Carlo codes can be loosely categor- 
ized as either 'COMJOM'  or 'surface-segment' ap- 
proaches. The COMJOM (combinatorial geometry) 
approach originated for the SAM-CE code, has been 
adopted and extended in MORSE and KENO, and 
generalized for MCNP. The surface-segment ap- 
proach has been used in the ANDY series of codes and 
in many older codes. In the following sections, the 
similarities of all tracking schemes in a simple geo- 
metry are discussed, followed by a general comparison 
of the COMJOM and the surface-segment approaches 
to complex geometry. The surface-segment tracking 
scheme was used in the vectorized MCVMG code, 
while a simplified version of the COMJOM scheme 
was used in the MCV code. 

3.6.1. Basic tracking considerations. The basic descrip- 
tion of problem geometry is conveyed to a Monte 
Carlo code through the coefficients of equations for 
surfaces and through lists defining relations between 
cells (or regions) and surfaces. Each surface compris- 
ing the problem geometry is described by a linear or 
quadratic equation (or for special tori, simplified 
fourth order equations) of the form S(x,y,z)= 0. In the 
most general case, the surface equation is 

S(x,y,z) = Ax 2 + By z + Cz 2 + Dxy + Eyz 

+Fxz + G x  + H y +  Jz + K=O, 

although most surfaces are considerably simpler in 
form. The distance d along the direction (u,v,w) 
between a given point (x',y',z') and a surface is found 
by solving the quadratic equation S(x'+ ud, y '+ vd, 
z' + wd) = 0 for d. To track a particle through a general 
geometry, some scheme is needed to define cells in 
terms of bounding surfaces and to resolve complex or 
ambiguous cases. The COMJOM approach is a high- 
level approach in that the basic building blocks are 
bodies. A body is a simple geometric region of space 
completely enclosed by quadratic surfaces such that a 
ray will pierce the body at only two points. Basic 
bodies include spheres, boxes, cylinders (with top and 
bottom faces), etc. Complex geometric cells can be 
created of course by combining bodies using intersec- 
tion, union, and complement operators. Input process- 
ing modules convert the logical combinations of 
bodies into distinct simple regions along with lists used 
for combining the simple regions. The surface-segment 
scheme is a low-level approach in that the infinite 
surfaces are subdivided into bounded surface- 
segments. The surface-segments are then stitched 
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together explicitly to form geometric cells. In principle, 
either approach is sufficiently general to allow the 
description of geometry of any degree of complexity. 

In both approaches, there are three basic items to be 
determined: (1) the distance to the nearest valid cell 
boundary, (2) identification of the boundary (e.g. an 
index in a list of boundary segments), and (3) 
identification of the cell on the other side of the 
boundary (i.e. the 'other-side' cell number). For 
particles inside the simplest of cells (bodies), these 
three items are found in essentially the same way by 
both tracking methods. For more complicated cases, 
additional operations are needed involving surface 
senses. The sense of a given poin t (x',y',z') with respect 
to a surface defined by S(x,y,z) =0  is generally taken as 
positive if the quantity S(x',y',z') is greater than zero, 
and negative if S(x',y',z') is less than zero. Then, for 
example, a point inside a sphere has a negative sense 
(with respect to the spherical surface), and a point 
outside the sphere has positive sense. 

3.6.2. Distance to simple cell boundaries. The pro- 
cedure for determining the free-flight distance to the 
nearest boundary is essentially the same for all 
tracking methods for the case of simple cells. Given a 
list of the number of surfaces bounding each cell, a list 
of the type of surface (e.g. plane perpendicular to 
x-axis, sphere, etc.) and a list of the location in memory 
of the surface coefficients, it is a simple matter to loop 
over the surfaces of a cell, finding the roots of the 
appropriate linear or quadratic equation to determine 
distances to the surfaces. For simple cells, the smallest 
positive distance so calculated is the desired quantity. 
No surface sense information is needed. 

Vectorization of tracking in simple cells is relatively 
straightforward when a cell-by-cell global algorithm is 
used. Considering vectors containing position and 
direction components of each particle in a given cell, 
an outer loop is made over the surfaces bounding the 
cell. For each surface, the roots of the surface equation 
are found simultaneously for each particle in the cell 
stack using vector arithmetic. The smallest positive 
root and the index of the corresponding surface are 
retained for each particle using simple vectorized 
relational operations. 

Vectorization of tracking in simple cells is more 
complicated when it is desired to simultaneously track 
particles which may be in different cells. First, an index 
vector must be formed to identify the particular 
equation to be solved for each particle. The appro- 
priate equation coefficients must then be gathered 
into contiguous vectors. In general, the logic is 
simplified if a general quadratic equation is used, 

rather than, for example, using simplified linear 
equations for plane surfaces. 

A minor complication arises over the treatment of 
particles having complex roots for the distance calcu- 
lation. For the quadratic case, a negative discriminant 
in the quadratic formula indicates the roots will be 
complex, while a zero discriminant indicates a multiple 
root. Both of these cases should be discarded, since 
complex roots correspond to no intersection and equal 
roots correspond to a tangent intersection. In a scalar 
code, when a negative or zero discriminant occurs, a 
branch is made to skip further calculation for that 
surface-segment. In a vectorized calculation, con- 
ditional branches cannot be made for individual 
particles. Two alternatives are possible: first, at 
various points in the coding where some particles fail a 
test, the particle vectors could be compressed and the 
calculation continued. At the end, after a number of 
intermediate steps and compressions, the results 
would have to be expanded back to the proper 
positions. Alternatively, no compression or expansion 
would be used, but rather dummy results would be 
substituted into the particle vectors in such a way that 
the final logic tests would fail for the particles in 
question. Either approach involves extra work, either 
in compression/expansion or in unneeded calcula- 
tions. The substitution of dummy results for some 
particles failing a test was the approach used in the 
MCV and MCVMG codes. 

3.7. Tallying considerations 

The tallying of particle scores is the only significant 
facet of the Monte Carlo random-walk which has not 
been vectorized in MCV and MCVMG. Nevertheless, 
the tally process is markedly affected by the approach 
to vectorization used in the rest of the code. Brief 
discussions of significant considerations for tallying 
are given below. 

3.7.1. Scalar versus vectorized tallyin 9. The most 
basic sequence of operations involved in tallying the 
scores for many particles is a loop of the form: 

Do 10 j = 1,N 
10 r(iO))=r(i(j))+s(j) 

where N is the number of particles, sO) is the score for 
thej-th particle, i(j) is an index identifying the tally bin 
to which so.) contributes and r is an array of tally bins 
for accumulating overall scores (e.g. reaction rates). 
This type of tally operation will generally be performed 
for every type of event that particles undergo. A 
tracklength estimate of cell group fluxes is made after 
tracking operations by summing the products of 
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particle weights times free-flight track lengths into the 
appropriate group bins. If collisions occur, particle 
weights are summed into the appropriate group bins 
for collision estimators of cell fluxes (after eventual 
division by the total cross-sections). If boundary 
crossings occur, particle weights are summed into the 
appropriate bins for surface crossing estimators of 
partial currents across surface-segments. (Some codes 
do not provide boundary crossing estimators,) 

Only a few tally loops of the form shown above are 
needed within the vectorized random-walk. As dis- 
cussed below, most other scoring operations can be 
moved outside of the random-walk. The tallying loops 
shown above have been found to comprise only about 
1% of the operations in MCVMG and MCV and thus 
have very little effect on the overall code performance. 
These loops have been carefully 'fine-tuned' using 
hand-optimized scalar coding. 

The cell fluxes and partial currents are usually not 
the only information desired from a calculation. In 
general it is necessary to fold a cross-section or 
response function into the flux or current to obtain an 
integral quantity such as total absorption or dose rate. 
For continuous-energy calculations, this can be per- 
formed after the random-walk if all cross-sections are 
tabulated on the same energy mesh. If interpolation 
laws are to be used for the cross-sections, additional 
information may need to be tallied during the random- 
walk analysis. For example, the use of a linear cross- 
section interpolation law in post-editing requires that 
both flux and energy*flux be tallied on each collision 
or free-flight. The price paid for the advantage of post- 
editing is the increased storage required to accumulate 
group fluxes and partial currents for every cell and 
energy interval. This storage is not large compared to 
that needed for the particle stacks, but does contribute 
to total memory usage. 

3.7.2. Batchin 9 method for variance calculation. The 
variance of tallied scores is estimated in MCV and 
MCVMG via the batching method (McGrath et al., 
1975; RSIC, 1977). That is, a problem is divided into 
independent batches of particles, and the variance is 
computed from the RMS deviation of batch scores 
from the overall mean. Direct computation of variance 
through the tallying of squared particle scores is not 
practical for a vectorized calculation due to the 
excessive storage required to accumulate partial scores 
associated with each independent source particle. 
(Allowance for splitting would create further compli- 
cations.) The batching method, in contrast, is easier to 
implement and is better suited to vector calculations 
since it is simply an outer loop in the calculation. 

4. NUMERICAL STUDIES 

This section details the numerical studies performed 
on the CYBER-205 in support of the discussions in 
previous sections. The specific objectives of these 
numerical studies have included verification of the 
validity (correctness) of the codes and algorithms, 
determination of performance characteristics of the 
vectorized codes for several practical problems, and 
comparison with optimized scalar codes of similar 
capabilities to determine the relative gains achieved by 
vectorization. 

4.1. Capabilities of  MCVMG 

The MCVMG code is a vectorized multigroup 
Monte Carlo demonstration code. This code in- 
corporates the most significant physics and algor- 
ithmic features of standard production codes without a 
plethora of user conveniences and options. MCVMG 
is a CYBER-205 code utilizing the FORTRAN explicit 
vector syntax. A scalar code, MCS (Brown, 1981a), 
written in FORTRAN, has identical capabilities but 
makes full use of all time-saving techniques used in 
conventional scalar Monte Carlo codes. MCS pro- 
vides a representative scalar benchmark for timing 
comparisons for the vectorized code. Multigroup 
Monte Carlo speedups due to vectorization are 
determined by comparing execution times for prob- 
lems run using the scalar MCS code and the vector 
MCVMG code. 

Both scalar and vector codes have identical capa- 
bilities and physical models chosen selectively from 
typical general-purpose production codes such as 
MORSE, KENO, ANDY and MCNP. The specific 
capabilities include: 
(a) The description of problem geometry utilizes the 

surface-segment scheme with unique other-side 
cells. Currently, the geometric surface types al- 
lowed include planes perpendicular to the x, y, or z 
axes, planes of arbitrary orientation, cylinders 
parallel to the x,y, or z axes, and spheres. (Other 
linear or quadratic surface type could easily be 
added without complications.) Any number of 
cells, surfaces, and surface-segments may be speci- 
fied, with storage for the particle stacks (in 
MCVMG) being the constraint on problem size, 
rather than the geometric description. Any planar 
surface-segment may be flagged as a reflecting, 
periodic, or non-reentrant boundary. 

(b) Tallies are made for the group fluxes in every cell 
and the partial currents (positive and negative) 
across each surface-segment. The cell fluxes may 
be estimated using either tracklength or collision 
estimators. Response functions may be included in 



Monte Carlo methods on vector computers 293 

the problem input for use in obtaining integrated 
reaction rates or dose rates. Both mean scores and 
standard deviations are estimated for any user- 
specified combination of energy groups, cells, 
surface-segments, or response functions. Variance 
estimation is accomplished via batching. 

(c) In addition to the tallies of physics information, 
many miscellaneous tallies are made auto- 
matically to provide information about problem 
execution. These include such items as the number 
of particles created from splitting, number of 
particles killed by weight cutoffs, group cutoffs, 
Russian roulette and leakage, number of collisions 
in each cell, number of tracks crossing each 
segment, and the weight associated with each of 
these quantities. Overall quantities such as average 
numbers of collisions and segment crossings per 
history are also provided. This type of information 
is essential for judging the effectiveness of variance 
reduction techniques and the correct execution of 
a problem. 

(d) A number of variance and cost reduction schemes 
are available. Survival biasing is used on all 
collisions to prevent analog absorption. Cell- 
importances may be specified to cause Russian 
roulette and splitting to occur at any surface- 
segment crossing. Splitting may occur in any 
integer-for-1 ratio, although 2-for-1 and 4-for-1 
are most commonly used. A group cutoff may be 
specified to terminate particles scattering to unim- 
portant low energy groups. To terminate low 
weight particles in an unbiased way, a weight 
cutoff is performed via Russian roulette whenever 
a particle's weight falls below a user-specified limit. 
This weight limit is adjusted by the cell impor- 
tances prior to cutofftests to avoid conflict between 
the splitting and weight cutoff games. 

The above summary of current features included in 
the demonstration codes MCS and MCVMG shows 
that the two codes approach the complexity of 
standard production codes. The features included in 
MCS and MCVMG are representative of the kernels 
found in general-purpose Monte Carlo production 
codes, but are not all-inclusive. 

4.2. Capabilities of MCV 
The MCV vectorized Monte Carlo code performs a 

continuous-energy random-walk simulation of neu- 
tron behavior in a nuclear reactor. The MCV code 
developed at KAPL is very closely related to the 05R 
code developed at Oak Ridge National Laboratory 
(ORNL) and later modified at KAPL (Ellis and 

MacMillan, 1967). The physics models, geometric 
treatment and fundamental Monte Carlo logic of 
MCV are consistent with the KAPL version of 05R, 
although the details of implementation differ radically. 
The vectorized random-walk calculation determines 
detailed space-energy neutron flux and reaction rate 
distributions for either fixed-source or eigenvalue 
calculations. The principal means of verifying the 
MCV code has been through comparison with 
KAPL-05R results. Additionally, continuous-energy 
Monte Carlo speedups due to vectorization are 
determined by comparing execution times for prob- 
lems run using the scalar KAPL-05R and vector MCV 
codes. 

An important feature of the MCV code is its highly 
detailed representation of neutron cross-sections. For 
neutron energies above thermal (0.625 eV), the energy 
range is divided into an arbitrary number of super- 
groups whose energy boundaries are chosen based on 
variations in physical data. Each supergroup is then 
divided into subgroups of equal energy width. 
Following the 05R convention, all epithermal cross 
sections are tabulated at subgroup midpoints and are 
assumed to vary as 1/v within each subgroup. For  
neutron collisions above thermal energy, explicit 
collision physics models are provided for elastic 
scattering (including isotropic, P1, and PN in the 
center-of-mass system), inelastic/n-2n scattering, and 
scattering from bound hydrogen using a modified free- 
gas model. All angular distributions are represented by 
equally-probable cosine bin data tabulated for individual 
isotopes. The thermal energy range physics 
treatment is based on a 32-multigroup representation. 
Scattering with hydrogen is treated by a double- 
differential P1 scattering model, while scattering by 
heavy isotopes is treated as isotropic with no energy 
change. 

The continuous-energy vectorized random-walk 
calculation is performed for one supergroup at a time 
for all neutrons in a batch having energies in the 
current supergroup. When all neutrons have energies 
below the lower cutoff of the supergroup, the next 
lower energy supergroup is analyzed. The lowest 
energy supergroup, covering the range of 00.625 eV, 
differs from the epithermal groups in that a multigroup 
cross section scheme is used and both up- and down- 
scattering within the group are permitted. 

When neutron data are shuffled according to the 
algorithm shown in Figure 4, the tracking procedures 
that follow neutrons through the problem geometry 
are deterministic (for a single pass through the implicit 
free-flight loop). These procedures are readily vector- 
ized. Geometric capabilities are currently limited to 
2-dimensions, but are sufficiently general to permit 
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the explicit representation of all detailed features of 
reactor geometry. Neutrons are tracked through 
computational lattice units containing linear and 
quadratic surfaces which describe problem geometry. 
The lattice units may be combined, translated, rotated, 
or reflected in order to describe multiple fuel as- 
semblies and fine-structure within a given assembly. 
Both delta-tracking (Woodcock et al., 1965) and 
regular surface-to-surface tracking algorithms are 
provided, with the choice of tracking algorithm 
variable by neutron energy. 

4.3. Vectorized Monte Carlo performance 

To illustrate the computational gains possible from 
the vectorization of Monte Carlo, results from several 
test problems are presented below. The first problem 
was used to develop and test MCVMG and involves 
the multigroup analysis of deep penetration of fission 
neutrons in concrete. The other problems were used in 
the development and testing of the MCV code and 
involve continuous-energy neutron transport in light 
water reactor lattice regions. These problems include 
iteration of the spatial neutron source distribution and 
associated eigenvalue calculation. The emphasis in the 
discussion below is on code performance (i.e. speedup), 
rather than on the detailed presentation of problem 
results. While MCVMG has received only limited 
testing, the MCV code has been successfully applied 
to the analysis of many large production problems. 

4.3.1. Multigroup analysis o f  deep-penetration qf 
.fission neutrons in concrete. This problem represents a 
large class of applications related to radiation shield- 
ing analysis and provides a realistic and practical test 
of many of the general-purpose features included in 

lO -1 

MCS and MCVMG. A pencil-beam source of fission 
neutrons is incident on the axis of a concrete cylinder l o_~ 
of length 200 cm and diameter 200 cm. This problem is 
essentially the same as that given by Thompson et al., ,o.3 
(1980) in which a variety of variance reduction 
methods and energy treatments were investigated ~ ,0 ~ 
using both MCNP and the multigroup code MCMG. 
The only differences involve the number of energy ~ ~o' 
groups and the cell importances used for splitting. The - 
use of 34 neutron groups from the BUGLE-80 (RSIC, ÷~ ~0 s 
1980) shielding library in MCS and MCVMG should 

10 -7 
lead to better results than the reported 18 neutron 
group calculation with MCMG. (Although 

!0 8 

Thompson's multigroup library contained 30 groups, 
only the first 18 were within the energy range of ~09 
interest.) Thompson divided the 200 cm length of the 
concrete cylinder into cells of 10 cm axial length for 
splitting purposes and used 2-for-1 or occasionally 4- 

for-1 splitting at each cell boundary to keep the track 
population roughly constant in each cell. Their 
reported tally planes, however, were spaced 15 cm 
apart (20 cm for the last one). Because MCS and 
MCVMG perform surface crossing tallies only at cell 
boundaries, the cell boundaries were chosen to coin- 
cide with Thompson's tally planes. This led to the use 
of more 4-for-1 splitting to keep cell track populations 
roughly even. Other variance reduction techniques 
used with MCS and MCVMG which are essentially 
identical to Thompson's include: biasing the fission 
source by sampling energies only above 3.68 MeV, a 
group cutoff for neutrons scattering below the energy 
group boundary at 0.007 MeV, and weight cutoff via 
Russian roulette for neutrons whose weight drops below 
0.25/(cell importance) with survivors assigned weight 
0.5/(cell importance). 

The relative transmission per source particle at 
various tally planes is displayed in Fig. 9 for two of 
Tbompson's calculations and the MCS and MCVMG 
calculations. The MCNP results will be taken as a 
reference for the various multigroup cases since no 
significant approximations are made in the 
continuous-energy treatment of energy and angular 
effects in MCNP. The calculations using MCNP and 
MCMG were run long enough so that estimated 
standard deviations were 8% or less, and hence are 
insignificant on the scale of Fig. 9. Since it was 
apparent that MCS and MCVMG results were 
bracketed in all cases by other results, these 
calculations were not continued to small statistical 
error, and the relatively large error bars for MCS and 
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Fig. 9. Neutron transmission for deep-penetration problem. 
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MCVMG reflect this. Additional results from 
Thompson et al. (1980) not shown on Fig. 9 are the 240 
group calculations performed using MCNP in a 
pseudo-multigroup fashion. That is, reaction cross- 
sections were multigroup, but energy and angular 
scattering effects were treated by the normal 
continuous-energy scheme. These results lie between 
the MCS/MCVMG results and the MCNP results. 

Consideration of the results in Fig. 9 leads to two 
conclusions: First, in a realistic test of MCS and 
MCVMG on a practical problem, the codes perform 
correctly and have sufficient generality to be con- 
sidered representative of production codes. Second, 
the accuracy of the multigroup approach is sensitive to 
the fineness of the energy group structure. The trend in 
going from 18 groups to 34 groups to 240 groups (with 
continuous-energy scattering treatment) is unar- 
guably toward better physics and closer agreement 
with a continuous-energy method. 

This problem allows an assessment of the vectorized 
performance characteristics for a realistic applied 
problem, the deep-penetration of fission neutrons in 
concrete. This case also illustrates that standard 
variance reduction schemes may enhance vectorized 
performance. In a typical MCVMG run with 1,000 
particles starting a batch, 11,786 particles were created 
by splitting, 4,978 particles were killed by Russian 
roulette, 7,029 were lost due to the group cutoff, 93 
were killed in the Russian roulette weight cutoff and 
714 were lost by leakage. An average particle under- 
went 113 collisions and crossed 14 segments. 

Figure 10 provides insight into the dynamic nature 
of the performance characteristics by displaying the 
MOPs, MFLOPs, VL and total number of particles as 
functions of total predicted CPU time for a 2-pipe 
CYBER-205 using full-precision arithmetic. (These 
quantities were estimated by modelling the 
CYBER-205 instruction timings in an emulated ver- 
sion of MCVMG, as detailed in Brown (1981a).) 
Starting with a batch size of 1,000, the number of 
particles increases to nearly 5,000 midway through the 
run due to splitting. The average vector length is much 
smaller, however, since the particles are distributed 
among 14 cells. Examining MOPs, MFLOPs and VL 
shows that they stay relatively constant while the 
particle population is increasing and begin to decline 
only in about the last third of the calculation where 
particles are killed rapidly by cutoffs. 

A series of calculations was performed to determine 
the vectorized performance characteristics as func- 
tions of the batch size. Measured MCVMG execution 
times on the CYBER-205 (2-pipe, 64-bit arithmetic) 
were compared to the corresponding MCS timings on 
the Amdahl 470V/8 to determine the speedups due to 
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Fig. 10. Vectorized Monte Carlo dynamic performance on the 
CYBER-205 for deep-penetration problem. 

vectorization. These timings vary from problem to 
problem and, for a given problem, fluctuate slightly 
due to statistical effects from the Monte Carlo analysis. 
Figure 11 presents MCVMG speedups for this prob- 
lem. The relative speedup increases rapidly with batch 
size at first and then reaches an asymptotic value of 
about 40 over the Amdah1470V/8 scalar computation. 
This behavior may be attributed to the effects of vector 
startup. For small batch size the average vector is 
short, and the average overhead per operation from 
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Fig. 11. Performance results for vectorized multigroup 
Monte Carlo on the CYBER-205. 
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vector startup is large compared to the actual opera- 
tion time in streaming. For larger batch size, the 
vectors are longer and the efficiency is higher. That is, 
the effects of startup are less when averaged over the 
larger number of elements in longer vectors. The 
speedup is close to asymptotic for batch sizes of several 
1,000 source particles. 

Further insight is provided into problem dynamics 
and the effects of splitting, Russian roulette and the 
iteration scheme by Fig. 12. This plot shows the 
distribution of particles in each cell throughout the 
iteration process. The initial wave of source particles is 
seen to rapidly travel outward, being reinforced and 
'herded' in the proper direction by splitting. The cells 
are populated rapidly and the total number of particles 
grows• When the wave reaches the opposite boundary, 
the majority of splitting has already occurred and there 
is then an alternation among the most populated cells 
which gradually spreads out as cell populations 
dwindle. It should be noted that secondary particle 
creation should produce the same type of effect as 
spl i t t ing~the creation of particles during the calcula- 
tion should increase vector lengths and enhance 
vectorized performance. 

4.3.2. Continuous-energy vectorized Monte Carlo 
analysis. To verify the correctness of the vectorized 
MCV code and to determine the speedups due to 
vectorization, several benchmark problems were run 
(Brown, 1982) using both the scalar KAPL-05R code 
on the CDC-7600 and the vectorized MCV code on the 

CYBER-205. These problems involved the analysis of 
two-dimensional light-water-reactor lattice regions 
having reflecting boundary conditions. The problems 
were run in both fixed-source and eigenvalue modes, 
and included either 19 or 186 geometric regions and 
280 edited reaction rates. Detailed comparison of 
scalar and vector results showed agreement to within 
small statistical uncertainties (95~,,~ confidence 
intervals). 

The speedup of Monte Carlo neutron processing 
rates for a typical problem is shown in Fig• 13 (Brown, 
1983) as a function of the number of neutrons per 
batch. The vectorized code performance varies with 
batch size, because larger batches lead to longer 
average vector lengths and to reduced vector instruc- 
tion startup overhead. For most problems, batches of 
16,000 neutrons are used to obtain problem-averaged 
vector lengths in the range of 500-1,000 and achieve 
excellent vector efficiency. 

Recent development efforts (Brown and Mendelson, 
1984) have concentrated on extending the generality 
and capabilities of MCV to permit its usein a variety of 
production-oriented reactor analysis applications. 
Examples of typical applications of the MCV code and 
relative speedups attained are given below for three 
cases which span the range of current problem sizes 
IBrown and Mendelson, 1984). 
(1) The analysis of a fuel element unit cell (fuel, clad 

and water) with a fixed-source in the fuel region is a 
typical 'small' problem. Spatially-dependent reac- 
tion rates from this problem provide the basic data 

Deep Penetration of Fission Neutrons 
in Concrete Cylinder 

./ 

Fig. 12. Cell population ~ersus iteration for deep-penetration problem. 
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Fig. 13. Performance results for vectorized continuous- 
energy Monte Carlo on the CYBER-205. 

for constructing resonance interference and 
thermal self-shielding factors for use in few-group 
cross-section generation for diffusion theory calcu- 
lations. A special version of MCV has been 
optimized for this generic problem type. Neutron 
histories are processed at a rate in excess of 
200,000/min, providing speedups of 75-85 times 
better than scalar computation using KAPL-05R 
on the CDC-7600. 

(2) Determination of the reaction rates and eigenvalue 
for a collection of fuel elements in a fuel assembly 
constitutes a typical 'medium' sized problem. The 
results of such a problem are typically used to 
check the corresponding results of a fine-mesh few- 
group diffusion theory calculation. For problems 
involving several hundreds or thousands of spatial 
regions, five to ten compositions, and several 
hundred edited reaction rates, the MCV code 
processes 75,000-200,000 neutron histories per 
minute, giving speedups of 20-60 over scalar rates. 

(3) At the present time, a 'large' problem is one which, 
for example, treats the depletion of a fuel assembly, 
including spatial detail within each fuel element. 
Such a calculation is typically used to verify 
depletion effects predicted by few-group diffusion 
theory calculations including reactivity trajec- 
tories, power distribution shifts, and isotopic 
inventory changes. For problems involving several 
hundreds or thousands of spatial regions, several 
hundred compositions, and several thousand 
edited reaction rates, the MCV code processes 
40,000 100,000 neutron histories per minute for 
relative speedups of 20 40 over scalar rates. 

4.4. Discussion of vectorized Monte Carlo 
performance 

The results presented in the previous section show 

many similarities among all the problems tested. In all 
cases, for sufficiently large batch size, speedups of at 
least 20 40 over a scalar calculation on the Amdahl 
470V/8 or CDC-7600 were obtained. These results are 
very significant because they are large enough to justify 
further intensive investigation of vectorized Monte 
Carlo and the continued development of vectorized 
general-purpose production codes. 

It is evident that the average vector length shows 
great variation among problems. In all cases, the 
vector length should increase essentially linearly with 
increasing batch size. This is due to the linearity of the 
transport equation for the problems studied-- 
doubling the batch size doubles (on the average) the 
number of operations in calculation. 

Vectorized Monte Carlo will offer significant 
speedups on the CYBER-205 whenever average vector 
lengths on the order of hundreds or more can be 
obtained. The batch size required to achieve this goal 
varies greatly according to problem physics, geometry, 
and variance reduction methods. In the cases tested, 
several thousand source particles per batch were 
sufficient for the multigroup problems and 
10,000 16,000 for the continuous-energy problems. 

5. CONCLUSIONS 

The principal conclusion of this work is that 
vectorization of a general-purpose Monte Carlo code 
is feasible and well worth the significant effort required 
for stylized coding and major algorithmic changes. 
Speedups of a vectorized code for the two-pipe 
CYBER-205 with full-precision arithmetic may be as 
large as 20-85 times that of scalar codes on the Amdahl 
470V/8 or CDC-7600. 

The advent of an extremely fast vectorized Monte 
Carlo capability is expected to have a significant 
impact on radiation transport analysis methods. Some 
of the gains which have already been realized are: 

(a) Standard Monte Carlo calculations may be com- 
pleted very rapidly, thus permitting more calcula- 
tions to be performed. 

(b) The larger computation rates also permit more 
precise results to be obtained in a given amount of 
computer time, thus improving the quality of 
calculations. It is thus feasible to perform more 
detailed analysis of problems on a routine basis. 

(c) Even greater impact is provided by the oppor- 
tunities to apply Monte Carlo methods in new 
ways which were previously considered imprac- 
tical due to excessive computing time. These new 
applications include the routine use of Monte 
Carlo methods in the generation of few-group 
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cross-sections and  the use of M o n t e  Carlo 
me thods  in the analysis of reactor  fuel deplet ion 
problems.  

(d) The  availabil i ty of very fas t - running vectorized 
M o n t e  Car lo  codes facilitates further  analysis of 
the assumpt ions  and  strategies used in the Mon te  
Car lo  me thod  itself. The effects of different physics 
model l ing procedures  and  cross-section represen- 
ta t ions  may be analyzed more  precisely so that  
improved  t rea tments  may be identified. New 
strategies for performing eigenvalue calculat ions 
in the  most  cost-effective manne r  may be investi- 
gated, a long with new techniques needed for 
non l inear  M o n t e  Car lo  analysis. These and  other  
studies are expected to lead to an even higher  level 
of confidence in the use of M o n t e  Car lo  as a 
calculat ional  s tandard.  

In conclusion,  the very large computa t iona l  
speedups provided by vectorized methods  make  
M o n t e  Car lo  analysis more  competi t ive with other  
analysis  methods  and  permit  M o n t e  Car lo  methods  to 
become a larger par t  of the radia t ion  t ranspor t  
analysis process. 
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