
Prooress in Nuclear Energy. Vol. 14, No. 3, pp. 26%299, 1984. 0149 1970"84 $0.00+ .50
Printed in Great Britain. All rights reserved. Copyrighl ~ 1984 Pergamon Press Ltd.

MONTE CARLO METHODS FOR RADIATION TRANSPORT ANALYSIS
ON VECTOR COMPUTERS

FORREST B. BROWN* and WILLIAM R. MARTIN

Department of Nuclear Engineering, University of Michigan, Ann Arbor, Michigan, U.S.A.

(Received 17 July 1984)

Abstract The development of advanced computers with special capabilities for vectorized or parallel calculations
demands the development of new calculational methods. The very nature of the Monte Carlo process precludes
direct conversion of old (scalar) codes to the new machines. Instead, major changes in global algorithms and careful
selection of compatible physics treatments are required. Recent results for Monte Carlo in multigroup shielding
applications and in continuous-energy reactor lattice analysis have demonstrated that Monte Carlo methods can be
successfully vectorized. The significant effort required for stylized coding and major algorithmic changes is
worthwhile, and significant gains in computational efficiency are realized. Speedups of at least twenty to forty times
faster than CDC-7600 scalar calculations have been achieved on the CYBER-205 without sacrificing the accuracy of
standard Monte Carlo methods. Speedups of this magnitude provide reductions in statistical uncertainties for a
given amount of computing time, permit more detailed and realistic problems to be analyzed, and make the Monte
Carlo method more accessible to nuclear analysts. Following overviews of the Monte Carlo method for particle
transport analysis and of vector computer hardware and software characteristics, both general and specific aspects
of the vectorization of Monte Carlo are discussed. Finally, numerical results obtained from vectorized Monte Carlo
codes run on the CYBER-205 are presented.

I. INTRODUCTION

Random walk Monte Carlo calculations are a
mainstay of radiation transport analysis in nuclear
engineering. Although Monte Carlo calculations of
neutron and/or gamma-ray transport are time-
consuming and expensive, they constitute the only
feasible means of solving many problems with compli-
cated geometry and/or interaction probabilities, and
are valuable in providing calculational standards for
validating approximate calculational methods. For
both fission and fusion reactor shielding analyses,
Monte Carlo methods can readily accommodate
complex 3-dimensional configurations including
cones, tori and internal voids. In reactor physics
analysis Monte Carlo calculations represent ' t ruth '
against which approximate calculational methods
may be calibrated. The Monte Carlo method permits
the exact modelling of problem geometry, a highly
accurate mathematical model for particle interactions
with matter, and a cross-section representation that is
as accurate as theory and measurement permit.

Conventional (scalar) Monte Carlo codes simulate
the complete history of a single particle by repeated

* Current address: Knolls Atomic Power Laboratory,
Schenectady, New York, N.Y. 12301, U.S.A.

269

tracking through the problem geometry and by
random sampling from probability distributions that
represent the collision physics. The precision of Monte
Carlo results is primarily limited by the computing
time required to obtain acceptable statistical uncer-
tainties. The accumulation of data from particle
histories in the Monte Carlo analysis of a typical
problem may sometimes require several hours (or
possibly days) of CDC-7600 C P U time to achieve
acceptable small statistical uncertainties. A straight-
forward conversion of scalar Monte Carlo codes to
advanced computers such as the CYBER-205 and
CRAY-1 may typically result in codes which run
between one and two times faster than on a CDC-7600
(with some tailoring of the coding). This speedup is due
primarily to the reduced cycle time and improved
architecture of the scalar processors.

With computer execution time as the only signifi-
cant drawback to Monte Carlo calculations, it is
natural to consider using the vector processing capa-
bilities of current supercomputers such as the CRAY-1
or CYBER-205 to speed up Monte Carlo calculations.
There is an important difference, however, between the
new supercomputers and previous machines: al though
the vector computers are much faster, their full
potential speed is attainable only in 'vectorized'

270 F.B. BROWY and W. R. MARTIN

calculations (i.e. non-recursive operations on ordered
data arrays). Monte-Carlo codes, however, are ill-
suited for direct vectorization. The random nature of
the Monte Carlo method seems to be at odds with the
demands of vector processing, where identical opera-
tions must be performed on streams of contiguous data
(vectors). The probabilistic nature of the calculation
results in coding with few loops and very many
conditional statements, which inhibit vector process-
ing. This is illustrated by examining a flowchart for a
typical Monte Carlo code, which shows little structure
to be exploited through vector operations. To a large
degree, this state of affairs is due to the capabilities of
previous computers used for Monte Carlo: it is natural
to follow the history of one particle at a time on a
machine which can only perform one calculation at a
time. The development of advanced computers with
special capabilities for vectorized calculations de-
mands the development of new calculational methods.
The very nature of Monte Carlo calculations precludes
direct conversion to the new machines through the use
of automatic vectorization software or simple re-
coding by programmers. Indeed, the effective vectoriz-
ation of Monte Carlo can be achieved only through
major changes in global algorithms and careful
selection of compatible physics treatments.

Early known efforts to vectorize Monte Carlo
calculations for vector computers were either unsuc-
cessful or, at best, achieved speedups on the order of
seven to ten for highly simplified problems (see Brown,
1981a). Recent results for Monte Carlo in multigroup
shielding applications (Brown, 1981a; Brown et al.,
198 lb) and in continuous-energy reactor lattice analy-
sis (Brown, 1982, 1983; Brown and Mendelson, 1984)
have demonstrated that Monte Carlo can be success-
fully vectorized for the CYBER-205 computer.
Speedups in the range of 20 to 40 times faster than
CDC-7600 scalar calculations have been achieved on
the CYBER-205 with no degradation in the accuracy
of the standard Monte Carlo methods. Speedups of
this magnitude provide reductions in statistical uncer-
tainties for a given amount of computing time, permit
more detailed and realistic problems to be analyzed,
and make the Monte Carlo method more accessible to
nuclear analysts. Moreover, the impact of a 'turn-
around time' measured in hours versus days (or even
weeks) for a scientist/engineer cannot be minimized.

Following overviews of the Monte Carlo method for
particle transport analysis and of vector computer
hardware and soflware characteristics, both general
and specific aspects of the vectorization of Monte
Carlo will be discussed. The primary basis for the
methods and results discussed throughout is the
authors' experience in developing several vectorized

Monte Carlo codes. Seminal investigations of funda-
mental techniques were performed at the University of
Michigan and led to the development of MCVMG, a
vectorized multigroup Monte Carlo code for reactor
shielding applications intended to demonstrate the
potential of the new methods. Later work at Knolls
Atomic Power Laboratory (KAPL) led to the develop-
ment of MCV, a vectorized continuous-energy Monte
Carlo code which is used for the analysis of neutron
transport in nuclear reactors.

1.1. The Monte Carlo method for radiation transport
analysis

The Monte Carlo method is the most general and
powerful numerical method available for solving
neutron and gamma-ray transport problems. In sharp
contrast to other methods such as discrete ordinates,
integral transport, finite difference and finite element
methods, the Monte Carlo method imposes no a priori
restrictions on problem geometry nor on the detail
which may be used to describe physical events. Indeed,
the Monte Carlo method is frequently formulated as a
stochastic numerical model of physical phenomena,
without attempting rigorous derivation of an appro-
priate 'transport equation' (Cashwell and Everett,
1957). There is, however, an extensive literature
devoted to Monte Carlo which provides a sound
theoretical basis (Carter and Cashwell, 1975;
Hammersley and Handscomb, 1967; Kahn, 1956a;
McGrath et al., 1975; Schreider, 1966; Spanier and
Gelbard, 1969). Considering the complexity of current
designs for fission reactors, fusion devices, and radi-
ation shielding, a growing percentage of particle
transport calculations requires detailed 3-dimensional
analyses. Monte Carlo is especially suited to these
needs and is presently the only method capable of
treating complicated 3-dimensional geometry in a
reasonable amount of computing time. Since there are
many references on both the physical and mathemat-
ical bases for the Monte Carlo method, this overview
will concentrate on summarizing the major features
relevant to vectorizing the Monte Carlo calculations.

A convenient starting point for discussing Monte
Carlo is the integral form of the linear time-
independent Boltzman transport equation, written
here in terms of the collision density, ~,

ip(r,v) =

I[S ~9 (r',v')C (v '~ v ;r')dv' + Q(r',v)] T (r ' ~ r ;v) dr',

where r is position, v is particle velocity, qJ is the density
of collisions, and Q is a source term. Two kernels arise

Monte Carlo methods on vector computers 271

in the above integral equation, a collision kernel, C,
and a transport kernel, T. The collision kernel includes
processes which may either alter particle energy and
direction or lead to particle absorption and possible
secondary particle emission. The transport kernel
includes processes which affect particle position, i.e.
streaming until a collision occurs or a boundary is
crossed. The solution to the transport equation yields
the expected behavior of a large number, or ensemble,
of particles. In the Monte Carlo method, single
particles are followed through their histories from
birth to death. Each particle's behavior is tallied,
yielding 'scores' or 'estimators' for the frequency that
particular events occur. If enough particle histories are
analyzed, the ensemble estimates obtained will yield an
expected-value solution of the transport equation. The
outcome of a Monte Carlo numerical experiment is
similar to a real experiment in that integral quantities
are usually obtained. The stochastic nature of particle
behavior enters the method in modelling the collision
and transport kernels via random sampling from
probability densities describing the physical processes.

A probability density function (PDF) is the mathe-
matical expression of a stochastic physical law. A
PDF,f(x) , is defined such that f (x) dx is the probabil-
ity that the outcome of a particular event will occur in
dx about x. On physical grounds, f (x) must be
everywhere non-negative and be normalized to a total
probability of 1. To perform random sampling from a
PDF, a cumulative distribution function (CDF) is
used. The CDF, F(x), is defined as

i
x

F(x) = f (x ') dx'.
• - 7

and thus F(x) is non-negative and monotonically
increasing from 0 to 1. The procedure for sampling the
random variable x from f (x) is:

Step 1 -genera te a random number, r, from a uniform
distribution in the interval (0,1).

Step 2 -ca lcu la te x = F l(r), where x is the desired
sample value and F i is the inverse of the
CDF.

Numerous references detail techniques for random
sampling from both discrete and continuous PDF's
(McGrath et al., 1975; Kahn, 1956b). Step 1 is
straightforward, since (machine-dependent) software
for generating uniformly-distributed random numbers
has been studied extensively; nearly every computing
installation has standard routines for uniform random
number generation, typically based on the multiplica-
tive congruential method (Halton, 1970). Step 2 varies
in complexity according to the form of the PDF

involved. In some cases the equation can be solved
directly for the random variable. In many cases,
continuous PDF's must be inverted by a table lookup
and interpolation procedure. Discrete PDF's, how-
ever, are much simpler to invert and new generalized
methods for doing so have been developed which are
especially attractive for implementation on vector
computers (Brown et al., 1981c; Walker, 1977).

Monte Carlo methods for particle transport simula-
tion may be classified in general terms according to the
types of PDF's used in the collision analysis:
Continuous-energy Monte Carlo utilizes PDF 's which
closely model the physics of particle interactions.
Particle energy is a continuous variable, and a separate
PDF is used for each type of particle interaction. Thus,
elastic scattering is modelled by a PDF derived from
the physics of elastic scatter, inelastic scattering is
modelled by a different PDF, fission neutron energy
may be modelled by a Watt spectrum distribution, etc.
In general, the continuous-energy Monte Carlo codes
attempt to model all physical processes as accurately
as theory and physical data permit. Discrete Monte
Carlo or multigroup Monte Carlo simplifies the
collision analysis by utilizing the multigroup approxi-
mation common to other methods of radiation
transport analysis, wherein the energy dependence is
treated with the multigroup formalism.

In the multigroup method (Duderstadt and Martin,
1979) a constant cross-section is used over a range of
particle energies (i.e. a group), with a transfer matrix
providing average probabilities for a colliding particle
in a particular energy group to produce a secondary
particle in another energy group or groups. The group
cross-sections and group-to-group transfer matrices
are generated by preprocessing codes which use a
priori assumptions concerning the within-group
energy dependence of the particle flux in order to
perform the group averaging. The main disadvantages
of the multigroup method are that subtle energy
dependent effects (e.g. resonance interference and
overlap) may be masked by the group averaging and
that the multigroup cross-sections must be specially
tailored to specific problems by choosing an appro-
priate within-group flux with the preprocessing code.

In the transport of real particles, every collision can
lead to the loss of a particle through absorption. In
analog Monte Carlo, the same logic is used: when a
collision occurs, the decision concerning absorption is
made probabilistically; if the outcome is indeed
absorption, the particle history is terminated, and if
not, the particle history is continued. Any scoring
during the random-walk consists of adding 1 to an
appropriate tally bin. In non-analog Monte Carlo, the
PDF's derived from physical laws are altered, i.e.

272 F.B. BROWN and W. R. MARTIN

particle behavior is biased to improve the chances of
an eventual particle score in some place of interest. To
avoid biasing the results, a particle weight is defined
and this weight is altered in such a way as to conserve
probability. It is the weight which is tallied for a
particular event rather than 1. Thus, in analog Monte
Carlo, all particles which undergo a particular event
contribute a score of 1 to the tally of interest; in non-
analog Monte Carlo, particle scores for particular
events consist of the particle weight which may have
been adjusted many times during the random-walk.
The advantage of non-analog Monte Carlo is that
more particles (with reduced weights) can be directed
toward a phase space region of interest, increasing the
number of particles contributing to a particular tally.
For example, the mean score for an event denoted by k
is

1 N ~(k)=~. ~, w(i,k)

where N is the number of source particles (assumed to
have unit weight initially), and w(i,k) is the total
contribution of particle i to event k during its random-
walk. In analog Monte Carlo, w(i,k) is either 0 or 1,
signifying that the particle either did or did not
undergo the particular event. The estimated variance
of 2(k) is given as

a2(k) = ~ , ~ " • ~ [w(i,k)] 2 - [X(k)] 2
i = I

The object of variance reduction methods is to bias the
PDF's and adjust particle weights in such a way as to
preserve the mean scores and reduce the variance of
the scores. A great many variance reduction methods
for particle transport have been developed and used
for special applications (Carter and Cashwell, 1975).

The general nature of a Monte Carlo calculation is
illustrated in simplified form by Fig. 1. A source
particle is introduced with phase space coordinates
(r,v) which may be sampled randomly according to
PDF's representing the spatial, directional, and energy
distributions of source particles in the specific physical
problem considered. In the transport portion of the
analysis (tracking), the distance to the particle's next
collision is sampled randomly from the PDF which
describes the random-walk of particles in a back-
ground medium. This can be expressed as
f (d)= Eexp(-Zd), where E is the macroscopic total
cross-section and d is the distance to collision.
Geometric information describing material and region
boundaries, usually in the form of first or second
degree surface equations, is then analyzed to determine
whether the sampled distance to collision is less than

Transport

*sample distance to co|Iislon 1
t r a c k to coll ision point I

~ s p l l t / R u s s i a n r o u l e t t e --~
ta y , b ias

Col l i s i o n

~sample e x i t g r o u p / e n e r g y
*sample exit direction

t a l l y , b i a s , . . .
*secondary particles

leak,
low weight

absorb,
--> low weight

_ <

= Probabilistlc Event

Fig. 1. Simplified Monte Carlo random walk for one particle.

the distance to a boundary. If less, the collision does
occur, and the collision analysis proceeds by sampling
the particle's exit energy and direction from the
appropriate PDF's. Production of secondary particles,
such as from (n,7) or (n,f) reactions, is also determined
by sampling from the appropriate PDF's. The Monte
Carlo analysis alternates between transport and colli-
sion analysis until the particle and its progeny have
been killed by absorption or escape from the system.
Another source particle is then introduced and fol-
lowed throughout its history, and so on. Typical
problems can involve the processing of up to several
million particle histories in order to achieve sufficiently
accurate scores.

The Monte Carlo method is generally used to solve
linear particle transport problems, where geometric
boundaries and material compositions are not altered
during the random-walk analysis. For the analysis of
nonlinear problems such as fuel depletion in a nuclear
reactor or particle transport in a plasma undergoing
density changes, a quasistatic approach may be used:
For a short time interval, all geometric boundaries and
material properties are fixed and particle behavior is
analyzed using linear Monte Carlo. The particle
histories are stopped at the end of the time step, at
which time the geometric boundaries or material
properties may be altered by means of auxilliary

Monte Carlo methods

calculations. The linear Monte Carlo process is then
repeated. (Additional considerations such as timestep
control, iteration strategy, and data management
complicate the alternation between the Monte Carlo
process and the auxiliary calculations. For examples,
see Fleck and Cummings (1971), and Sanford and
Anderson (1973).)

Eigenvalue calculations for reactor analysis may be
performed through an iterative Monte Carlo pro-
cedure (Mendelson, 1968; Gast and Candelore, 1974).
An assumed spatial distribution of fission sites is used
to perform the initial iteration (i.e. generation 0). New
fission sites recorded during the random-walk analysis
are then used to provide estimates of both the
eigenvalue and the source distribution to be used for
the next generation. Additional generations are then
analyzed as needed to converge the eigenvalue and the
eigenfunction, i.e. the spatial fission source shape.

As noted by Fig. 1 and the above discussion, a
Monte Carlo code is basically a collection of random
decision points with relatively simple arithmetic in
between. The physics of a problem is contained in the
PDF's used for the random sampling of the collision
kernel and the transport kernel, problem geometry is
involved in the surface equations utilized for particle
tracking in the transport kernel, and results are
obtained by tallying the quantities of interest. Indeed,
for many simple calculations, special-purpose Monte
Carlo codes following Fig. 1 can be as short as 50-100
lines of FORTRAN code.

Much of the complexity of standard Monte Carlo
production codes comes from the flexibility and
generality required of a code intended for diverse
applications. General-purpose Monte Carlo codes
require a general geometry treatment involving any
combination of surfaces, a very general tally structure
to allow the scoring of many different events, user-
oriented input/output conveniences, flexible data-
handling routines to prepare cross-sections, and a
variety of variance and cost reduction options.
Although these additional features increase code size
to typically 15,000 lines of FORTRAN, most compu-
tational time is spent in only several thousand lines of
coding comprising the random-walk.

A number of general purpose production-level
Monte Carlo codes have been developed for neutron
and gamma-ray transport analysis and are used exten-
sively for both research and design applications. While
differing somewhat in detail, they may be broadly
categorized as follows: Monte Carlo codes which use a
detailed pointwise cross-section representation and
explicit collision physics models to treat particle
energy in a continuous manner include RCP
(Candelore et al., 1978), PACER (Candelore et al.,

on vector computers 273

1982), VIM (Levitt and Lewis, 1970), 05R (Irving et al.,
1965), SAM-CE (Cohen et al., 1971) and MCNP
(Thompson et al., 1979). Codes utilizing a multigroup
treatment of cross-sections and collision physics
include MORSE (RSIC, 1977}, KENO (West et al.,
1979), and ANDY (Harris, 1970). The TART
(Plechaty and Kimlinger, 1971) code is a hybrid, using
multigroup reaction cross-sections and a detailed
continuous-energy treatment of collision s. All of these
codes have undergone many years of development and
represent the state-of-the-art in scalar Monte Carlo
methods. In contrast, vectorized Monte Carlo
methods are relatively new and are currently the
subject of intensive development efforts. One of the
new vectorized codes is MCV (Brown, 1983; Brown
and Mendelson, 1984), a general-purpose neutron
transport code for nuclear reactor analysis. This code
uses a detailed pointwise cross-section representation,
explicit collision physics models, and a continuous
treatment of neutron energy. The code capabilities are
modeled after those of the 05R, RCP, and PACER
codes. Speedups in Monte Carlo computation rates
with MCV on the CYBER-205 computer have been in
the range of 20 85 times faster than the corresponding
scalar codes on the CDC-7600 computer. While no
production-level vectorized multigroup codes are in
current use, a demonstration code, MCVMG (Brown,
1981a), was developed to investigate the potential for
Monte Carlo vectorization. This code included a
subset of the basic capabilities of the MORSE and
ANDY codes. For small test problems, speedups over
comparable scalar methods were in the range of 20 40,
indicating that further development of vectorized
general-purpose multigroup codes is warranted.
Many of the techniques developed for MCVMG were
later utilized in the MCV code.

1.2. Vector computers

Since the invention of high-speed digital computers
roughly 40 years ago, there has been a continued
dramatic increase in computational power, as evi-
denced by Fig. 2 (Buzbee et al., 1980). Today's fastest
computers can execute hundreds of MFLOPs (mil-
lions of floating-point operations per second). There
are currently many new machines in the planning
stages which will continue this trend, with several
machines having GFLOP (giga-FLOP) capabilities
announced for 1985-1990 introduction. These gains
are important to scientific and engineering appli-
cations because higher computing speed allows the
solution of larger and more detailed problems in
reasonable amounts of computer time. Alternatively,
more realistic and detailed physical models may be

274 F.B. BROWN and W. R. MARTIN

10 9

%..
,o8 I

105 /, ,030

10 3 S~c~

x~ ~ ~ - - B : e 22(1" e't/20) ' t :0 at 1943 a,n 102

101 a/~Account lng
/ I Mochines

lo o • | I I I I I I I I
1940 1950 1960 1970 1980

Fig. 2. Trend in execution bandwidth of high-performance
computers.

incorporated into existing codes to provide even
greater precision within a given execution time.

The large increases in computation speed are due to
advances in both computer hardware and computer
architecture. One particular architecture results in a
technique, pipelining, which is the major distinguish-
ing feature of a relatively new class of machines called
vector computers (Kogge, 1981). In the sections below,
brief discussions are presented of vector computers in
general, the modelling of vector computer instruction
timing, general capabilities of the CRAY-I and
CYBER-205, and programming considerations for
vector computers.

1.2.1. Basic concepts. Flynn (1972) proposed a
scheme for classifying computer architectures accord-
ing to the relationship between instruction and data
streams. Flynn included SISD (single instruction
stream/single data stream), SIMD (single instruction
stream/multiple data stream), MIMD (multiple in-
struction stream/multiple data stream) and other
classes. A conventional computer belongs to the SISD
class. Instructions are executed one by one, and a
single instruction deals with at most a single data
operation (e.g. an addition). A SIMD machine permits
instructions which can trigger a larger number of
identical data operations on different data. Machines
in this category may be further subdivided into
parallel, in which processing units are replicated, or
pipelined, in which processing units are segmented.
Vector computers such as the CRAY-1 and
CYBER-205 are considered pipelined SIMD ma-
chines. MIMD machines are essentially a set of

processors, each with its own instruction and data
streams, operating concurrently under the supervision
of a master control unit. They may also be subdivided
into parallel or pipelined categories. MIMD machines
are currently the subject of considerable development
work and may have important applications to Monte
Carlo calculations in the near future.

Vector computers of the pipelined SIMD class
achieve their high processing rates through the heavy
use of pipelining, concurrency, chained operations,
and banked and interleaved memory, each of which is
discussed briefly below (Kogge, 1981; Calahan,
1980a).

Pipelining is exemplified by an automobile produc-
tion line, where a number of automobiles are in
production concurrently, each in a different stage of
completion. The time interval between the completion
of successive automobiles is equal to the time for one
stage of the assembly line, rather than the total time
needed to traverse the entire line. Pipelined vector
computers execute instructions in a similar fashion. A
functional unit is segmented, or "unrolled," into nearly
independent subtasks. A stream of data operands
(comprising vectors) marches in lockstep through the
unit, with successive operands undergoing successive
sub-tasks. The first result is obtained only after a pair
of input operands traverses the entire pipeline, with
successive results produced only one cycle apart. The
execution of a pipelined vector instruction thus has
two phases, a smrtup phase, where the pipeline is filled
and the first result is obtained, and a streaming phase,
where results are produced rapidly and separated only
by the small delays of a segment. Pipelined architec-
tures are very fast and efficient if the data stream is
sufficiently large to amortize the startup times, but
provide penalties in the form of startup overhead for
short data streams.

Concurrency of operations, or overlap, occurs when
operations involving independent data and functional
units may proceed essentially simultaneously. Vector
computers like the CRAY-1 and CYBER-205 allow
the concurrent execution of vector and scalar instruc-
tions, thus making scalar operations 'free' if they can be
scheduled during a longer vector operation. The
CRAY-1 also allows concurrent vector operations if
no conflicts are involved.

Chaining of vector operations, also called short-
stopping and linked-triads, refers to the routing of
output results from one pipelined functional unit
directly into the input of another, without first
returning to main memory or a temporary vector
register. If successive vector operations are suitable for
this linking, and if a number of machine-dependent
requirements are met, significant savings in startup

Monte Carlo methods on vector computers

time are realized, as well as considerable overlap of
instruction execution.

Memory bankin9 and interleavin9 techniques are
used to increase data transfer rates between main
memory and the vector processing units. These
techniques extend the parallel and pipeline techniques
to memory accessing. Typically, the main memory
storage is segmented into independent banks such that
each bank can begin a memory cycle before adjacent
banks have completed previously initiated cycles.
Interleaving refers to the placement of successive data
items in different banks, so that vectors of contiguous
data may be transferred at high rates.

1.2.2. Vector instruction timin 9 model. The execu-
tion of a vector instruction consists of a startup phase
followed by a high streaming rate. For a given type of
vector instruction, the timing may be modelled in a
straightforward way by the formula

T(i) = S(i) + L/R (i)

where T(i) represents the total time required to execute
the vector instruction denoted by i, S(i) is the startup
time for instruction i (which includes instruction setup
and issue times as well as the time to fill the pipeline),
R(i) is the result rate or streaming rate for instruction i
(i.e. the number of results obtained per second after the
pipeline has been filled) and L is the vector length or
number of results to be obtained. The startup time S(i)
and streaming rate R(i) are processor characteristics
which are constant for a given machine and type of
vector instruction, although different instructions may
have widely different values. When L is large enough so
that startup time may be neglected, the average time
between results, T(i)/L, is given asymptotically by
1/R(i). It is thus essential that algorithms be im-
plemented using sufficiently long vectors to ensure that
vector startup penalties are negligible and the average
result rate approaches the streaming rate. As indicated
in Fig. 3, the average execution rate for vector
computer operations depends strongly on the vector
length L. The vector length needed to obtain an
efficient utilization of the vector processor depends on
the particular computer and the type of instruction.

For most applications, a variety of vector instruc-
tion types and vector lengths will occur, necessitating a
slightly more general model. As before, let i denote the
type of instruction, but let i vary according to the
sequence of instruction types encountered in program
execution. That is, thej-th vector instruction issued, in
a program will be of type i[j] and have length L0).
Then the total time to execute all vector instructions in
a program is

275

100

/ 2- Pipe CY BER-205

101 102 103 10 ~
Vector Length

Fig. 3. M F L O P rate versus vector length for the CYBER-205
computer.

R(i~j])J

For a program with few scalar instructions, or one
where most scalar instructions execute concurrently
with vector instructions, the total time T is generally
quite close to total program execution time.

Several other quantities are commonly used to
characterize the performance of a vectorized code,
including the average vector length, average vector
operation startup time and average vector operation
result rate, denoted by VL, S(ave), and R(ave),
respectively. These may be found by averaging over the
distribution of vector instruction types which charac-
terizes a particular code. (The distribution of instruc-
tion types can be determined from the sequence i[j].)
Both S(ave) and R(ave) depend strongly on processor
characteristics (e.g. the startup times and streaming
rates for various vector instructions) and somewhat on
algorithmic features of a program (e.g. the relative mix
of different types of vector operations). For Monte
Carlo applications, S(ave) and R(ave) will be nearly
constant for a given physical problem, essentially
independent of the number of particle histories. The
average vector length however, will depend strongly
on the number of particles treated at once, with the
result that following more particles simultaneously
will increase VL and hence increase the efficiency of the
vector operations.

An important measure of the overall effectiveness of
vectorization efforts is the overall speedup factor,
defined as the ratio of the total time for scalar
execution of a code to the total time for execution of
the vectorized code. To be fair, the best scalar

276 F.B. BROWN and W. R. MARTIN

algorithm should be compared with the best vector-
ized algorithm, since frequently there are great differ-
ences between optimal code for the two cases. It is
generally meaningless to compare a vectorized al-
gorithm run in scalar mode with the same algorithm
run in vector mode, since vectorized code often has
extra computations which need not be performed in an
optimized scalar algorithm.

1.2.3. CRAY-1 and CYBER-205 overview. The
CRAY-1 (Cray, 1979) is both a fast scalar and a
pipelined vector processor, with a heavily integrated
combination of scalar and vector instructions and
registers for both applications. The basic clock period
governing the entire system is 12.5 nsec. A unique
feature is the presence of eight vector registers, each
holding 64 words of 64 bits each. Vectors are loaded
from memory into vector registers and then stream to
one of 12 independent segmented functional units,
with result vectors returned to vector registers. Scalar
operations may proceed concurrently with all vector
operations. Main memory consists of up to four
million 64-bit words. Vectors consisting of either
contiguous data or data separated by a constant stride
may be loaded into vector registers. The allowance for
a stride (which may be negative) permits easy manipu-
lation of rows, columns, and diagonals of matrices. The
CRAY-1 vector instructions are characterized by
relatively short startup times, ranging from 25 to
175 nsec, and typical result rates of up to
80 MFLOPs, with 160 possible if two functional units
are active either separately or chained. Vector opera-
tions on vectors having length greater than 64 must be
broken into smaller vectors. (This is done by the
FORTRAN compiler automatically (Cray, 1978).i
The CRAY-1 has no hardware capabilities for gather/
scatter operations or compress/expand operations (see
the next section). The lack of these operations makes it
necessary to use scalar instructions for creating vectors
from randomly stored data or manipulating sparse
data.

The CYBER-205 (CDC, 1980a,b) consists of a fast
scalar processor and a multiple-pipe memory-to-
memory vector processor. Both the scalar and vector
processors are heavily pipelined for instruction fetch-
ing and decoding, data operand fetching, and instruc-
tion execution. The basic machine cycle time is 20 nsec.
Startup times for the CYBER-205 vector instructions
are typically 1000 nsec, but vectors reside in memory
(contiguously) and may be any length up to 65,535
words. The CYBER-205 main memory is typically two
million words with two vector pipes or four million
words with four vector pipes. Additionally, the
CYBER-205 supports very large virtual memory

capacity through the use of paging hardware which is
transparent to user programs. For most vector instruc-
tions, the result rates are proportional to the number of
vector processing pipelines. In a vector addition on a
two-pipe machine, for example, the first pipe adds the
odd pairs of operands while the second pipe simul-
taneously adds the even pairs, thus giving an average
of one result every 10 nanoseconds. Linked triads,
involving operations of the type

vector • (scalar + vector)
or

vector + (scalar • vector),

may be chained together without intermediate storage
of temporary results. This reduces vector startup
penalties and doubles result rates. A powerful non-
numeric feature of the CYBER-205 is the bit vector
capabilities. For decision making operations in vector
coding, hardware and addressing are provided for bit
vectors, with single bits representing 'true' (1) or 'false'
(0) conditions, respectively. The bit vectors may be
used for logical operations, as control vectors for
selective storing of results, and for manipulation of
sparse vectors. Microcoded vector macroinstructions
that dynamically reconfigure the vector pipes provide
direct vector implementation of dot products, sum-
mation of vector elements, and many other useful
functions not available on the CRAY-1. Additionally,
a hardware instruction is provided for vector square
root operations. For forming vectors from random
data or storing vector elements randomly according to
an index list, the CYBER-205 has gather/scatter vector
instructions, which execute in 25 nsec per data item
when data are randomly distributed in memory.
Compress, expand, mask, and merge vector instruc-
tions facilitate the vectorized manipulation of data
under bit-control. All of these operations are discussed
in more detail in the following section.

1.2.4. Programming considerations. The notion of
computing in a vector fashion is easily grasped by
anyone who has dealt with FORTRAN programs
making use of arrays and DO-loops. In general, DO-
loops containing array references are directly vectoriz-
able if the following things are not present :

• IF statements
• GO TO statements
• recursive operations
• array subscripts which do not change by a constant

increment on each pass through the loop
• subroutine calls
• contraction of an array to a scalar quantity

(accumulation or dot product)

Monte Carlo methods on vector computers 277

There are other restrictions which vary among differ-
ent machines. For details on the vectorization of
F O R T R A N coding, see for example Kogge (1981),
Kascic (1979) or Mossberg (1981).

It should be noted that several different vector
algorithms can usually be devised for a given scalar
algorithm. Often, a particular vector algorithm will be
efficient on one type of vector computer and less
efficient on another. This machine-dependence of
vector algorithm performance is caused by differences
in the vector computer architecture, including short
(CRAY-1) versus long (CYBER-205) vector startup
time, and the presence or absence of certain types of
vector instructions. Table 1 provides a summary of the
vector instruction set differences between the
CYBER-205 and CRAY-1 computers. When several
different vector algorithms are possible, the selection of
the 'best' one must take into consideration both the
particular application and the target-machine char-
acteristics. The discussions below are oriented prima-
rily toward the CYBER-205 vector computer. In many
cases, however, the algorithms may be used on the
CRAY-I with little modification.

Table 1. Comparison of CYBER-205 and CRAY-1 vector
instruction sets

CRAY-1 CYBER-205

Vector Hardware Operations

+, - ,*,/ yes yes
square root no yes
gather/scatter no yes
compress/expand no yes
mask yes yes
merge no yes
summation no a yes
dot product no a yes
logical yes yes

Memory Addressing Modes word bit
Word Size 64-bit 64- or 32-bit

a=can be implemented by recursive use of vector func-
tional units.

The coding syntax for expressing array operations
in a vectorized form is machine-dependent and there-
fore not standard among vector computers. The
syntax must be obtained from the F O R T R A N refer-
ence manuals specific to each computer (Cray, 1978;
CDC, 1980c). To avoid the problems caused by
machine-dependent syntax, all descriptions of vector
algorithms will be presented in the machine-
independent notational standard developed by
Iverson (1962). While the precise F O R T R A N imple-

mentation of the algorithms may differ (for both
hardware and software features) between machines,
the algorithmic features will be the same. The conven-
tion adopted below is that vectors will be denoted by
capital letters and scalar quantities by lower case
letters. In the remainder of this section, emphasis is
placed on the vectorization of data handling and
decision making. These two items are crucial to the
vectorization of Monte Carlo.

Some principal instructions for vectorized data
handling include gather, scatter, compress, expand,
mask, and selective-store operations. These go by
various names, depending upon machine and degree of
specialization, and may not even exist in some cases.
The brief descriptions below are based on the
CYBER-205 architecture.

• The 9ather operation is used to form a contiguous
vector from random data via an index list. In scalar
F O R T R A N and in Iverson's notation, gathering
elements of B into a vector A according to index list
I would be written as

Do 10 j = 1,n
10 (ai) j))=b(j) ,~ A ~ B ,

• The scatter operation disperses the elements of one
vector to random locations in another according to
an index list. In scalar F O R T R A N ,

Do 10 j = l,n
10 a(l(j))=b(j) ¢¢, A t . - B

• The compress operation reduces the length of a
vector by removing unwanted elements, as denoted
by the zeros in a bit vector. As an example,
compressing vector A according to bit vector B into
result vector C would give:

a : 1 2 3 4 5
b:O 1 0 0 1 ¢~, C ~ B / A

c : 2 5

• The expand operation creates a longer vector having
zeros placed in elements corresponding to zeros in a
bit vector. For example, expanding vector C accord-
ing to bit vector B into the result in vector A, would
give

c : 2 5
b: 0 1 0 0 1 ~ A , -B ~C

a : 0 2 0 0 5

• A vector mask operation chooses successive vector
elements from one or the other of two input vectors,
according to a bit control vector. For instance,

278 F.B. BROWN and W. R. MARTIN

given input vectors A1 and A2 and bit vector B, a
mask operation may select from A 1 for '1' bits in B
or A2 for '0" bits in B to form result vector C:

a 1 : 1 2 3 4
a 2 : 5 6 7 8 <:~ C~-- /A2 ,B ,A1/

b: 0 0 1 1

c: 5 6 3 4

• A vector merge operation combines features of the
mask and expand operations. Given input vectors
A1 and A2 and bit vector B, a merge operation will
select the next unused element of A 1 or A2. That is,
merging A1 (for '1' bits in B) with A2 (for '0' bits in
B) gives a result vector C as:

a 1 : 1 2 3 4
a 2 : 5 6 7
b: 1 1 1 0 0 1 ¢~, C ~ \ A 2 , B , A I \

c: 1 2 3 5 6 4

• A reduct ion operation is applied recursively to
successive elements of a vector to produce a single
scalar result. The reduction operation for addition,
for example, is equivalent to a summation of the
successive elements of a vector:

a : 1 3 5 7
s = (((1) + 3) + 5) + 7 .¢~ s . + / A

• A bit count operation is a special case of the
reduction operator and determines the number of ' l '
bits in a logical bit vector. For example,

b : 1 0 0 1 1 1
n = 4 ¢~, n~- + / B

• A vector length operation returns the current length
of a vector. Its inverse operation may be used to set
the vector length to a given value.

a: 1 2 3 4 5 .¢~ s~VL(A)
s = 5

Decision making in a vectorized calculation is
generally handled either by using extra computation
followed by a vector mask or by rearranging al-
gorithms to place conditional statements (e.g. IF
statements) outside the vector code. As a typical
example, consider the scalar FORTRAN coding

Do 10 j = l ,n

xU)=0.0
10 if 0c(j).gt.0.0) x(j)= 1.+ y(j)

Each pass through the loop involves a choice between
two values depending on the result of a comparison. In
a vectorized calculation, the decision process must be

completed before vector X enters a vector pipeline.
This might be vectorized as:

B~ F > 0
T, 1.+Y

x ~ - /O,B,T/

Each of the vector operations above could be carried
out as a single vector instruction. Note that 1. + Y0") is
computed for all elements, rather than only the
necessary ones. This extra work will (in this case) be
offset by the much higher computation rates obtained
from the vector mode calculations. In general, any
two-way decision may be vectorized by computing
both possible results and then selecting the correct one
by using the masking operation.

Short independent segments of coding may often be
vectorized syntactically in a straightforward manner
by programmers. The vectorization of a large, complex
production code, however, requires the re-
examination of many interrelated kernels and data
structures and cannot in general be achieved effectively
without major algorithm changes. This consideration
is the topic of the next section.

2. VECTORIZED MONTE CARLO~GENERAL

[n developing new methods for solving large-scale
problems on state-of-the-art computers, engineers and
scientists should no longer think strictly in terms of
equations and then depend on clever programmers or
optimizing compilers to efficiently solve their prob-
lems. Vector processing takes advantage of data
structure, takes a 'larger view', in order to gain
parallelism and enhance processing rates. This larger
view is not available to compilers or pure pro-
grammers due to the basic character of the program
development process. In going from theory to equa-
tions to algorithms to flow charts to conventional
coding, the original problem is progressively trans-
formed in a way that is not syntactically reversible. The
larger view of the problem is lost. Considering the
significant advantages of vectorization, the message is
clear that although codes can be 'vectorized', the big
payoffs come from vectorizing algorithms (Brown,
1981a; Owens, 1973; Remund and Taggart, 1977;
Smz, 1980; Wirsching and Kishi, 1977).

After an overview of previous work in vectorizing
Monte Carlo, a larger view of the Monte Carlo method
will be taken to determine what structure exists. It will
be shown that despite the random behavior of
individual particles, vectorized global algorithms are
readily formulated for treating sets of particles. The
implementation of these algorithms, the 'vectorization'

Monte Carlo methods on vector computers 279

of the coding, is later discussed in Section 3, with
numerical examples presented in Section 4.

2.1. Previous work

The first known work related to vectorizing Monte
Carlo is that of Troubetzkoy et al. (1973), who adapted
a version of the continuous-energy code SAM-CE for
use on the ILLIAC-IV. The ILLIAC-IV was an
experimental parallel SIMD processor with 64 pro-
cessing elements. The basic approach was to follow a
number of histories in each processing element,
performing a given computation such as tracking only
if 'enough' processing elements had at least one particle
each waiting for that operation. Those processing
elements without waiting particles were disabled for
that operation. In essence, this approach mimics
MIMD operation on a parallel SIMD machine by
means of 'turning off' unwanted processing elements,
and is not suitable for vector processors. The basic
technique of forming queues of particles according to
the type of next event, however, was developed. This
technique is used (in some form) in all current
vectorized Monte Carlo codes. The estimated overall
efficiency was about 30~,,, leading to an estimated
speedup of 20 over the conventional machines of the
time. Since the ILLIAC-IV was under development
and unavailable, Troubetzkoy's predictions were de-
rived from simulation on a standard scalar computer.

Recent efforts to vectorize Monte Carlo were
initiated in 1979 by discussions between T.L. Jordan of
LANL and D.A. Calahan of the University of
Michigan. Jordan produced two codes--a scalar
version and a vectorized version--which were sent to
Michigan for further study and optimization by D.A.
Catahan et al. (Calahan et al., 1980b,c; Brown et al.,
1981d,e). These codes and their succeeding develop-
ment are discussed briefly below.

A very short (300 lines) and simple scalar Monte
Carlo code for the continuous-energy transport of
gamma-rays served as a starting point for vectorized
Monte Carlo investigations. In this code, a 6 MeV
pencil-beam source was incident upon a single cylinder
of carbon, with three collision interactions treated
between 0.001 and 20 MeV. Compton scattering, pair
production, and photo-electric absorption were in-
cluded. No secondary particles were allowed (pair
production was treated by emitting a particle with
double weight), no variance reduction schemes were
included, only analog absorption was permitted, and
tallies were made with no variance calculation. This
'bare-bones' Monte Carlo code was intended purely

for basic algorithmic studies, and not for comparison
with production-level codes.

The initial attempt to vectorize the code, i.e. to
follow many particles simultaneously, was implemen-
ted using a particle stack comprised of vectors
containing weight, energy, position, and direction
components of all currently active particles. The
particle stack was initially filled with values obtained
from a starting source routine. A table search was
performed to look up particle cross-sections which
were then interpolated on particle energy. Then all
particles were tracked simultaneously. Since only one
geometric cell was permitted in the problem geometry,
vectorization of the coding for particle tracking was
straightforward. Only a few algorithmic changes were
needed. Since there was only one cell, particles either
collided within the cell or crossed the outer boundary.
Particles crossing the cell boundary were tallied and
deleted from the stack. For the remainder of the stack,
the type of collision was sampled for each particle
using the previously computed cross-sections, and
particles were sorted into queues for either Compton
scatter, pair production, or termination by absorption.
Each interaction was vectorized in a straightforward
manner to process the appropriate queue of particles.
The direction and energy of the secondary particles
due to Compton scattering and pair production were
sampled from the appropriate PDF's and the particle
stack was suitably modified. After deleting captured
particles and performing a few tallies, the particle stack
was topped off with source particles, and the entire
process was repeated. The major algorithmic feature of
this code relevant to vectorization is that each random
decision point in the Monte Carlo procedure results in
sorting particles into queues for vectorized analysis
followed by a merging of results back into the particle
stack. The key to the algorithm is the fundamental
similarity of all particle interactions---each is initiated
by particle emission at a given phase space position
(source or collision) and proceeds to termination
(collision or boundary crossing). Defining this portion
of a particle history as an 'event' (emission through
termination), the vectorized algorithm may be des-
cribed as an 'event-based' algorithm versus the con-
ventional 'history-based' algorithms of scalar Monte
Carlo codes.

To study a slightly more general geometry, the
carbon cylinder was divided into several concentric
cylinders. All particles, regardless of location, were
tracked simultaneously by finding the distances to
every surface in the cylinder. Particles crossing a cell
boundary were stopped and merged with source
particles for the next iteration. Since all cells were
logically the same, only minor changes were needed in

280 F.B. BROWN and W. R. MARTlY

the particle tracking routine. For tallying purposes, an
extra array was used to hold the cell number for each
particle.

In an alternative attempt to generalize the geometric
treatment, a cell-by-cell approach was used. The major
algorithm change involved treating particles within a
single cell simultaneously, with an outer iteration over
cells. To accomplish this, a separate particle stack was
maintained for each cell. Particles in the current cell
which crossed a cell boundary were transferred to the
particle stack for the 'other-side' cell. Particles collid-
ing inside the current cell were queued up for the
collision physics routines, and then merged back into
the current stack after collision analysis. Although this
code permitted only a concentric cylinder geometry,
the algorithm was later extended in the MCVMG code
to a more general geometry.

Variance estimation was added via the batching
method (RSIC, 1977). To implement batching, an
outer loop was added so that a batch of particles was
processed to completion before starting another batch.
The batch mean scores are thus statistically indepen-
dent estimates of the true mean and are used to
estimate the variance. The introduction of batching
has no effect on the coding of the random-walk, and
thus introduced no changes in vectorized kernels.

Details of the coding and algorithmic characteristics
of the above codes can be found in Calahan et al.
(1980b,c) for the CRAY-1 implementation, and Brown
et al. (198 ld, e) and Martin (1983a) for the CYBER-205
implementation. The speedups due to vectorization in
these initial studies were in the range of 5 10 times
faster than the original scalar code. While these
speedups are relatively modest, the systematic investi-
gation of new algorithms formed the basis for more
recent efforts (the MCVMG code at the University of
Michigan and the MCV code at KAPL) which have
attained measured speedups of 20 85 for practical
problems.

The next sections describe this work in more detail.
It should be noted that there are alternative ap-
proaches to vectorizing Monte Carlo in addition to the
approach considered in this paper. Bobrowicz et al.
(1983) have vectorized a photon transport Monte
Carlo code for the CRAY-1, wherein each distinct
process is assigned to a separate queue and the queue is
"executed" only when it is full (length 64) or if it is the
longest queue when all are less than 64 in length. This
approach is more suitable for the CRAY- 1 (which does
not have vector hardware capabilities for gather/scat-
ter or compress/expand) than are the CYBER-205-
oriented methods used in MCV and MCVMG.
Bobrowicz et al. report speedups of 7-10 over an
optimized CRAY-1 scalar coce. (Speedups relative to a

CDC-7600 version of the code are indicated to be in
the range of 20-35.) Martin (1983b) has reported
preliminary results of an independent effort to vector-
ize a photon transport Monte Carlo code for inertial
confinement fusion applications. Speedups on the
CRAY-I were in the range of 7 10 relative to an
optimized CDC-7600 code.

2.2. General considerations for vectorized Monte
Carlo

In order to achieve large speedups from vectoriz-
ation, some restructuring of the global Monte Carlo
algorithms is necessary. While there are no 'typical'
Monte Carlo problems, there do exist may similar-
ities in structure among the many existing production
codes. All general-purpose Monte Carlo codes include
the following major computational kernels:

• introduction of particles from a source.
• retrieval of cross-sections from an extensive data

base (multigroup or continuous-energy)
• sampling the distance to collision.
• tracking of particles in general geometry, including

determination of the distance to the next surface
crossing, identification of the next surface, and
identification of the next or current cell.

• determining the particle energy and direction fol-
lowing collisions from discrete and/or continuous
PDF's.

• determination of secondar) particle production (if
applicable), and resulting energy and direction.

• tallying to estimate means and variances.
• miscellaneous variance and cost reduction tech-

niques such as splitting/Russian roulette, weight
cutoffs, etc.

The above kernels are implemented in most general-
purpose codes in roughly the same manner. Since each
of the kernels is relatively seff-contained and straight-
forward there are many similarities among the general-
purpose codes. Conventional scalar Monte Carlo
codes may be characterized as a collection of loosely
coupled computational kernels, with individual par-
ticle histories simulated one-at-a-time by random
sampling to select a kernel and by further random
sampling within individual kernels. The vectorized
Monte Carlo codes are formulated computationally to
follow many particles through their random-walks,
treating many events simultaneously using vector
instructions to speed up the computation rates.
Syntactic (i.e. local) vectorization of a scalar Monte
Carlo code is not effective since different particles
would require analysis by different kernels. Instead,
experience has shown that a comprehensive, highly

Monte Carlo methods

integrated approach is required to achiek~e significant
gains in computational efficiency. The m~ajor elements
of the computational structure that efficiently pro-
cesses many particles simultaneously are noted as
follows:

(1) The Monte Carlo code must access a unified data
layout. The entire cross-section and geometry
database must be restructured to provide the
unffied data layout. For a given portion of the
calculation, the data should be memory-resident
and organized so that simple and logical direct
addressing may be used to facilitate vector gather
operations.

(2) The Monte Carlo code must be restructured (re-
written). Much rearrangement of local coding and
the global algorithm is required to permit the
processing of many particles simultaneously.
Large amounts of memory storage must be
allocated to hold the descriptive data for each
particle. These data are 'stacked' in memory so
that corresponding components form vectors. The
global algorithm used to manage the particle stack
and to vectorize across random decision points is
described in detail below in the discussion of
implicit loops.

(3) Deliberate and careful code development is essential.
Scalar Monte Carlo production codes are large
and complex and have evolved gradually over
many years of development. Vectorized Monte
Carlo codes must accommodate the additional
complexity of managing the storage and shuffling
of thousands of particles simultaneously.
Development should begin with small codes
having few options. As methods are verified and
experience is accumulated, additional options and
capabilities may be systematically added.

The key to successful vectorization of Monte Carlo
is that a well-defined structure must be imposed on
both the database and Monte Carlo algorithm before
coding is attempted. This structure may arise simply
from the reorganization of existing data/algorithms or
may entail the development of special mathematics or
physics models. Careful and systematic development
helps to preserve the structure as the vectorized code
becomes more complex.

2.3. Vectorization techniques

The principal obstacle to vectorizing a conventional
scalar Monte Carlo code is the large number of
conditional statements (I F . . . GO TO) contained in

on vector computers 281

the coding. Examination of sections of coding shows
that, typically, one-third of all essential FORTRAN
statements may be IF-tests. Careful consideration of
the Monte Carlo program logic and underlying
physics permits categorizing these conditional state-
ments and associating them with three general al-
gorithmic features of Monte Carlo code~ imp l i c i t
loops, conditional coding and optional coding. The
techniques used in vectorizing each of these features
are discussed below. As noted previously, the primary
emphasis is on techniques applicable to the
CYBER-205 vector architecture.

2.3.1. Implicit loops. Monte Carlo codes have a
notable absence of explicitly stated DO loops. The
most heavily used loops are implicit. That is, they
generally do not have a loop counter, and the number
of iterations may not be fixed or known in advance.
Termination is based upon the setting of some
condition within the loop. Some examples are the
implicit free-flight loop (i.e. track and move a particle
repeatedly until it collides) and the implicit loop on
particle termination (i.e. simulate particle free-flight
and collisions until the particle escapes or is absorbed).
Implicit loops generally occur in the global logic of a
Monte Carlo code or in the specific coding for random
sampling via rejection methods. I f . . . GOTO state-
ments that branch backward in the coding are quite
often the terminators of implicit loops. (In a structured
programming language, implicit loops would be
implemented via DO-WHILE structures.)

In the global logic, the end of an implicit loop is a
transition between loosely connected sections of
coding, such as tracking vs. collision analysis. In a
vectorized algorithm, some particles being analyzed
may (physically) exit the implicit loop on the first pass
while others may require many passes. One general
technique for resolving this difficulty will be termed
'shuffling'. At the end of each pass through an implicit
loop, the particle data are shuffled. Particles that have
satisfied the exit condition are transferred to a storage
queue (i.e. a 'stack') to be held until all particles have
satisfied the exit condition of the implicit loop.
Particles that have not satisfied the exit condition are
left in the working stack for the implicit loop. The
working stack is then compressed so that contiguous
vectors are available for the next pass through the
implicit loop. The implicit loop terminates when its
working stack is empty. (In some cases, there may be
advantages to terminating the implicit loop early and
saving its stack for later use.)

The use of shuffling in vectorized Monte Carlo is
illustrated in Fig. 4 (Brown, 1983) which shows the
global algorithm and neutron stacks for MCV. Due to

282 F.B. BRowN and W. R. MARTIN

Batch Loop

Source

Supergroup Loop

Shuffle

Collision Loop

Free-fllght Loop

. . . . Track

. . . . Shuffle

C o l l i s i o n s

S h u f f l e
o , °

, ° .

Track
~XY Z • . .

Collide
x Y z . . .

Bank
XYZ

Fig. 4. Global algorithm and neutron stacks for vectorized continuous-energy reactor lattice analysis.

the very large size of the detailed pointwise cross-
section dataset, the energy range is segmented into
distinct nonoverlapping ranges called 'supergroups',
with the random-walk completed in one supergroup
before proceeding to the next. The implicit loops are
the collision loop and the free-flight loop. In the free-
flight loop, all neutrons are tracked simultaneously,
regardless of their geometric location. At the end of the
free-flight loop, neutrons may remain in the tracking
stack or be transferred to the collision stack. At the end
of the collision loop, neutrons may be transferred to
the tracking stack or to the bank stack (if the energy
after collision falls outside the energy range of the

current supergroup). The shuffle just prior to the
collision loop is used to retrieve banked neutrons at
the start of a new supergroup.

The global algorithm and shuffling scheme for the
MCVMG multigroup Monte Carlo code are shown in
Fig. 5 (Brown, 1981a). Because MCVMG was inten-
ded for shielding applications where the geometric
cells were assumed to be large and highly irregular in
shape and location, a cell-by-cell tracking scheme was
used. To this end, a particle stack was required for each
geometric cell, and an implicit loop over cells was
introduced. After each free-flight and collision iter-
ation within a cell, particles are sorted into the

Batch Loop

Source

Cell Loop

Event Loop

Track

Surface Loop

. . . . S h u f f l e

Collisions
, , .

. , o

celjxYiZl ...

ce121xLYiz
Cell n l X Y Z ...

Fig. 5. Global algorithm and particle stacks for vectorized multigroup shielding analysis.

Monte Carlo methods on vector computers 283

appropriate stacks for other cells. Since relatively
compact multigroup cross-section data were used, no
shuffling was needed for energy group consider-
ations--all collisions could be treated simultaneously.

2.3.2. Conditional codino. The physical laws of
particle behavior are simulated in a Monte Carlo code
by random sampling from probability distributions.
The outcome of random sampling determines the next
event in a neutron history. For a scalar code, an
I F . . . GOTO statement is used to test a condition and
to branch (usually forward) to an appropriate section
of coding. Sections of coding that are either selected or
skipped, depending upon some particle attribute, will
be termed conditional coding. (In a structured pro-
gramming language, conditional coding would be
implemented via CASE structures.)

Conditional coding occurs often in the most
frequently used portions of the Monte Carlo al-
gorithm. In vectorized Monte Carlo, some particles in
the current stack must undergo a particular set of
operations (such as inelastic scattering), while others
must not undergo these operations. Shuffling would
generally introduce too much overhead and degrade
performance. Instead, selective operations must be
performed when vectorizing conditional coding. Four
different means of performing selective operations on
the CYBER-205 are described here and illustrated by
examples in following sections.

1. Gather/operate/scatte~Data for the selected par-
ticles are transferred from random stack locations
into contiguous vectors using vector gather instruc-
tions. The necessary operations are then performed,
and results are scattered back into the proper
positions in the particle stack. Data for particles not
selected remain in the stack unaffected.

4.

2. Compress~operate~decompress--This is similar to
gather/operate/scatter, but uses compress and de-
compress vector operations. Gather/scatter is more
efficient when selected data are sparse; compress/
decompress is more efficient when selected data are
dense.

3. Bit-controlled operations--For short conditional
coding blocks, the overhead from gather/scatter or
compress/decompress may be greater than the
gains from vectorization. These cases may be
vectorized using the CYBER-205 bit-controlled
operation capability. A vector operation is per-
formed on all the elements of a vector, with results
stored only for elements corresponding to a per-
missive bit in a bit vector.

Generalized equations--Much of the conditional
coding in scalar Monte Carlo codes is included to
save time for simple or specialized cases. As an
example, isotropic scattering is a special case of
general scattering analysis and is usually treated
separately by simplified equations. In a vectorized
code, it is very often more efficient to avoid separate
coding for special cases and, instead, to use general
equations for all particles. This should be done
whenever it appears that the extra work resulting
from the use of general equations is less than the
overhead of gather/scatter or compress/decompress
operations needed for separate analysis. In general,
this tradeoff will depend on the specific machine
architecture as well as on the particular coding.

2.3.3. Optional codin 9. Monte Carlo codes permit
many input options that specify the type of calculation
to be performed. These options select or skip sections
of coding for all particles and need no special
treatment in a vectorized code. For example, a neutron
eigenvalue problem must include operations for deter-
mining the source shape used in succeeding batches,
whereas a fixed-source problem utilizes a known
source shape. One simple branch in a vectorized code
will skip unneeded operations for all particles. This
provides an important speedup over a scalar code
where the branch is needed for each particle.

2.3.4. Discussion. To summarize, implicit loops are
vectorized using shuffling, and conditional coding is
vectorized using selective operations. This approach to
vectorizing Monte Carlo is effective on the
CYBER-205 and other vector computers having
hardware capabilities for vectorized data handling. In
the MCVMG and MCV vectorized Monte Carlo
codes, 40 60~/o of all vector instructions used in actual
coding were vector data handling instructions (gather,
compress, bit-controlled operations, etc.).

The data-handling operations associated with shuf-
fling and selective operations in the vectorized code
constitute extra work that is not necessary in a scalar
code. This extra work offsets some of the gain in speed
achieved from vectorization. For vectorization to be
successful, overhead from shuffling and selective
operations should comprise only a small fraction of
total computing time. It is thus essential that all data
handling operations be performed with vector instruc-
tions. Vector computers that rely on scalar data
handling operations are severely limited in vectorized
Monte Carlo performance.

284 F.B. BROWN and W. R. MARTIN

3. VECTORIZED MONTE CARLO~SPEC1FIC

Where the previous section discussed the vectoriz-
ation of Monte Carlo in general terms, this section
presents specific examples of vectorizing localized
portions of a Monte Carlo code. The examples have
been taken from either the MCVMG code, a vector-
ized multigroup Monte Carlo demonstration code, or
from the MCV code, a vectorized continuous-energy
neutron transport Monte Carlo code for reactor
analysis.

3.1. Pseudorandom number generation

The 'randomness' in a Monte Carlo calculation
stems from randomly sampling probability distribu-
tions which model physical events. On digital com-
puters, pseudorandom number generators ((PRNG's)
are used to supply ' random' numbers uniformly
distributed in the interval 0-1. While PRNG's make
use of deterministic algorithms and hence do not yield
truly random numbers, the sequences produced by
PRNG's will pass suitable tests for randomness when
the algorithm parameters are chosen correctly.
Although PRNG's account for only about 5!!/, or less
of the total CPU time for a typical Monte Carlo
calculation, the vectorization of PRNG's is important
to avoid 'scalar bottlenecks' in a highly vectorized
code. (That is, if the remainder of the coding were
completely vectorized, the maximum speedup would
be less than 20.)

The most common PRNG used in scalar Monte
Carlo for radiation transport applications is the
multiplicative congruential method (or Lehmer
method) (Halton, 1970; Knuth, 1981). A sequence of
pseudorandom integers s(i) is generated according to:

s(0),--initial integer seed

~ + 1),--gs(i) mod p (1)

The integers s(i), termed seeds, are in the range
(1 ,p- 1). The modulus p is generally chosen to be 2",
where m is the number of binary digits used to
represent a positive integer. If the generator g is chosen
so that g(mod 8)=3 or 5, then the sequence will have
the maximal length of 2"-2 without repeating. (The
initial seed s(0) must be odd to prevent the sequence
from degenerating to repeated zeros.) The pseudoran-
dom numbers on (0,1) produced by s(i)/p are used in
sampling from the probability distributions which
model a particle's physical behavior in a Monte Carlo
code.

Although the scalar PRNG Algorithm (1) is recur-

sive, it may be vectorized in a straightforward way by
either 'unrolling' or 'replicating' the recursion.
Unrolling leads to a 'vector seed, scalar generator'
algorithm, while replication leads to a 'scalar seed,
vector generator' algorithm, both of which are des-
cribed below. These vectorized algorithms preserve the
exact sequence defined by the scalar algorithm (1).

The 'vector seed, scalar generator' (VSSG) al-
gorithm for generating vectors having L pseudoran-
dom numbers is obtained by unrolling the recursion of
Algorithm (1) L times. In this scheme, vector S(k) will
contain the (kL+ 1) through (kL+L) elements of the
pseudorandom sequence produced by Algorithm (1).
The initial seed vector S(0) is generated using the scalar
algorithm, while successive seed vectors are produced
using vector hardware instructions. The seed vectors
must be retained in memory for the next pass.

S(O)~(s(O), s(1) s(L- 1))

S(k T 1)~gLS(k) rood p (2)

/

The 'scalar seed, vector generator' (SSVG) al-
gorithm for generating vectors having L pseudoran-
dom components discards the seed vector S(k + 1) after
it is used, retaining only the last element as the scalar
seed for the next pass. A vector consisting of the
generator g to successive powers is used in generating
the next seed vector S(k+ 1). The generator vector is
computed only once and retained without change
throughout the calculation.

s(0),--initial scalar seed

G~(g , g2 gL)mod p

1
S(k+ 1) ~ G s(k) rood p (3)

s(~+ 1)* [S(k+ 1)] L

/

While the VSSG and SSVG schemes are mathemat-
ically equivalent and preserve the pseudorandom
sequence of Algorithm (1), practical considerations
favor the SSVG algorithm for general-purpose use.
For Monte Carlo applications such as radiation
transport where the vector length L varies during the
calculation, the VSSG algorithm is inefficient due to
the need to generate a new seed vector S(0) using scalar
methods whenever L changes. The SSVG algorithm is
preferable since it will accommodate varying L values
if the generator vector is initialized for the largest
required value of L. Although L may vary, the elements
of G remain constant.

Monte Carlo methods on vector computers 285

The SSVG algorithm is currently implemented in
the MCVMG vectorized Monte Carlo code for the
CYBER-205 computer. Initialization of G is per-
formed once at the start of a problem using scalar
instructions. The generation of S(k+ 1) in Algorithm
(3) and conversion to a vector of normalized fractions
R(k+ I) require only three vector hardware instruc-
tions, resulting in an asymptotic timing of 30 nsec per
pseudorandom vector element (for a 2-pipe
CYBER-205). This timing is more than an order of
magnitude faster than scalar implementations (which
have measured timings of about 320 nsec).

Recently, more general PRNG algorithms have
been proposed by Frederickson et al. (1983) in which
the initial seeds are chosen by means of a separate
PRNG. Frederickson presents convincing arguments
for the adoption of these new algorithms.

3.2. Sampling direction cosines

As an example of vectorizing a short, localized

portion of a Monte Carlo code, consider part of the
process of sampling a direction from an isotropic
angular distribution. It is necessary to evaluate cos~b
and sin~b, where ~b is an angle uniformly distributed on
(0,2re). Figure 6 shows several schemes for this process.
The direct (scalar) calculation (Fig. 6a) is straight-
forward but somewhat slow, due to the need to
evaluate the trigonometric functions. The rejection
method (Fig. 6b) for indirect sampling of sintk and
cos~b is faster, since it avoids the use of the SIN and
COS functions, and is the method used in nearly all
Monte Carlo codes (Carter and Cashwell, 1975). lf i t is
desired to produce many pairs of samples at once, the
process should be vectorized. The rejection method
cannot be readily vectorized, however, due to the
conditional branch (I F . . . GO TO statement).
Vectorizing the direct calculation (Fig. 6c) is possible
and leads to the production of pairs of results 5.5 times
faster than via rejection, and 9 times faster than via
scalar computation, even though the trigonometric
functions are being evaluated. Such savings are

6a. D i r e c t Method IScalar)

R = 2 . *PI~RANF (1)
u = COS (R)
V = SIN(R)

T i m i n g " (microseconds)
Amdahl 4 7 0 v / 8 17.
CRAY-1 8 . 4
CYBER-205 9 .1

6b . Rejection Method / S c a l a r)

10 R1 = 2 . *RANF(1) - 1.
R2 = 2.*RANF(1) - 1.
T = R1,~2 + R2~.2
IF (T .GT. 1 .0) GO TO 10

T =] . / T
U = (R 1 * ~ 2 - R 2 * * 2) * T
V ~ 2 . ~ R I ~ R 2 * T

Timing* (microseconds)
Amdahl h7Ov/8 12.
CRAY-I 5 .2
CYBER-205 3 .0

6c. V e c t o r i z e d D i r e c t Method

DO 10 I = I . N Timing" (microseconds)
R(f) = 2 .~PI~RANF(1) (per pa i r of r e s u l t s)
U(I) = C O S (R (I)) Amdahl h70v /8 17.
V (I) = S I N (R (I)) CRAY-1 .94

10 CONTINUE CYBER-205 -57

* CRAY-1 and CYBER-205: 6~ b i t a r i t h m e t i c ,
Amdahl 4 7 O v / 8 : 3 2 b i t a r i t h m e t i c

Fig. 6. Local vectorization example.

286 F.B. BROWN and W. R. MARTIN

important in repetitive and often used parts of a larger
calculation.

The above discussion brings out two important
programming considerations: First, repetitive calcula-
tions involving trigonometric, exponential, or arith-
metic functions may often be coded simply and directly
due to efficient vectorized functions. It is not (always)
necessary to use rejection methods or other tricks
common in scalar codes. Less arithmetic does not
necessarily mean faster code on a vector computer.
Extra arithmetic needed to allow vectorization can
very often result in faster overall code.

3.3. Rejection methods

Rejection methods are frequently used for random
sampling from complicated probability distributions.
In a scalar code, a rejected trial sample leads to a
(backward) branch in order to repeat the sampling
process. In a vector code, provision must be made for
separating the accepted and rejected trials resulting
from the sampling process. These methods may be
vectorized through a shuffling procedure--accepted
trials are appended or intermixed with previously
accepted ones, and the necessary parameters of the
rejected trials are collected together before repeating
the sampling process. The overhead for the shuffling of
accepted and rejected samples comprises extra work
required for vectorization which is not present in
scalar coding. Since these methods are often employed
in frequently used portions of coding, the overhead
from shuffling is an important consideration. In some
cases, the additional work is minimal and does not
significantly degrade performance. For many rejection
sampling schemes involving only a few simple opera-
tions, however, the amount of 'algorithmic overhead'
required for vectorization will often outweigh the gains
from vectorization. It is preferable to replace rejection
methods by direct methods wherever possible, even for
sampling from complicated probability density
functions.

3.4. Russian roulette vectorization example

As a final example of vectorizing a short localized
segment of a Monte Carlo code, a Russian roulette
procedure common to most Monte Carlo codes will be
considered. This procedure is used to kill off particles
having low weight in order to reduce the total
computing time. In order to avoid biasing the results,
particles with low weight are killed off probabilistic-
ally, with the weight of survivors increased so that the
expected weight is preserved. Figure 7a illustrates this
process as coded in FORTRAN in a typical scalar

code. First, a test is made to see if particle weight is
below the weight cut-off criteria. If so, the particle
survives with probability (wgt/wrrave), where wgt is
the particle weight and wrrave is the weight assigned to
surviving particles. If the particle survives it is given a
weight of wrrave; if not, it is terminated by setting the
weight to zero. Vectorization of the Russian roulette
game to permit many particles to play at once is
simplified if the coding of Fig. 7a is first rewritten in the
equivalent structured form shown in Fig. 7b, where
FORTRAN block-IF structures have been used to
eliminate GO TO statements. For many particles at
once, the coding of Fig. 7c must be made compatible
with vector processing instructions by eliminating the
IF-slatements. To illustrate the tradeoffs involved in
deciding between possible vector implementations,
three different approaches are illustrated in Figs 7d--f
along with examples of the instruction timings taken
from the CYBER-205.

Figure 7d illustrates the vectorization of the Russian
roulette process through the use of vector mask
instructions, without the use of compress/expand or
gather/scatter operations. In this approach, bit vectors
are formed based on both tests found in the scalar
method, and then two vector masks are used to place
either 0, wrrave, or the original particle weights into
the appropriate vector element positions. The disad-
vantage to this approach is that extra work must be
performed (compared to scalar), since a random
number is generated for all particles rather than just
for the ones having low weight.

Figure 7e illustrates one method to avoid the extra
work of unnecessary random number generation.
Using the initial bit vector (which flags the particles
having low weight), the weights and random number
seeds of particles which must undergo Russian roulette
are compressed into shorter vectors. The Russian
roulette process is then played only for those particles,
and then the results are expanded back into the
appropriate positions in the original vectors. There is
thus some overhead due to the compress/expand
operations, but the random process itself is played only
for the particles which may be affected by it. Based on
the CYBER-205 timings shown in Figs 7d and 7e (and
neglecting vector startup times), this approach is faster
than the vector mask approach when the number of
particles which must undergo Russian roulette is less
than about 31/60 of the original number of particles.

Figure 7f illustrates another method of playing the
Russian roulette game only on affected particles. In
this approach, the initial bit vector (which flags
particles with low weight) is used to create a vector
containing the indices of affected particles (with
respect to the start of the original vector). Using the

Monte Carlo methods on vector computers 287

]a. Scalar - - One Neutron

9O

i f (wgt .gt . wrrlow) go to 90
t : O .
i f (ranf(1)*wrrave . le . wgt) t = wrrave
wgt = t
cont i hue

7b. Structured Scalar - - One Neutron

i f (wgt . le . wrrlow) then

i f (ranf(1)*wrrave .]e . wgt)
wgt = wrrave

else
wgt = O.

endif

endif

then

7 c. Structured Scalar - - Many Neutrons

do I0 j=l,n

if(wgt(j) .le. wrrlow) then

if(ranf(l)*wrrave .le. wgt(j))
wgt(j) = wrrave

else
wgt (j) = O.

endlf

e n d i f

10 continue

Fig. 7. Russian roulette vectorizalion example for the

then

CYBER-205.

index vector, the affected particles are collected into a
shorter vector using vector gather instructions, the
Russian roulette game is played, and then the results
are scattered back to the appropriate positions in the
original vectors. Based on the CYBER-205 timings
shown in Figs 7d, 7e and 7f (and neglecting vector
startup times), this approach is faster than the vector
mask approach when fewer than about 51/140 of the
original particles are to be selected, and faster than the
compress/expand approach when fewer than about
1/4 of the original particles are to be selected.

The timing information discussed above for the
three vectorization schemes is displayed in Fig. 8 as a
function of the selection density (i.e. nr/n, where nr is
the number of particles for which the Russian roulette
game must be played, and n is the total number of
particles comprising the original particle vectors). It is
apparent from Fig. 8 that selection of the 'best'
vectorized method depends on the physics of the
problem being solved and on the instruction timings of
the particular vector computer being used. In some

problems a large fraction of the particles may need to
undergo a process, whereas in other problems few may
be affected. Relative timings of the compress/expand,
vector mask, and gather/scatter operations differ
significantly between the CYBER-205 and the
CRAY-1 computers so that the tradeoffs of the various
approaches are highly machine-dependent.
Furthermore, for some heavily used processes, more
than one vector approach may be coded. The decision
as to which approach to use is determined by the code
during problem execution.

3.5. Review of collision analysis

Several major parts of the collision analysis are: (1)
determining appropriate cross-sections for a particle,
(2) altering the particle's weight in lieu of absorption
when survival biasing is used, (3) for continuous-
energy Monte Carlo, determining the type of interac-
tion, (4) sampling particle exit energy from an
appropriate PDF, and (5) sampling the particle's exit

288 F.B. BROWN and W. R. MARTIN

7d. Vector - - Using "Mask"

BIT1 < - - WGT < wrrlow
T < - - RANFV(SEED) ~ wrrave
BIT2 < - - T < WGT
BIT3 < - - BITI .and. BIT2
BIT4 < - - BIT1 . and . . no t .B IT2
WGT < - - /WGT,BlT3,wrrave/
WGT < - - /WGT,BIT4,O/

7~. Vector -- Using Compress

BITI < ~ WGT . l e . wrrlow
nr < ~ +/BITI
i f (nr .g t . O) then

SEEDI < - - BITI/SEED
S < - - BITI/WGT
R < - - RANFV(SEEDI) * wrrave
BIT2 < - - R < S
S < - - /O,BIT2,wrrave/
SEED < - - /SEED,BITI,(BITI\SEEDI)/
WGT < ~ /WGT,BITI,(BITI\WGT)/

end i f

7 f . Vector - - Using Gather

BIT1 < - - WGT < wrrlow
nr < - - +/B~TI
i f (nr .g t . O) then

I <-- BITI/(INTERVAL n)

SEEDI < - - SEED
I

S <-- WGT

I
R <-- RANFV(SEEDI) * wrrave
BIT2 < - - R < S
S <-- /O,BIT2,wrrave/
SEED < - - SEEDI

I
WGT <-- S

I
e n d i f

CYBER-205 t iming (ns)

1 0 . n
4 0 * n
1 0 ~ n

• 625 ~ n
• 625 * n

IO* n

I0" n

t o t a l (81.25 n s) * (n)
+ (s ta r tup)

CYBER-205 timing (ns)

1 0 , n
0

1 0 , n
10 ~. n
40 * nr

IO *, nr

IO * nr

IO* n

IO* n

t o t a l (50 n s) * (n)
+ (60 n s) * (n r)
+ (s ta r tup)

CYBER-205 t i m i n g (ns)

10 ~ n
0

2 0 r a n
25 * nr

25 * nr

40 * nr
10 * nr
10 * nr
25 * nr

25 ~ nr

t o t a l (30 ns) m(n)
+(140 ns) * (nr)
+ (s ta r tup)

direction from an appropriate angular PDF. These
items are discussed below for continuous-energy and
multigroup approaches.

5.5.1. Cross-section lookup. At a minimum, three
data items must be found for a colliding particle--the
total macroscopic cross-section, the non-absorption
probability (or, alternately, the absorption or total
scattering cross-sections) and the location of the

PDF's for sampling the exit parameters. Additionally,
when secondary particle production is allowed the
appropriate cross-sections must be found. In
continuous-energy codes, the location of partial cross-
sections for all subclasses of reactions must also be
found to allow determination of reaction type. The
retrieval of these cross-section data is an important but
subtle complication to vectorization.

In the continuous-energy case, cross-sections are

Monte Carlo methods on vector computers 289

e

/
o°

io°°° °°**°'°°°°*~-~ ~ ~ '~ ~ ~ ~ ~ ~

125

100

u
~75

~s0

o.,°
, , ~ ' ~ Technique:

~ / / / - - M a s k (Fig 7d)
~mCompress (Fig 7e)

• " Gather (Fig 7f) o,"
Tin = ave. time per original

vector element
p = nrln

I I I l

25*/, 50*/, 75"/, 100'/,
Selection Density, p

Fig. 8. Timing comparison for vectorized Russian roulette
examples on the CYBER-205.

generally tabulated as a 'ladder' of energy/cross-
section pairs (Thompson et al., 1979). The ladder must
be searched to find a pair of entries which bracket the
particle energy, and then the corresponding cross-
sections are interpolated. Generally, all cross-sections
are tabulated at the same energies, so that only one
table search is required, followed by several interpol-
ations. For small cross-section ladders, e.g. gamma-ray
data, a linear table search is generally used, whereas for
large cross-section ladders binary table searches are
most common. (In some codes (Candelore et al., 1978,
1982; Irving et al., 1965) the cross-sections are
tabulated at regularly spaced energies in order to
permit cross-section retrieval without a table search.)

Table searches do not present a serious compli-
cation to vectorization efforts--both linear and binary
table searches are readily vectorized to permit search-
ing for many entries at once (Brown, 1983).

In a multigroup approach, no table searches and no
interpolations are needed for the cross-section lookup.
Since multigroup cross-sections are discrete, the group
index of a particle also serves directly as the index for
retrieving appropriate cross-sections. The only steps
involved in cross-section retrieval in a vectorized code
are a few gather operations.

3.5.2. Survival biasing. The survival biasing game is
carried out in essentially the same way in both
multigroup and continuous-energy treatments. The
termination of a particle due to absorption is prohib-
ited, and, to ensure a fair game, the weight of a colliding
particle is multiplied by a non-absorption probability.

The form of the non-absorption probability varies,
depending upon the method used for subsequent
analysis of other possible reactions. Generally,
continuous-energy codes will use a non-absorption
probability defined by (1--O'a/fit), to decrease a
particle's weight based solely on relative absorption,
and then treat other possible reactions individually
with appropriate weight modifications if needed.

In multigroup codes, a somewhat different defini-
tion is used (Gabriel, 1978). Neglecting the produc-
tion of fission neutrons and secondary gamma-rays
(which are treated separately), all remaining reactions
are accounted for at a collision by considering what
happens on the average. The 'non-absorption prob-
ability' is actually a misnomer for the ratio of expected
surviving weight to incoming weight. This ratio
implicitly accounts for the non-absorption probability
and explicitly accounts for weight modification in lieu
of extra particle creation. If there are significant
reactions which produce multiple particles, the 'non-
absorption probability' may even be greater than one.
In any case, the implementation of survival biasing is
as simple as in the continuous-energy case--upon
collision, do not terminate the particle; multiply its
weight by a tabulated non-absorption probability.

3.5.3. Continuous-energy interactions. Continuous-
energy Monte Carlo codes generally use separate
PDF's for each type of interaction. These PDF's are
specially tailored to each physical process to ensure a
realistic representation of the physics and an efficient
and accurate numerical procedure. The great diversity
of reaction physics and random sampling methods
precludes attempting to treat all different reaction
types simultaneously. Indeed, within the framework of
conventional continuous-energy Monte Carlo colli-
sion analysis there appears to be only one approach
suitable to vectorization : First, using the interpolated
partial cross-sections, a reaction type is selected
randomly for each particle. This step may be readily
vectorized. Second, for each reaction in turn, the
relevant attributes of each particle undergoing the
reaction must be gathered into vectors, i.e. queued for
the reaction. Third, the vectorized analysis of the
particular reaction is carried out. Finally, the modified
particle attributes are scattered to the proper positions
in the particle stack.

While the above method is easy to implement, these
problems are apparent: Queueing up particles for
individual reactions results in a number of shorter
vectors. With shorter vectors, vector startup penalties
are more significant, and the relative gain from
vectorization is reduced. Another problem is the
overhead operations needed to set up and break apart

290 F.B. BROWN and W. R. MARTIN

vector queues. The penalties from these extra opera-
tions may somewhat offset gains from the vectorized
collision analysis. Despite these problems, vectorized
continuous-energy collision analysis has been found to
be very effective in the MCV code. Brown (1983)
details the techniques used to vectorize the collision
analysis at epithermal energies in MCV. The types of
interactions considered include elastic scattering (iso-
tropic, P1, PN,), inelastic scattering, and a modified
free-gas model to treat epithermal scattering with
hydrogen bound in water.

3.5.4. Multigroup collision analysis. The compli-
cations occurring with continuous-energy collision
analysis are absent from the multigroup approach.
Since all reactions are averaged together in forming the
group-to-group transfer matrix, only one type of PDF
is necessary to sample the exit group for each
particle--the discrete P D F represented by one column
of the transfer matrix. Thus, no queueing or sorting of
particles for separate interactions is required. A similar
situation exists with regard to PDF's related to the
scattering angle. The multigroup cross-section pro-
cessing codes can average together the angular distri-
butions of all reactions, and, although various codes
make use of different representations, a given code will
represent the angular PDF's in one way. Many of the
methods used for representing angular PDF's for
multigroup cross-sections have been summarized by
Brockman (1981). The two most commonly used are
the representation of scattering densities in the form of
equiprobable step function PDF's (Carter and Forest,
1976) and in the form of moment-preserving discrete
angles. Both of these forms are suitable for
vectorization.

The key requirement for vectorizing the multigroup
collision analysis is the vectorization of random
sampling from discrete PDF's. A method for vectoriz-
ing discrete sampling has been developed by Brown et
al. (1981c, 1983). The new vectorized discrete sampling
method has been found to be equivalent to the
'aliasing' method of Walker (1977) and is a particular
extension of Marsaglia's (1961) method as applied to
discrete distributions. It is faster than the usual method
for sampling discrete distributions with large table
length N, executes in a fixed time independent of N,
and can be efficiently implemented into Monte Carlo
codes for parallel and vector processing computers.
The new vectorized method is significantly faster than
all scalar methods and executes in a fixed time
regardless of the size of the distribution. This new
discrete sampling method is used for all discrete
sampling events in the MCV and MCVMG codes.

3.6. Vectorization of tracking

Despite the great number of schemes for tracking
particles through general geometry, most tracking
modules in Monte Carlo codes can be loosely categor-
ized as either 'COMJOM' or 'surface-segment' ap-
proaches. The COMJOM (combinatorial geometry)
approach originated for the SAM-CE code, has been
adopted and extended in MORSE and KENO, and
generalized for MCNP. The surface-segment ap-
proach has been used in the ANDY series of codes and
in many older codes. In the following sections, the
similarities of all tracking schemes in a simple geo-
metry are discussed, followed by a general comparison
of the COMJOM and the surface-segment approaches
to complex geometry. The surface-segment tracking
scheme was used in the vectorized MCVMG code,
while a simplified version of the COMJOM scheme
was used in the MCV code.

3.6.1. Basic tracking considerations. The basic descrip-
tion of problem geometry is conveyed to a Monte
Carlo code through the coefficients of equations for
surfaces and through lists defining relations between
cells (or regions) and surfaces. Each surface compris-
ing the problem geometry is described by a linear or
quadratic equation (or for special tori, simplified
fourth order equations) of the form S(x,y,z)= 0. In the
most general case, the surface equation is

S(x,y,z) = Ax 2 + By z + Cz 2 + Dxy + Eyz

+Fxz + G x + H y + Jz + K=O,

although most surfaces are considerably simpler in
form. The distance d along the direction (u,v,w)
between a given point (x',y',z') and a surface is found
by solving the quadratic equation S(x'+ ud, y '+ vd,
z' + wd) = 0 for d. To track a particle through a general
geometry, some scheme is needed to define cells in
terms of bounding surfaces and to resolve complex or
ambiguous cases. The COMJOM approach is a high-
level approach in that the basic building blocks are
bodies. A body is a simple geometric region of space
completely enclosed by quadratic surfaces such that a
ray will pierce the body at only two points. Basic
bodies include spheres, boxes, cylinders (with top and
bottom faces), etc. Complex geometric cells can be
created of course by combining bodies using intersec-
tion, union, and complement operators. Input process-
ing modules convert the logical combinations of
bodies into distinct simple regions along with lists used
for combining the simple regions. The surface-segment
scheme is a low-level approach in that the infinite
surfaces are subdivided into bounded surface-
segments. The surface-segments are then stitched

Monte Carlo methods on vector computers 291

together explicitly to form geometric cells. In principle,
either approach is sufficiently general to allow the
description of geometry of any degree of complexity.

In both approaches, there are three basic items to be
determined: (1) the distance to the nearest valid cell
boundary, (2) identification of the boundary (e.g. an
index in a list of boundary segments), and (3)
identification of the cell on the other side of the
boundary (i.e. the 'other-side' cell number). For
particles inside the simplest of cells (bodies), these
three items are found in essentially the same way by
both tracking methods. For more complicated cases,
additional operations are needed involving surface
senses. The sense of a given poin t (x',y',z') with respect
to a surface defined by S(x,y,z) =0 is generally taken as
positive if the quantity S(x',y',z') is greater than zero,
and negative if S(x',y',z') is less than zero. Then, for
example, a point inside a sphere has a negative sense
(with respect to the spherical surface), and a point
outside the sphere has positive sense.

3.6.2. Distance to simple cell boundaries. The pro-
cedure for determining the free-flight distance to the
nearest boundary is essentially the same for all
tracking methods for the case of simple cells. Given a
list of the number of surfaces bounding each cell, a list
of the type of surface (e.g. plane perpendicular to
x-axis, sphere, etc.) and a list of the location in memory
of the surface coefficients, it is a simple matter to loop
over the surfaces of a cell, finding the roots of the
appropriate linear or quadratic equation to determine
distances to the surfaces. For simple cells, the smallest
positive distance so calculated is the desired quantity.
No surface sense information is needed.

Vectorization of tracking in simple cells is relatively
straightforward when a cell-by-cell global algorithm is
used. Considering vectors containing position and
direction components of each particle in a given cell,
an outer loop is made over the surfaces bounding the
cell. For each surface, the roots of the surface equation
are found simultaneously for each particle in the cell
stack using vector arithmetic. The smallest positive
root and the index of the corresponding surface are
retained for each particle using simple vectorized
relational operations.

Vectorization of tracking in simple cells is more
complicated when it is desired to simultaneously track
particles which may be in different cells. First, an index
vector must be formed to identify the particular
equation to be solved for each particle. The appro-
priate equation coefficients must then be gathered
into contiguous vectors. In general, the logic is
simplified if a general quadratic equation is used,

rather than, for example, using simplified linear
equations for plane surfaces.

A minor complication arises over the treatment of
particles having complex roots for the distance calcu-
lation. For the quadratic case, a negative discriminant
in the quadratic formula indicates the roots will be
complex, while a zero discriminant indicates a multiple
root. Both of these cases should be discarded, since
complex roots correspond to no intersection and equal
roots correspond to a tangent intersection. In a scalar
code, when a negative or zero discriminant occurs, a
branch is made to skip further calculation for that
surface-segment. In a vectorized calculation, con-
ditional branches cannot be made for individual
particles. Two alternatives are possible: first, at
various points in the coding where some particles fail a
test, the particle vectors could be compressed and the
calculation continued. At the end, after a number of
intermediate steps and compressions, the results
would have to be expanded back to the proper
positions. Alternatively, no compression or expansion
would be used, but rather dummy results would be
substituted into the particle vectors in such a way that
the final logic tests would fail for the particles in
question. Either approach involves extra work, either
in compression/expansion or in unneeded calcula-
tions. The substitution of dummy results for some
particles failing a test was the approach used in the
MCV and MCVMG codes.

3.7. Tallying considerations

The tallying of particle scores is the only significant
facet of the Monte Carlo random-walk which has not
been vectorized in MCV and MCVMG. Nevertheless,
the tally process is markedly affected by the approach
to vectorization used in the rest of the code. Brief
discussions of significant considerations for tallying
are given below.

3.7.1. Scalar versus vectorized tallyin 9. The most
basic sequence of operations involved in tallying the
scores for many particles is a loop of the form:

Do 10 j = 1,N
10 r(iO))=r(i(j))+s(j)

where N is the number of particles, sO) is the score for
thej-th particle, i(j) is an index identifying the tally bin
to which so.) contributes and r is an array of tally bins
for accumulating overall scores (e.g. reaction rates).
This type of tally operation will generally be performed
for every type of event that particles undergo. A
tracklength estimate of cell group fluxes is made after
tracking operations by summing the products of

292 F.B. BROWN and W. R. MARTIN

particle weights times free-flight track lengths into the
appropriate group bins. If collisions occur, particle
weights are summed into the appropriate group bins
for collision estimators of cell fluxes (after eventual
division by the total cross-sections). If boundary
crossings occur, particle weights are summed into the
appropriate bins for surface crossing estimators of
partial currents across surface-segments. (Some codes
do not provide boundary crossing estimators,)

Only a few tally loops of the form shown above are
needed within the vectorized random-walk. As dis-
cussed below, most other scoring operations can be
moved outside of the random-walk. The tallying loops
shown above have been found to comprise only about
1% of the operations in MCVMG and MCV and thus
have very little effect on the overall code performance.
These loops have been carefully 'fine-tuned' using
hand-optimized scalar coding.

The cell fluxes and partial currents are usually not
the only information desired from a calculation. In
general it is necessary to fold a cross-section or
response function into the flux or current to obtain an
integral quantity such as total absorption or dose rate.
For continuous-energy calculations, this can be per-
formed after the random-walk if all cross-sections are
tabulated on the same energy mesh. If interpolation
laws are to be used for the cross-sections, additional
information may need to be tallied during the random-
walk analysis. For example, the use of a linear cross-
section interpolation law in post-editing requires that
both flux and energy*flux be tallied on each collision
or free-flight. The price paid for the advantage of post-
editing is the increased storage required to accumulate
group fluxes and partial currents for every cell and
energy interval. This storage is not large compared to
that needed for the particle stacks, but does contribute
to total memory usage.

3.7.2. Batchin 9 method for variance calculation. The
variance of tallied scores is estimated in MCV and
MCVMG via the batching method (McGrath et al.,
1975; RSIC, 1977). That is, a problem is divided into
independent batches of particles, and the variance is
computed from the RMS deviation of batch scores
from the overall mean. Direct computation of variance
through the tallying of squared particle scores is not
practical for a vectorized calculation due to the
excessive storage required to accumulate partial scores
associated with each independent source particle.
(Allowance for splitting would create further compli-
cations.) The batching method, in contrast, is easier to
implement and is better suited to vector calculations
since it is simply an outer loop in the calculation.

4. NUMERICAL STUDIES

This section details the numerical studies performed
on the CYBER-205 in support of the discussions in
previous sections. The specific objectives of these
numerical studies have included verification of the
validity (correctness) of the codes and algorithms,
determination of performance characteristics of the
vectorized codes for several practical problems, and
comparison with optimized scalar codes of similar
capabilities to determine the relative gains achieved by
vectorization.

4.1. Capabilities of MCVMG

The MCVMG code is a vectorized multigroup
Monte Carlo demonstration code. This code in-
corporates the most significant physics and algor-
ithmic features of standard production codes without a
plethora of user conveniences and options. MCVMG
is a CYBER-205 code utilizing the FORTRAN explicit
vector syntax. A scalar code, MCS (Brown, 1981a),
written in FORTRAN, has identical capabilities but
makes full use of all time-saving techniques used in
conventional scalar Monte Carlo codes. MCS pro-
vides a representative scalar benchmark for timing
comparisons for the vectorized code. Multigroup
Monte Carlo speedups due to vectorization are
determined by comparing execution times for prob-
lems run using the scalar MCS code and the vector
MCVMG code.

Both scalar and vector codes have identical capa-
bilities and physical models chosen selectively from
typical general-purpose production codes such as
MORSE, KENO, ANDY and MCNP. The specific
capabilities include:
(a) The description of problem geometry utilizes the

surface-segment scheme with unique other-side
cells. Currently, the geometric surface types al-
lowed include planes perpendicular to the x, y, or z
axes, planes of arbitrary orientation, cylinders
parallel to the x,y, or z axes, and spheres. (Other
linear or quadratic surface type could easily be
added without complications.) Any number of
cells, surfaces, and surface-segments may be speci-
fied, with storage for the particle stacks (in
MCVMG) being the constraint on problem size,
rather than the geometric description. Any planar
surface-segment may be flagged as a reflecting,
periodic, or non-reentrant boundary.

(b) Tallies are made for the group fluxes in every cell
and the partial currents (positive and negative)
across each surface-segment. The cell fluxes may
be estimated using either tracklength or collision
estimators. Response functions may be included in

Monte Carlo methods on vector computers 293

the problem input for use in obtaining integrated
reaction rates or dose rates. Both mean scores and
standard deviations are estimated for any user-
specified combination of energy groups, cells,
surface-segments, or response functions. Variance
estimation is accomplished via batching.

(c) In addition to the tallies of physics information,
many miscellaneous tallies are made auto-
matically to provide information about problem
execution. These include such items as the number
of particles created from splitting, number of
particles killed by weight cutoffs, group cutoffs,
Russian roulette and leakage, number of collisions
in each cell, number of tracks crossing each
segment, and the weight associated with each of
these quantities. Overall quantities such as average
numbers of collisions and segment crossings per
history are also provided. This type of information
is essential for judging the effectiveness of variance
reduction techniques and the correct execution of
a problem.

(d) A number of variance and cost reduction schemes
are available. Survival biasing is used on all
collisions to prevent analog absorption. Cell-
importances may be specified to cause Russian
roulette and splitting to occur at any surface-
segment crossing. Splitting may occur in any
integer-for-1 ratio, although 2-for-1 and 4-for-1
are most commonly used. A group cutoff may be
specified to terminate particles scattering to unim-
portant low energy groups. To terminate low
weight particles in an unbiased way, a weight
cutoff is performed via Russian roulette whenever
a particle's weight falls below a user-specified limit.
This weight limit is adjusted by the cell impor-
tances prior to cutofftests to avoid conflict between
the splitting and weight cutoff games.

The above summary of current features included in
the demonstration codes MCS and MCVMG shows
that the two codes approach the complexity of
standard production codes. The features included in
MCS and MCVMG are representative of the kernels
found in general-purpose Monte Carlo production
codes, but are not all-inclusive.

4.2. Capabilities of MCV
The MCV vectorized Monte Carlo code performs a

continuous-energy random-walk simulation of neu-
tron behavior in a nuclear reactor. The MCV code
developed at KAPL is very closely related to the 05R
code developed at Oak Ridge National Laboratory
(ORNL) and later modified at KAPL (Ellis and

MacMillan, 1967). The physics models, geometric
treatment and fundamental Monte Carlo logic of
MCV are consistent with the KAPL version of 05R,
although the details of implementation differ radically.
The vectorized random-walk calculation determines
detailed space-energy neutron flux and reaction rate
distributions for either fixed-source or eigenvalue
calculations. The principal means of verifying the
MCV code has been through comparison with
KAPL-05R results. Additionally, continuous-energy
Monte Carlo speedups due to vectorization are
determined by comparing execution times for prob-
lems run using the scalar KAPL-05R and vector MCV
codes.

An important feature of the MCV code is its highly
detailed representation of neutron cross-sections. For
neutron energies above thermal (0.625 eV), the energy
range is divided into an arbitrary number of super-
groups whose energy boundaries are chosen based on
variations in physical data. Each supergroup is then
divided into subgroups of equal energy width.
Following the 05R convention, all epithermal cross
sections are tabulated at subgroup midpoints and are
assumed to vary as 1/v within each subgroup. For
neutron collisions above thermal energy, explicit
collision physics models are provided for elastic
scattering (including isotropic, P1, and PN in the
center-of-mass system), inelastic/n-2n scattering, and
scattering from bound hydrogen using a modified free-
gas model. All angular distributions are represented by
equally-probable cosine bin data tabulated for individual
isotopes. The thermal energy range physics
treatment is based on a 32-multigroup representation.
Scattering with hydrogen is treated by a double-
differential P1 scattering model, while scattering by
heavy isotopes is treated as isotropic with no energy
change.

The continuous-energy vectorized random-walk
calculation is performed for one supergroup at a time
for all neutrons in a batch having energies in the
current supergroup. When all neutrons have energies
below the lower cutoff of the supergroup, the next
lower energy supergroup is analyzed. The lowest
energy supergroup, covering the range of 00.625 eV,
differs from the epithermal groups in that a multigroup
cross section scheme is used and both up- and down-
scattering within the group are permitted.

When neutron data are shuffled according to the
algorithm shown in Figure 4, the tracking procedures
that follow neutrons through the problem geometry
are deterministic (for a single pass through the implicit
free-flight loop). These procedures are readily vector-
ized. Geometric capabilities are currently limited to
2-dimensions, but are sufficiently general to permit

294 F.B. BROWN and W. R. MARTIN

the explicit representation of all detailed features of
reactor geometry. Neutrons are tracked through
computational lattice units containing linear and
quadratic surfaces which describe problem geometry.
The lattice units may be combined, translated, rotated,
or reflected in order to describe multiple fuel as-
semblies and fine-structure within a given assembly.
Both delta-tracking (Woodcock et al., 1965) and
regular surface-to-surface tracking algorithms are
provided, with the choice of tracking algorithm
variable by neutron energy.

4.3. Vectorized Monte Carlo performance

To illustrate the computational gains possible from
the vectorization of Monte Carlo, results from several
test problems are presented below. The first problem
was used to develop and test MCVMG and involves
the multigroup analysis of deep penetration of fission
neutrons in concrete. The other problems were used in
the development and testing of the MCV code and
involve continuous-energy neutron transport in light
water reactor lattice regions. These problems include
iteration of the spatial neutron source distribution and
associated eigenvalue calculation. The emphasis in the
discussion below is on code performance (i.e. speedup),
rather than on the detailed presentation of problem
results. While MCVMG has received only limited
testing, the MCV code has been successfully applied
to the analysis of many large production problems.

4.3.1. Multigroup analysis o f deep-penetration qf
.fission neutrons in concrete. This problem represents a
large class of applications related to radiation shield-
ing analysis and provides a realistic and practical test
of many of the general-purpose features included in

lO -1

MCS and MCVMG. A pencil-beam source of fission
neutrons is incident on the axis of a concrete cylinder l o_~
of length 200 cm and diameter 200 cm. This problem is
essentially the same as that given by Thompson et al., ,o.3
(1980) in which a variety of variance reduction
methods and energy treatments were investigated ~ ,0 ~
using both MCNP and the multigroup code MCMG.
The only differences involve the number of energy ~ ~o'
groups and the cell importances used for splitting. The -
use of 34 neutron groups from the BUGLE-80 (RSIC, ÷~ ~0 s
1980) shielding library in MCS and MCVMG should

10 -7
lead to better results than the reported 18 neutron
group calculation with MCMG. (Although

!0 8

Thompson's multigroup library contained 30 groups,
only the first 18 were within the energy range of ~09
interest.) Thompson divided the 200 cm length of the
concrete cylinder into cells of 10 cm axial length for
splitting purposes and used 2-for-1 or occasionally 4-

for-1 splitting at each cell boundary to keep the track
population roughly constant in each cell. Their
reported tally planes, however, were spaced 15 cm
apart (20 cm for the last one). Because MCS and
MCVMG perform surface crossing tallies only at cell
boundaries, the cell boundaries were chosen to coin-
cide with Thompson's tally planes. This led to the use
of more 4-for-1 splitting to keep cell track populations
roughly even. Other variance reduction techniques
used with MCS and MCVMG which are essentially
identical to Thompson's include: biasing the fission
source by sampling energies only above 3.68 MeV, a
group cutoff for neutrons scattering below the energy
group boundary at 0.007 MeV, and weight cutoff via
Russian roulette for neutrons whose weight drops below
0.25/(cell importance) with survivors assigned weight
0.5/(cell importance).

The relative transmission per source particle at
various tally planes is displayed in Fig. 9 for two of
Tbompson's calculations and the MCS and MCVMG
calculations. The MCNP results will be taken as a
reference for the various multigroup cases since no
significant approximations are made in the
continuous-energy treatment of energy and angular
effects in MCNP. The calculations using MCNP and
MCMG were run long enough so that estimated
standard deviations were 8% or less, and hence are
insignificant on the scale of Fig. 9. Since it was
apparent that MCS and MCVMG results were
bracketed in all cases by other results, these
calculations were not continued to small statistical
error, and the relatively large error bars for MCS and

8,

0

!

I
!

!

• M C N P , c o n t i n u o u s e n e r g y

• 1" M C V M G , m u i t i g r o u p

o M C M G , m u l t i c J r o u p

. . . . I . , , , I , ,

5 0 I 0 0

D i s t a n c e (c m l

~t
o

, I , , , , I

150 2 0 0

Fig. 9. Neutron transmission for deep-penetration problem.

Monte Carlo methods on vector computers 295

MCVMG reflect this. Additional results from
Thompson et al. (1980) not shown on Fig. 9 are the 240
group calculations performed using MCNP in a
pseudo-multigroup fashion. That is, reaction cross-
sections were multigroup, but energy and angular
scattering effects were treated by the normal
continuous-energy scheme. These results lie between
the MCS/MCVMG results and the MCNP results.

Consideration of the results in Fig. 9 leads to two
conclusions: First, in a realistic test of MCS and
MCVMG on a practical problem, the codes perform
correctly and have sufficient generality to be con-
sidered representative of production codes. Second,
the accuracy of the multigroup approach is sensitive to
the fineness of the energy group structure. The trend in
going from 18 groups to 34 groups to 240 groups (with
continuous-energy scattering treatment) is unar-
guably toward better physics and closer agreement
with a continuous-energy method.

This problem allows an assessment of the vectorized
performance characteristics for a realistic applied
problem, the deep-penetration of fission neutrons in
concrete. This case also illustrates that standard
variance reduction schemes may enhance vectorized
performance. In a typical MCVMG run with 1,000
particles starting a batch, 11,786 particles were created
by splitting, 4,978 particles were killed by Russian
roulette, 7,029 were lost due to the group cutoff, 93
were killed in the Russian roulette weight cutoff and
714 were lost by leakage. An average particle under-
went 113 collisions and crossed 14 segments.

Figure 10 provides insight into the dynamic nature
of the performance characteristics by displaying the
MOPs, MFLOPs, VL and total number of particles as
functions of total predicted CPU time for a 2-pipe
CYBER-205 using full-precision arithmetic. (These
quantities were estimated by modelling the
CYBER-205 instruction timings in an emulated ver-
sion of MCVMG, as detailed in Brown (1981a).)
Starting with a batch size of 1,000, the number of
particles increases to nearly 5,000 midway through the
run due to splitting. The average vector length is much
smaller, however, since the particles are distributed
among 14 cells. Examining MOPs, MFLOPs and VL
shows that they stay relatively constant while the
particle population is increasing and begin to decline
only in about the last third of the calculation where
particles are killed rapidly by cutoffs.

A series of calculations was performed to determine
the vectorized performance characteristics as func-
tions of the batch size. Measured MCVMG execution
times on the CYBER-205 (2-pipe, 64-bit arithmetic)
were compared to the corresponding MCS timings on
the Amdahl 470V/8 to determine the speedups due to

80

60

40

20
lOPS ~ " ~ ,

5o

40

30

20

10

:F o++--.,
' 5000 600 ~, e-"-"-,, Por ticles

450 ~ ~'~%, 4000

%.,---,-,.m~ 3000
300/ V L o v e ~ ~ 2000
150 , , ~ ~ ~ 1000

.I . 2 .3 .4

CPU Time (estimoted)

Fig. 10. Vectorized Monte Carlo dynamic performance on the
CYBER-205 for deep-penetration problem.

vectorization. These timings vary from problem to
problem and, for a given problem, fluctuate slightly
due to statistical effects from the Monte Carlo analysis.
Figure 11 presents MCVMG speedups for this prob-
lem. The relative speedup increases rapidly with batch
size at first and then reaches an asymptotic value of
about 40 over the Amdah1470V/8 scalar computation.
This behavior may be attributed to the effects of vector
startup. For small batch size the average vector is
short, and the average overhead per operation from

4 0

:o
2 0

CO

I O

~ t L l L J , , , , , , I J L I i i l l l i I

IO 2 I03 iO 4
Particles/ Batch

Fig. 11. Performance results for vectorized multigroup
Monte Carlo on the CYBER-205.

296 F.B. BROWN and W. R. MARTIN

vector startup is large compared to the actual opera-
tion time in streaming. For larger batch size, the
vectors are longer and the efficiency is higher. That is,
the effects of startup are less when averaged over the
larger number of elements in longer vectors. The
speedup is close to asymptotic for batch sizes of several
1,000 source particles.

Further insight is provided into problem dynamics
and the effects of splitting, Russian roulette and the
iteration scheme by Fig. 12. This plot shows the
distribution of particles in each cell throughout the
iteration process. The initial wave of source particles is
seen to rapidly travel outward, being reinforced and
'herded' in the proper direction by splitting. The cells
are populated rapidly and the total number of particles
grows• When the wave reaches the opposite boundary,
the majority of splitting has already occurred and there
is then an alternation among the most populated cells
which gradually spreads out as cell populations
dwindle. It should be noted that secondary particle
creation should produce the same type of effect as
spl i t t ing~the creation of particles during the calcula-
tion should increase vector lengths and enhance
vectorized performance.

4.3.2. Continuous-energy vectorized Monte Carlo
analysis. To verify the correctness of the vectorized
MCV code and to determine the speedups due to
vectorization, several benchmark problems were run
(Brown, 1982) using both the scalar KAPL-05R code
on the CDC-7600 and the vectorized MCV code on the

CYBER-205. These problems involved the analysis of
two-dimensional light-water-reactor lattice regions
having reflecting boundary conditions. The problems
were run in both fixed-source and eigenvalue modes,
and included either 19 or 186 geometric regions and
280 edited reaction rates. Detailed comparison of
scalar and vector results showed agreement to within
small statistical uncertainties (95~,,~ confidence
intervals).

The speedup of Monte Carlo neutron processing
rates for a typical problem is shown in Fig• 13 (Brown,
1983) as a function of the number of neutrons per
batch. The vectorized code performance varies with
batch size, because larger batches lead to longer
average vector lengths and to reduced vector instruc-
tion startup overhead. For most problems, batches of
16,000 neutrons are used to obtain problem-averaged
vector lengths in the range of 500-1,000 and achieve
excellent vector efficiency.

Recent development efforts (Brown and Mendelson,
1984) have concentrated on extending the generality
and capabilities of MCV to permit its usein a variety of
production-oriented reactor analysis applications.
Examples of typical applications of the MCV code and
relative speedups attained are given below for three
cases which span the range of current problem sizes
IBrown and Mendelson, 1984).
(1) The analysis of a fuel element unit cell (fuel, clad

and water) with a fixed-source in the fuel region is a
typical 'small' problem. Spatially-dependent reac-
tion rates from this problem provide the basic data

Deep Penetration of Fission Neutrons
in Concrete Cylinder

./

Fig. 12. Cell population ~ersus iteration for deep-penetration problem.

Monte Carlo methods on vector computers 297

3000

2500

~ 2 0 0 0

1500

10oo

50O

- - - t "~ i 1 ¢ t t
4 0 0 0 12000 8000

Neutrons/Botch

lO

16000

60

50

4 0 ~

?o g

20

Fig. 13. Performance results for vectorized continuous-
energy Monte Carlo on the CYBER-205.

for constructing resonance interference and
thermal self-shielding factors for use in few-group
cross-section generation for diffusion theory calcu-
lations. A special version of MCV has been
optimized for this generic problem type. Neutron
histories are processed at a rate in excess of
200,000/min, providing speedups of 75-85 times
better than scalar computation using KAPL-05R
on the CDC-7600.

(2) Determination of the reaction rates and eigenvalue
for a collection of fuel elements in a fuel assembly
constitutes a typical 'medium' sized problem. The
results of such a problem are typically used to
check the corresponding results of a fine-mesh few-
group diffusion theory calculation. For problems
involving several hundreds or thousands of spatial
regions, five to ten compositions, and several
hundred edited reaction rates, the MCV code
processes 75,000-200,000 neutron histories per
minute, giving speedups of 20-60 over scalar rates.

(3) At the present time, a 'large' problem is one which,
for example, treats the depletion of a fuel assembly,
including spatial detail within each fuel element.
Such a calculation is typically used to verify
depletion effects predicted by few-group diffusion
theory calculations including reactivity trajec-
tories, power distribution shifts, and isotopic
inventory changes. For problems involving several
hundreds or thousands of spatial regions, several
hundred compositions, and several thousand
edited reaction rates, the MCV code processes
40,000 100,000 neutron histories per minute for
relative speedups of 20 40 over scalar rates.

4.4. Discussion of vectorized Monte Carlo
performance

The results presented in the previous section show

many similarities among all the problems tested. In all
cases, for sufficiently large batch size, speedups of at
least 20 40 over a scalar calculation on the Amdahl
470V/8 or CDC-7600 were obtained. These results are
very significant because they are large enough to justify
further intensive investigation of vectorized Monte
Carlo and the continued development of vectorized
general-purpose production codes.

It is evident that the average vector length shows
great variation among problems. In all cases, the
vector length should increase essentially linearly with
increasing batch size. This is due to the linearity of the
transport equation for the problems studied--
doubling the batch size doubles (on the average) the
number of operations in calculation.

Vectorized Monte Carlo will offer significant
speedups on the CYBER-205 whenever average vector
lengths on the order of hundreds or more can be
obtained. The batch size required to achieve this goal
varies greatly according to problem physics, geometry,
and variance reduction methods. In the cases tested,
several thousand source particles per batch were
sufficient for the multigroup problems and
10,000 16,000 for the continuous-energy problems.

5. CONCLUSIONS

The principal conclusion of this work is that
vectorization of a general-purpose Monte Carlo code
is feasible and well worth the significant effort required
for stylized coding and major algorithmic changes.
Speedups of a vectorized code for the two-pipe
CYBER-205 with full-precision arithmetic may be as
large as 20-85 times that of scalar codes on the Amdahl
470V/8 or CDC-7600.

The advent of an extremely fast vectorized Monte
Carlo capability is expected to have a significant
impact on radiation transport analysis methods. Some
of the gains which have already been realized are:

(a) Standard Monte Carlo calculations may be com-
pleted very rapidly, thus permitting more calcula-
tions to be performed.

(b) The larger computation rates also permit more
precise results to be obtained in a given amount of
computer time, thus improving the quality of
calculations. It is thus feasible to perform more
detailed analysis of problems on a routine basis.

(c) Even greater impact is provided by the oppor-
tunities to apply Monte Carlo methods in new
ways which were previously considered imprac-
tical due to excessive computing time. These new
applications include the routine use of Monte
Carlo methods in the generation of few-group

298 F.B. BROWN and W. R. MARTIN

cross-sections and the use of M o n t e Carlo
me thods in the analysis of reactor fuel deplet ion
problems.

(d) The availabil i ty of very fas t - running vectorized
M o n t e Car lo codes facilitates further analysis of
the assumpt ions and strategies used in the Mon te
Car lo me thod itself. The effects of different physics
model l ing procedures and cross-section represen-
ta t ions may be analyzed more precisely so that
improved t rea tments may be identified. New
strategies for performing eigenvalue calculat ions
in the most cost-effective manne r may be investi-
gated, a long with new techniques needed for
non l inear M o n t e Car lo analysis. These and other
studies are expected to lead to an even higher level
of confidence in the use of M o n t e Car lo as a
calculat ional s tandard.

In conclusion, the very large computa t iona l
speedups provided by vectorized methods make
M o n t e Car lo analysis more competi t ive with other
analysis methods and permit M o n t e Car lo methods to
become a larger par t of the radia t ion t ranspor t
analysis process.

REFERENCES

Bobrowicz F. W., Lynch J. E., Fisher K. J. and Tabor J. E
(1983) Vectorized Monte Carlo photon transport,
LA-9752-MS, Los Alamos National Laboratory

Brockman H. (1981) Treatment of anisotropic scattering in
numerical neutron transport theory. Nucl. Sci. Engng 77,
377.

Brown F. B. (1981a) Vectorized Monte Carlo, Ph.D. disser-
tation, University of Michigan, Ann Arbor, Michigan.

Brown F. B., Martin W. R. and Calahan D.A. (1981b)
Investigation of vectorized Monte Carlo algorithms.
Trans. Am. Nucl. Soc. 39, 755.

Brown F. B., Martin W. R. and Calahan D. A. (1981c) A
discrete sampling method for vectorized Monte Carlo
calculations. Trans. Am. Nucl. Soc. 38, 354.

Brown F. B., Calahan D. A., Martin W. R., et al. (1981d)
Investigation of Vectorized Monte Carlo Algorithms,
working paper presented at the Cor~lbrence on High Speed
Computing, Gleneden Beach, Oregon (April).

Brown F. B., Calahan D. A., Martin W. R., et al. (1981c)
Investigation of vectorized Monte Carlo algorithms, final
report for Los Alamos National Laboratory, University of
Michigan report, Ann Arbor, Michigan (September).

Brown F. B. (1982) Development of vectorized Monte Carlo
algorithms for reactor lattice analysis. Trans. Am. Nucl.
Soc. 43, 377.

Brown F. B. (1983) Vectorized Monte Carlo methods for
reactor lattice analysis. Proc. Am. Nucl. Soc. Topl. Mtg. on
Advances in Reactor Computations, Salt Lake City, Utah,
pp. 108 123, March 28-31.

Brown F. B. and Mendelson M. R. (1984) Vectorized Monte
Carlo applications in reactor physics analysis, submitted to
Trans. Am. Nucl. Soc. for publication in Spring, 1984.

Buzbee B. L., et al. (1980) DOE research in utilization of high-
performance computers, LA8609-MS, Los Alamos
National Laboratory.

Calahan D. A. (1980a) notes from vector processing course,
University of Michigan.

Calahan D. A., Martin W. R., et al. (1980b) Final report for
preliminary studies on vectorized Monte Carlo for Los
Alamos National Laboratory, University of Michigan
Report (August 15).

Calahan D. A., Martin W. R., et al. (1980c) Supplement to
final report for preliminary studies on vectorized Monte
Carlo for Los Alamos National Laboratory, University of
Michigan Report (October 31).

Candelore N. R., Gast R. C. and Ondis L. A. (1978) RCP01--
A Monte Carlo program for solving neutron and photon
transport problems in three-dimensional geometry with
detailed energy description, WAPD-TM-1267, Bettis
Atomic Power Laboratory.

Candelore N. R., et al. (1982) PACER A Monte Carlo time
dependent spectrum program for generating few group
diffusion theory cross-sections, WAPD-TM-1518, Bettis
Atomic Power Laboratory.

Carter, L. L. and Cashwell E. D. (1975) Particle Transport
Simulation with the Monte Carlo Method, TID-26607, U.S.
ERDA.

Carter L. L. and Forest C. A. (1976) Transfer matrix
treatments for multigroup Monte Carlo calculations- The
elimination of ray effects. Nucl. Sci. Engng 59, 27.

Cashwell E. D. and Everett C. J. (1957) A practical manual on
the Monte Carlo Method for random walk problems,
LA-2120, Los Alamos National Laboratory.

Cohen M. O., et al. (1971) SAM-CE, A three-dimensional
Monte Carlo code for the solution of forward neutron and
forward and adjoint gamma ray transport equations,
MR-7021 (DNA 2830F).

Control Data Corporation (1980a) CDC CYBER 200/Model
205 Technical Description.

Control Data Corporation (1980b) CDC CYBER 200 Model
205 Computer System, Reference Manual 60256020.

Control Data Corporation (1980c) CDC CYBER 200
Fortran Language 1.5, Reference Manual 60457040.

Cray Research, Inc. (1978) CFT CRAY-1 Fortran, Reference
Manual 2240009.

Cray Research, Inc. (1979) CRAY-1 Computer System,
Hardware Reference Manual 2240004.

Duderstadt J. J. and Martin W. R. (1979) Transport Theory,
Wiley, New York.

Ellis C. L. and MacMillan D. B. (1967) 05R Users' Manual,
KAPL-M-6741, Knolls Atomic Power Laboratory.

Fleck J. A. Jr. and Cummings J. O. (1971) An implicit Monte
Carlo scheme for calculating time and frequency dependent
nonlinear radiation transport. J. Comp. Phys. 8, 313.

Flynn M. (1972) Some computer organizations and their
effectiveness. IEEE Trans. on Computers C-21, No. 9, 948.

Frederiekson B., et al. (1983) Pseudo-random trees in Monte
Carlo, LA-UR-83-1130, Los Alamos National Laboratory.

Gabriel (1978) The methods and applications of Monte Carlo
in low-energy neutron-photon transport (MORSE). In:
Computer Techniques in Radiation Transportation and
Dosimetry, Plenum Press, New York.

Gast R. C. and Candelore N. R. (1974) Monte Carlo
eigenfunction strategies and uncertainties, ANL-75-2,
Argonne National Laboratory.

Halton J. H. (1970) S lAM Review 12, No. 1.
Hammersley J. M. and Handscomb D. C. (1967) Monte Carlo

Methods, Methuen, London.

Monte Carlo methods on vector computers 299

Harris D. R. (1970) ANDYMG3--The basic program of a
series of Monte Carlo programs for time-dependent
transport of particles and photons, LA-4339, Los Alamos
National Laboratory.

Irving D. C., et al. (1965) 05R, A general-purpose Monte
Carlo neutron transport code, ORNL-3622, Oak Ridge
National Laboratory.

lverson K. E. (1962) A Programming Language, Wiley, New
York.

Kahn H. (1956a) Applications of Monte Carlo, AECU-3259,
Rand Corp. (1956).

Kahn H. (1956b) Use of different Monte Carlo sampling
techniques. In: Symposium on Monte Carlo Methods, H. A.
Meyer (ed.) Wiley, New York.

Kascic M. J. Jr. (1979) Vector processing on the C YBER-200,
Control Data Corporation.

Knuth D. E. (1981) The Art of'Computer Programming, Vol. 2,
2rid Ed., Addison Wesley, Reading, Mass.

Kogge P. M. (1981) The Architecture qf Pipelined Computers,
McGraw-Hill, New York.

Levitt L. B. and Lewis R. C. (1970) VIM-l, A non-multigroup
Monte Carlo code for analysis of fast critical assemblies,
AI-AEC-12951, Atomics International.

Marsaglia G. (1961) Ann. Math. Stat. 32, 894.
Martin W. R. (1983a) Vectorized Monte Carlo on the

CYBER-205, final report for Control Data Corporation,
University of Michigan Report.

Martin W. R. (1983b) VECPHOT--A vectorized Monte
Carlo demonstration code for the CRAY-1, final report for
Lawrence Livermore National Laboratory, University of
Michigan Report.

McGrath E. J., et al. (1975) Techniques for efficient Monte
Carlo simulation, Vols. I Ill, ORNL-RSIC-38, Oak Ridge
National Laboratory.

Mendelson M. R. (1968) Monte Carlo criticality calculations
for thermal reactors, Nucl. Sci. Engng 32, 319.

Mossberg B. (1981) A n informal approach to number crunching
on the CYBER-203/205, Control Data Corporation.

Owens J. L. (1973) The influence of machine organization on
algorithms. In: Complexity of Sequential and Parallel
Numerical Algorithms, Traub J. F. (ed.) Academic Press,
New York.

Plechaty E. F. and Kimlinger J. R. (1971) TART Monte Carlo
neutron transport code, USAEC Report UCIR-522.

Radiation Shielding Information Center (1977) Code

Package DLC-75YBUGLE-80, coupled 47-neutron, 20-
gamma- the MORSE code, Oak Ridge National Laboratory.

Radiation Shielding Information Center (1980) Data pack-
age DLC-75/BUGLE-80, coupled 47-neutron, 20-gamma
ray, P3, cross-section library for LWR shielding calcula-
tions, Oak Ridge National Laboratory.

Remund R. N. and Taggart K. A. (1977) To vectorize or 'To
Vectorize'; that is the question. In: High Speed Computer
and Algorithm Organization, p. 399, Academic Press, New
York.

Sanford M. T. and Anderson R. C. (1973) Two-dimensional
implicit radiation hydrodynamics. J. Comp. Phys. 13, 130.

Schreider Y. A. (ed.) (1966) The Monte Carlo Method,
Pergamon Press, New York.

Sinz K. H. P. H. (1980) Optimal use of a vector processor,
Proc. COMPCON-80, IEEE Cat. No. 80-CH1491-0 C.

Spanier J. and Gelbard E. M. (1969) Monte Carlo Principles
and Neutron Transport Problems, Addison-Wesley,
Reading, Mass.

Thompson W. L., et al. (19791 MCNP--A general Monte
Carlo code for neutron and photon transport, LA-7396-M,
Los Alamos National Laboratory.

Thompson W. L., et al. (1980) The status of Monte Carlo at
Los Alamos, LA-8353-MS, Los Alamos National
Laboratory.

Troubetzkoy E., Steinberg H. and Kalos M. (1973) Monte
Carlo radiation penetration calculations on a parallel
computer. Trans. Am. Nucl. Soc. 17, 260.

Walker A. J. (1977) An efficient method for generating
discrete random variables with general distributions, ACM
Trans. Math. Soft 3, 253.

West III J. T., Petrie L. M. and Fraley S.K. (1979)
KENO-IV/CG, The combinatorial geometry version of
the KENO Monte Carlo criticality safety program,
ORNL/NUREG/CSD-7, Oak Ridge National
Laboratory.

Wirsching J. E. and Kishi T. (1977) Matching machines and
problems. In: High Speed Computer and Algorithm
Organization, p. 379, Academic Press, New York.

Woodcock E. R., et al. (1965) Techniques used in the GEM
code for Monte Carlo neutronics calculations in reactors
and other systems of complex geometries, ANL-7050,
Argonne National Laboratory (1965).

Worlton J. (1981) A philosophy of supercomputing,
LA-8849-MS, Los Alamos National Laboratory.

