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Abstract-An algorithm for dividing an object with holes into solid elements for finite element preprocessing is 
presented. Since a tetrahedron can always be subdivided into prisms and cuboids, the approach of first dividing the 
given object into disjoint tetrahedra is taken. 

Objects without holes are dealt with first. Two mesh operators, each generating a single tetrahedron, are 
presented. In addition to the construction procedure, it is shown that they handle all objects without holes. The 
algorithm for objects with holes requires a third operator. In addition to showing the necessary and sufficient 
condition for applying such an operator, it is shown that it effectively reduces the number of holes in an object by 
one while yielding three tetrahedra. The algorithm which sequences the three operators thus reduces a given 
polyhedron to a single tetrahedron iteratively. Data structure requirements and update procedures are also given in 

this paper. 

NOTATION 

a polyhedron 
a vertex in II 
an edge in n 
a face in II 
number of vertices in II 
number of edges in II 
number of faces in II 
number of holes in II 
a tetrahedron 
mesh operators 
change in V after each ‘T, 
change in E after each pi 
change in F after each 7, 
change in G after each T, 

1. INTRODUCTION 

In discrete mathematics and computing, the problem of 
dividing a complex geometric structure into simpler ones 
received some attention recently[2, 3, 7, 10, 131. Since 
the primary emphasis had been on the analysis of al- 
gorithms for their computational complexities, a “com- 
plex” geometric structure was often assumed to be a set 
of points[7] or a set of linear equations[3] while a 
“simple” structure only needed to be convex[2] without 
restriction on the number of vertices, say, in the struc- 
ture. Two other attempts[lO, 131 were made in dividing a 
polyhedron (defined by a set of vertices, edges and faces) 
into tetrahedra (defined as having four vertices, six edges 
and four faces). Success was largely limited to objects 
without holes. 

This paper describes an algorithm for dividing an 
arbitrary polyhedral object (with or without holes) into 
solid elements. It is intended for the automatic process- 
ing of a geometric modeI[ 1,9] into finite element 
models[8] in an integrated computer-aided design and 
analysis environment. 

The approach taken in this paper for the automatic 
generation of solid elements is as follows. 

tThis work was supported in part by an SME Foundation 
research grant #481-186 and in part by the Center for Robotics 
and Integrated Manufacturing, The University of Michigan. 

Step 1. Generate a rough mesh of tetrahedral elements 
without adding new vertices to the geometric model. 

Step 2. Refine the elements by subdivision. 
Step 1 is discussed in this paper. Step 2 is illustrated in 
Fig. 1 in which a tetrahedron is subdivided into tetra- 
hedra, pentahedra, and hexahedra using new vertices 
such as the centroid of the tetrahedron, centers of the 
triangular facets and midpoints of the edges. It is 
assumed that subdivision can be carried out to any 
user-specified resolution. 

In this paper two solid mesh operators are introduced 
in Section 2. Each operator generates one tetrahedron by 
either “slicing” or “digging” into the given polyhedron. 
After the tetrahedron passes geometric tests for non- 
interference tests, it is removed from the polyhedron. 
This process iterates until the polyhedron is reduced to a 
single tetrahedron. . 

To ensure that the algorithm converges, the topological 
properties of the operators are examined in Section 3. 
Using Euler’s formula for simple polyhedra, the opera- 
tors are shown to maintain topological integrity at every 
step in the process. 

Objects with holes are dealt with in Section 4. A third 
operator for “cutting” open a hole is introduced. As the 
operator for transforming a multiply-connected poly- 
hedron into a simply-connected polyhedron is again 
examined for topological integrity, an algorithm combin- 
ing all three operators is given. 

2. MESH OPERATORS AND INTERFERENCE TESTS 

A solid mesh of tetrahedral elements in a polyhedron 
consists of non-interfering tetrahedra. Each tetrahedron 
consists of four vertices, six edges and four (triangular) 
faces. There is no requirement for each tetrahedron to be 
regular, i.e. to have equilateral triangular faces with 60 
dihedral angles. The only requirements are that the 
tetrahedra be non-overlapping and be in the interior of 
the polyhedron. 

A polyhedron is represented by three kinds of enti- 
ties--vertices, edges, and faces. Each kind of entity has 
two types of information associatdd with it--geometry 
and topology. The geometry of an entity records its 
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Fig. 1. Subdivision of a tetrahedron. 

topology of the three entities is given below. 

entity geometry 

vertex V, = (Xl. YI. Z,) 

topology 

points to n incident 
edges 

edge E,=(I-l)V,tIV: points to two vertices 
and two faces 

face F,=AXtBYtCZ+D=O points to n bounding 
edges 

It may be noted that the seperation of topological 
information from geomCtric information permits greater 
flexibility for further development of algorithms. If, for 
instance, octahedral elements for polyhedra are desired, 
only the mesh operators need to be rewritten since the 
geometry does not change. If, on the other hand, cur- 
vilinear tetrahedral elements are desired for objects with 
curved surfaces, only the geometric tests need to be 
rewritten. In the following two mesh operators are 
presented which operate primarily on topological in- 
formation. To ensure that a tetrahedron does not inter- 
fere with others, two geometric tests for vertex and edge 
interference are needed. 

The two mesh operators are called P! and Q. each 
removing a tetrahedron T from the remaining polyhedron 
7~. In forming a tetrahedron, operator T, “slices” a corner 
off of in by making one “cut”. The corner must neces- 
sarily be convex and trivalent (have three edges). If the 
remaining polyhedron does not have a convex trivalent 
vertex, operator r2 “digs” out a tetrahedra from a con- 
vex edge by making two ‘“cuts”. All polyhedra have at 
least one convex edge, therefore r2 can always be ap- 
plied. These two operators are illustrated in Fig. 2. 

magnitude. The topology of an entity records its relation 
with another kind of entity. 

The geometry of a vertex V, is a triple (X,, Y&, Z,) 
which are the Cartesian coordinates of the vertex. Its 
topology is a list of pointers to al1 the incident edges. The 
geometry of an edge Et is in the form of a parametric 
equation expressed in terms of its two endpoints V, and 
V,. 

E,=(l-t)V,ttVz tE[O,l] 

Its topology consists of two pointers to its two vertices 
and two pointers to its two faces. The geometry of a face 
F, is a four-tuple (A, B, C, D) where A, B, C are the 
direction consines and D is the distance from the origin 
to a plane having the equation 

AX+BY tCZ+D=O. 

It topology consists of a fist of pointers to all the edges 
bounding the face. A summary of the geometry and the 

b. I.-, 

Fig. 2. 71 and 72 on polyhedra. 



An algorithm for generating solid elements in objects with holes 335 

BEFORE DURI~ t 

/- I 
er i 

\ 

J 

\ I 
‘\ ’ I 

‘\ 

AFTER LIV AE AF 

q 

-I 0 

Fig. 3. Cases of 7,. 

Operator 71 
T, operates on a convex trivalent vertex V,. From the 

topology of Vi, all four vertices, at least three of the six 
edges, and exactly three of the four faces for the tetra- 
hedron to be constructed are immediateIy available. No 
vertex, zero to three edges, and one face need to be 
constructed. (See Fig. 3 for the various cases of rl.) The 
procedure for performing on vertex Vi of polyhedron ‘II 
can be stated as follows. 

Algorithm T,( Vi) 
Step 1. Determine if Vi has exactly three edges. 
Step 2. Determine if Vi is convex. 
Step 3. Construct a tetrahedron 7 from Vi. Return T. 

Operator r2 
72 operates on a convex edge Ei. From its topology, at 

least two of the four vertices, at least one of the six 
edges, and exactly two of the four faces for the tetra- 
hedron to be constructed are immediately availabie. No 
vertex, zero to five edges, and exactly two faces need to 
be constructed. (See Fig. 4 for the various cases of Q,) 
The procedure for performing 72 on edge Ei of poly- 
hedron r can be stated as follows. 

~gorithm T*(E)) 
Step I. Determine if Ei is convex. 
Step 2. Construct a tetrahedron T from Ei. Return r. 

2.2 Interference Tests 
A tetrahedron 7 constructed by operators T, and r2 

CM Vol. 18 No. 2-J 

must not interfere with any part of the polyhedron 8. Inter- 
ference is defined by following two rules. 

Rule VT. No vertex Vi of the polyhedron rr lies on any 
of the four faces of the tetrahedron T. 

Rule ET. No edge Ei of the polyhedron n intersects 
any of the four faces of the tetrahedron T. Figures 5fa, b) 
illustrate the violation of Rule VT and Rule ET, respec- 
tively. Because of the “local influence” of the operators 
71 and Q, the faces of the polyhedron cannot be inter- 
sected by the edges of the tetrahedron. 

The two interference rules can be formulated as pro- 
cedures with candidate te~ahedron 7 and polyhedron ?T 
as input. 

Algorithm VT(T, 71) 
Step 1. Evaluate all vertices Vi of polyhedron v on all 

four faces Fi of 7. 
Step 2. If a Vi is on Fj, return False. Else, return True. 

Algorithm E?‘(T, rf 
Step 1. Calculate points of intersection between all 

edges Ei of polyhedron 7r and all four faces Fi of 
tetrahedron T. 

Step 2. If a point of intersection lies within the boun- 
dary of Fi. return False. Else, return True. 

In the next section, an algorithm that applies or and 72 
is developed. Tests VT and ET are performed on the 
tetrahedron T produced by either a 7I or a Q. The 
procedure iterates until the polyhedron v is reduced to a 
single tetrahedron. 
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Fig. 4. Cases of 72. 
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Fig. 5. Interference between 7 and R. 
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3. MESHING SIMPLE OBJECTS 

In this section we first provide a more rigorous treat- 
ment of the relationship between the two operators and 
the polyhedron. Specifically, we show that they are ap- 
plicable to any polyhedron satisfying the derivative form 
of Euler’s formula: 

AV-AEtAF=O (1) 

where AV, AE, and AF are the changes in the number of 
vertices, edges and faces of a polyhedron respectively at 
every step of the process. Next, we give the procedure 
for meshing simple polyhedra satisfying eqn (1). 

3.1 T,, TV and simple objects 
A simple polyhedron P with V vertices, E edges and F 

faces satisfies Euler’s formula 

V-E+F=2. (21 

Consider inverse operators 7;’ and 7;’ that “glue” 
tetrahedra on a polyhedron. We show by induction that 
at any step of the construction process the polyhedron 
satisfies eqn (1). 



An algorithm for generating solid elements in objects with holes 331 

The first tetrahedron trivially satisfies eqn (2) since 
V = 4, E = 6 and F = 4. Suppose eqn (2) is true after n 
steps. Consider the (n t l)st step. If the operation is a 
r; , then from Fig. 3 the following table can be con- 
structed. 

7;’ AV AE AF 

I 3 2 
I 2 1 
I 1 0 
I 0 I 

apply a 71 and construct a tetrahedron T. If T passes 
interference tests VT and ET then remove it from ?r. 
Continue with 7) on the remaining polyhedron. If all 
remaining the vertices fail the interference tests or if 
they are not convex trivalent, apply at TV. If a tetra- 
hedron is successful obtained from a TV, go back to TI. 
Continue this process until the polyhedron r is reduced 
to a single tetrahedron. 

4. MESHING OBJECTS WITH HOLES 

If the operation is a r;‘, then a similar table can be 
constructed from Fig. 4. 

The two operators 71 and T2 apply to simply-connected 
polyhedra. An object with holes is a multiply-connected 
polyhedron. In this section we introduce a special opera- 
tor 73 that cuts open holes hence reducing a multiply- 
connected polyhedron to a simply-connected one. 

T_’ AV AE AF 

0 0 0 
0 -1 -1 
0 -2 -2 
0 -2 -2 
0 -3 -3 
0 -4 -4 

Clearly, in both cases eqn (I) is satisfied. Hence, eqn (2) is 
satisfied. 

A necessary condition for applying operator 7% is that 
if the hole is cut by a plane there exists a triangular 
cross-section with vertices Vi, Vi, and Vk. (Intuitively, 
such a condition always exists in a multiply-connected 
polyhedron. When a hole is cut, it yields a cross-section 
and if the cross-section is not a triangle, more 7,s and 7~s 
could have been applied.) Figure 6(a) illustrates such a 
condition. A sufficient condition for applying operator 7% 

is that there exists two other triangular cross-sections V,, 
Vi, V, and Vk, V,, V,. Figure 6(b) illustrates such a 
condition. Operator 7% transforms the polyhedron from 
the configuration in Fig. 6(a) to that in Fig. 6(b) in three 
distinct stages. The notion of a genus is needed for 
dealing with the reduction of holes at these stages. 

Having shown the applicability of T! and Q to simple 
polyhedra, we proceed with the description of the al- 
gorithm. 

3.2 AIgorithm for simple objects 
Intuitively, T, seems to be “easier” to apply than Q 

since fewer new entities must be constructed. It may also 
seem intuitive that T, and 72 must work “in tandem”. The 
latter intuition can be verified by the change in the 
number of vertices AV each operator makes. From Fig. 3 
and 4, we see that for 71, AV = I, and for 72, AV = 0. 
Thus, operator 71 eventually reduces a polyhedron with 
V vertices to a tetrahedron with four vertices. As we 
also see, T2 is needed when none of the vertices are 
“r,-able”, i.e. convex, trivalent, and yielding a non- 
interfering tetrahedron. The algorithm presented in this 
section has two nested loops, with T1 as the workhorse in 
the inner loop. The flow of control of the algorithm is as 
follows. The inner loop first executes all the applicable 
T,S. The outer loop then indices by one and executes one 
72. If the tetrahedron produced is non-interfering, the 
control drops down to the inner loop. Else, another T2 is 
executed. 

Euler’s formula for a simple polyhedra does not hold 
for objects with holes[6]. The concept of a “three- 
dimensional hole” can be described by a parameter 
called genus G, commonly referred to as a handle. A 
simple polyhedron is topologically equivalent to a 
sphere. The vertices, edges and faces become nodes, 
arcs and regions on the sphere. The genus of a sphere is 
zero. An object with one hole is topologically equivalent 
to a torus. The genus of a torus is one. The genus G of an 
object is related to V, E and F by the Euler-Poincare 
formula [5] 

Algorithm S(a) 
Step 1. If H is a tetrahedron, return. 

For all edges E, do 
For all vertices Vi do 

Step 2. T+Cd Tdvi) 

Step 3. If WT. r) and ET(T, T), rrc n - T. 
end 

Step 4. T+d Tz(Ei) 

Step 5. If V~(T. rr) and ET(T, T), T+ T - T. 
end 

V-EtF=2-2G (3) 

Meshing an object with holes involves changing the 
genus. In transition, the operator T$ produces a non- 
manifold object having G =i. A small sphere placed 
near the singularity of a non-manifold would be divided 
into four regions, alternating inside, outside, inside and 
outside of the object. A small sphere placed anywhere 
else would be divided into at most two regions, inside 
and outside. Figure 7 shows two non-manifold objects. 
The object in Fig. 7(a) has a singularity of a point. The 
object in Fig. 7(b) has a singularity of a line. These two 
non-manifold objects occur as intermediate stages of a 
multiply-connected polyhedron as it is cut open by a 7%. 

4.1 TT and its three stages 
Operator 73 opens up a hole in three distinct stages. 

The polyhedron under the operation makes the following 
transitions: 

Stage 1. From manifold, G = 1 to non-manifold, G = $. 
Stage 2. From non-manifold, G = f to non-manifold, 

G =;. 
Step 6. Go to step I. Stage 3. From non-manifold, G = f to manifold G = 0. 

Algorithm S works in the following fashion. If there Figure 6(a) corresponds to the configuration of the poly- 
exists a convex trivalent vertex in the polyhedron 7~, then hedron with a hole before stage I. Figure 6(b) cor- 
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Fig. 6. Conditions for ~3. 

o. VERTEX 

b. EDGE 

Fii. 7. Non-manifold objects We can express operator TT procedurally in terms of 

responds to the configuration of the same polyhedron 
without a hole after stage 3. The three stages are illus- 
trated in Fig. 8. 

At each stage, a tetrahedron is removed, thus changing 
the V. E, and F of the polyhedron. In addition, genus G 
changes by -f at stages I and 3 satisfying the derivative 
form of eqn (3): 

AV-AEtAF=-ZAG. (4) 

Figures 9-11 give detailed cases of each of the three 
stages. We can construct the following tables that verify 
eqn (4) is obeyed. 

TT stage? AV SE AF .iG 

0 0 0 0 
0 -I -1 0 
0 -1, -1 0 
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the three triangular cross-sections Fk = ( V,ViVk), Fr = 
(ViVjV,) and F, = (V,V,,,V,,) shown in Fig. 6(c). An edge 
connecting vertices Vi and Vj will be denoted by (ViVr). 

Algorithm TT (Fkr F,. F,, n) 
Step 1. Let Ei be (VkV,). Apply stage 1 of T$ to Ei 

and get tetrahedron 7. Remove T from r. 
Stage 2. Let Ei be (VjV,). Apply stage 2 of T$ to Ei 

and get T. Remove T from 71. 
S:ep 3. Let Ei be (V,V,,,). Apply stage 3 of T: to E, 

and get T. Remove T from ir. 

The three stages of T$ are given in Fig. 9-11. 

4.2 Algorithm for objects with holes 

Compared to 7, and T*, ~2 will be used less frequently. 
In fact, it will be used only as many times as there are 
holes in the object. For objects with holes, we shall 
develop an algorithm H with three nested loops. The 
inner loop will be for TI. The middle loop will be for T*. 
The outer loop will be for ~3. The middle and the inner 
loops are Algorithm S. As many 7,s are executed as 
possible until all convex trihedral vertices are exhausted. 

A T2 is then executed and the control drops into the inner 
loop. The outer loop is indexed only when neither TV nor 
T2 is applicable to the remaining polyhedron. At this 
point, a ~3 is executed to transform the polyhedron into 
a r,-able or a rZ-able polyhedron. The index 
of the outer loop Fk, F,, F, corresponds to the T$ 
condition shown in Fig. 6. 

Algorithm H (rr) 
Step 1. If IT is a tetrahedron, return. 

For all faces Fk, F,, F, do 
For all edges Ei do 

For all vertices V, do 
Step 2. T+Cdl T1( Vi) 
Step 3. If VT(T. r) and ET(T, a), T+ 71 - T. 

end 
Step 4. T +- call TV 
Step 5. If VT(T, r) and 

end 
Step 6. Call T?(&, 4, F,, 8) 

end 
Step 7. Go to Step 1. 

ET(T,T) P&P-T. 
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Fig. 12. Example of applying ~1, ~2, and ~3. 
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Figure 12 shows the execution of algorithm H on an 
object with a hole. The object is transformed from Fig. 
12(a, b) by a sequence of operators rZ, T,, Q, R. (7, could 
not be used as the first operation because the hole blocks 
the formation of a tetrahedron.) Eventually, the object is 
reduced to that shown in Fig. 12~ where no T? is apphc- 
able. The three stages of ~3 are illustrated in Fig. 12(d-f). 
Since the object in Fig. 12(f) is simple, 7l and T? can 
reduce it to a single tetrahedron. 

5, CONCLUSIONS 

We have shown that simple objects meshed by opera- 
tors 71 and Q obey AV - AE - AF = 0, Algorithm S con- 
verges because 72 reduces the degree of a vertex and 7l 
reduces the number of vertices. For objects with holes, 
an operator rT is needed in conjunction with 7l and r2. 
TT changes the genus of a polyhedron from G to (G - 1). 
The three stages of r? yields a non-manifold object as 
tetrahedra are removed. 

The implementation of Algorithm H can be simplified 
if we do not insist on mathematical rigor. For the reason 
of clarity, we have made a distinction between ~1 and R 
by their topological differences in the updating of the 
polyhedron. For the reason of expediency, we alfow 7% 
to remove three tetrahedra in succession rather than 
letting TV take over after one tetrahedron is removed. In 
practice, if the updating rules for TV and 7% are observed, 
there is no need to make a distinction between them. 
Hence, Algorithm S suffices. 

As a side issue on storage allocation for the elements it 
would be of interest to know how many elements there 
are in a polyhedron without decomposing it. It is 
knownf4] that there can be T tetrahedra in the interior of 
a polyhedron with F faces on the boundary and f faces 
in the interior satisfying the rule: 

Recently, it has been shown[ 1 I] that, a priori T is related 
to the number of vertices V by the relation: 

(V_3)5T~tV-3)1V-2) 
3 

The bounds for T can be quickly appreciated since a 
cube can be divided into five or six tetrahedra. If 21 
interor vertices are allowed in the polyhedron[l’& there 
can be 

T= v-c+d-3 

tetrahedra, where d is the number of interior diagonals. 
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