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Ahstraetr Analytical expressions have been derived for the total Coulomb energies, for isoscalar, 
isovector and isotensor Coulomb energies, and for Coulomb energy differences of nuclei with 
protons and neutrons in equivalent and in different major shell regions. The approach is related 
to earlier theoretical treatments of Carbon and Talmi and of Hecht. A simple A-dependence is 
assumed to account for the increase in radius. Introducing average matrix elements for the Coulomb 
interactions between valence-valence, valence-core, and core-core protons in each of the six 
major shell regions as adjustable parameters, a global fit with 21 parameters to 288 experimental 
Coulomb displacement energies with 4 <A < 240 gives good agreement with a standard deviation 
of (T = 4.5 keV. The interaction energies display discontinuities particularly at major proton shell 
crossings, and they generally decrease within shells less rapidly than A-“‘. The average decrease, 
however, fotlows approximately an A-lt3 dependence which explains the success of Coulomb 
energy equations based on liquid-drop models. 

1. Introduction 

The investigation of the electrostatic interaction between the protons inside a 
nucleus has long been used to obtain nuclear-structure information lm3). The dis- 
covery of isobaric analog states in medium-heavy and heavy nuclei 4*5) has led to 
a significantly improved understanding. 

The discussion of the electrostatic interaction and related effects has three main 
aspects: (i) From a liquid-drop-model point of view, the Coulomb energy depends 
on the size and shape of a nucleus 2V3). Studies of isotope shift and deformation 
effects are still carried out today ‘*‘). (ii) From a shell-model point of view, the 
Coulomb energy of a nucleus results from the cont~butions of interacting proton 
pairs 8-1o). Pairing effects, the dependence on shell-model orbits and their size 
factors are important considerations. (iii) The significance of exchange effects 2*3) 
was recognized early. Numerous other small but important effects such as the 
charge dependence of the strong force, the electromagnetic spin-orbit interaction, 
isospin mixing, the Thomas-Ehrman shift, etc. contribute to the Coulomb displace- 
ment energies and have become the subject of detailed studies *1V*2). Open questions 
still remain. 

The present work concentrates on shell-model considerations. It follows closely 
the theoretical treatments of Carlson and Talmi *) and of Hecht gV1o) but includes 
also regions of nuclei where protons and neutrons occupy shell-model orbits from 
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different major shells. It was hoped that a global numerical analysis of all known 
Coulomb displacement energies based on the equations of this work would yield 
information about Coulomb interaction energies. Also, a few-parameter shell- 
model Coulomb energy equation is a useful component of binding energy equations 
since charge symmetry is required for the nuclear contributions. 

The Coulomb energy equations are derived in sect. 2. The data base and details 
of the least-squares adjustments are presented in sects. 3 and 4. The discussion 
and a summary are contained in sects. 5 and 6. 

2. Coulomb energy equations 

2.1. GENERAL CONSIDERATIONS 

Classical Coulomb energies of charge distributions ep (r) can be expressed as 

&(Z, N) = $e 
f 

p(r) V(r) d3rs (1) 

Here, V(r) is the electrostatic potential associated with the charge distribution. 
Coulomb displacement energies between isobaric analog states (IAS) and the 
respective nuclear ground states 

however, depend on the potential V COre of the charge distribution but also on the 
distribution peXc of the N - 2 excess neutrons. Thus, Coulomb displacement energies 
can generally not be obtained from total Coulomb energies and vice WKW. 

The energies Eo and A& for the members of an isospin multiplet can in first-order 
perturbation theory be written as 13-15) 

E,(A,T,T,)=E~‘(A,T)-T,E~‘(A,T)+(3TZ.-T(T+l))E~’(A,T), (3) 

AEc(A, T, Z’z) = @‘(A, 7’) -3(2T, - l)E”‘(A, T) . (4) 

Here, Eg’, Eg’ and E!.? are the isoscalar, isovector and isotensor Coulomb energies. 
These quantities are closely related to the coefficients of the isobaric multiplet mass 
equation 16). 

Analytical expressions for EC, AE’c, E$?, Eg’ and Eg’ will be presented in the 
following sections. Distributions p(r) and eqs. (1) and (2) will not be used. Instead, 
quantities Oik will be introduced which represent appropriately averaged electros- 
tatic interaction energies ((a, b)le2/rl(a, 6)) between pairs of protons a and b in 
the same or in different major shell regions. 
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2.2. GROUND-STATE COULOMB ENERGIES 

The shell-model equation of Carlson and Talmi **l’) has been adopted in this 
work to describe the Coulomb energies of nuclear ground states. It has been derived 
for protons in a single j-shell assuming good proton seniority but will be applied 
as an approximation to much wider regions of nuclei. 

Major shell regions with boundaries at magic proton and neutron numbers are 
considered (2, = 0, 22 = 2,Zs = 8,& = 20,Zg = 28,& = 50,ZT = 82 and Ni =Zi). 
For the region 2~ ~2 <Zi+r the equation is written as 

where the various terms describe the interactions between pairs of core-core, 
core-valence and valence-valence protons. Thus, J2m i-l (or Q-J, 0~ i (or L&J, 
and Rii (or L?,,) represent averaged two-body matrix elements involving protons 
in the core (i - 1) and/or the valence shell (i), respectively. The pairing quantity 
fli sflii (or LI,,) accounts for the increased energy of (J = O)-coupled pairs of valence 
protons. 

The interaction energies which depend on the shells and on the number of protons 
and neutrons within the shell will be expressed as fin ~(2, N) = S(Z, N)wz m, 
fiEi(Z,N)=S(Z, N)wm ir Rii(Z, N)=S(Z, N)w<i and fli(Z, N)=S(Z,N)T~. 
Here, S(Z, N) is a common size factor which accounts for the variation with 2 
and N of the interaction energies fz and fl on account of the change in radius. It 
will be discussed in the next section. 

2.3. SIZE FACTORS S(Z, N) 

Nuclear radii increase with mass number approximately proportional to A”3. 

The matrix elements R are therefore expected to decrease proportionally to A-“3 

even within a major shell region. However, it was observed earlier r8) that the 
decrease is usually weaker and can for “diagonal” regions with valence protons 
and neutrons in equivalent orbits phenomenologically be well described by 
(AJA)““‘. Here, A =Z +N, Ai =Zi +Ni and ci c 1 (usually). It is not obvious how 
this equation should be extrapolated into “non-diagonal” regions with valence 
protons and neutrons in different orbits. Preliminary attempts were discussed 
earlier 19). The analysis described below showed that expressions which in neutron- 
rich regions give the same isotope shift as in the diagonal region with the same 
number of neutrons yield very good agreement with the data. 

Defining 

Si -S(Zj, Ni) , withS,=l, (6) 
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and shell regions (i, k) by 

Zj~Z~Zi+1, Nk~NsNk+l, 

we introduce the size factors for diagonal and neutron-rich regions, 

(i, i): S(Z, N) ~Si(z~)ui’3 , 

(i,i+l): S(Z,N)=Si(~~~~~)u~‘3(~+~1)u~+“3, 

fi, i + 2): 

and for proton-rich regions based on S(Z, N) = S(N, Z), 

(i+l,i): S(z, N) = St(,“,:,“,,‘“(z;y; )‘+“3 , 

(i +2, i): 
scz, N,=si(~~~+~)ui’3(~~~~~)4+1’3(~~+~)~+”3. 

(7) 

(8) 

(9) 

W) 

(11) 

(12) 

Eqs. (8) to (12) are schematically displayed in fig. 1. Each arrow represents a factor 
in the equations. The size factors change continuously at shell crossings. 

Eqs. (6) and (8) give 

(14) 

zi+2 

zi+l 

N t+I Ni+2 

Fig. 1. Schematic representation of the size-factor equations (8) to (12). Each arrow represents a factor 
in these expressions. 
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The isotope and isotone shift coefficients of the size factor are defined by 

3A as 
YN=S-g+ (14) 

(15) 

The size factor defined in eqs. (6)-( 12) has the interesting property that the shift 
coefficients are exactly or approximately constant for the various regions. We have_ 

(i, i): 7/N = -Ui 9 YZ = -Ui 9 

(i, i + 1): YN = -Ui+l 9 YZ =-Ui 7 

(i, i +2): YN = -Ui+2 9 Yz =-Cri 3 

(i + 1, i): YN %-Ui 3 YZ = -Ui+l 9 

(i +2, i): “/N =-Ui 9 YZ = -Ui+2 - (16) 

The corrections in the four equations which are only approximately satisfied are 
very small and on the order of Au AZ/A or AuAN/A. 

An alternate possibility to define size factors for off-diagonal regions consists of 
reversing in eqs. (9) to (12) the sequence of accounting for the number of particles 
and holes. Eq. (9), for example, can be written as 

u/3 

) ( 

Zi+l +Ni+l -H ui+1’3 

> Zi+l+Ni+l-H+P ’ 
(94 

whereas the alternate expression is 

uJ3 

(i, i + 1): S(Z, N) =Si+l 
Zi+l +Ni+l Zi+l +Ni+l +P 

Zi+l +Ni+l +P Zi+l +Ni+l +P-H > ’ 
(9b) 

However, the two procedures are practically equivalent and calculated Coulomb 
energies or Coulomb energy differences differ very little. 

It is worth noting that eqs. (8) to (12) give equal size factors for the most 
neutron-rich and proton-rich members of an isospin multiplet. Since the members 
of an isospin multiplet have the same shell occupation numbers, they will be assigned 
equal size factors. 

2.4. AEc, Eg’, EC’ AND Eg’ FOR DIAGONAL REGIONS 

Eq. (5) for nuclear ground states describes the energies of the members of an 
isospin multiplet only approximately. While its major terms are quadratic in T,, 
the pairing term is not and therefore does not satisfy eq. (3). 
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Two theoretical approaches have been discussed by Hecht 9.1(t) for nuclei with 
valence protons and neutrons in equivalent orbits using isospin T as a good quantum 
number. They make use of the seniority 9, and the supermultip~et lo> coupling 
schemes. Numerical analyses using these equations for nuclei in the lp, ldZs, and 
lf7f2 shells have been reported I’). Hecht’s supermultiplet equations [eqs. (8.77) 
to (8.85) in ref. ‘*)I are used in the present work which includes light and heavy 
nuclei. In the notation of eq. (5) with 0, =S(Z, N)wii and & =S(Z, N)rri, A&J, 
I$‘, Eg’, and @’ can be expressed as 

Here, S,, = 1 for Z = odd, N = even, and zero otherwise. The quantities S,, &,, 
and S,, are defined accordingly. Also, the ground states of odd-odd nuclei are 
written as 1g.s.) = a]S = 0)+/3]S = 1). We have @’ = 3cu2 if equal population of 
substates is assumed, and the last term in eq. (17) cancels. In addition 

@‘(A, T)=S($A-T,$A-f-T){&zi~Ai(Ai-2)f$u~jAj(A-AJ 

+$w~~(A-A~)(A-A<-2)+Q~j(A-Aj)+&~~iT(T+l) 

-a,((s,+s,,)(T+1)+S,T+35,-S,(*2-fP2))), (18) 

Eg’(A, T)=S($A-Tp$A +T){~w~iAi+%oii(A-Ai-l) 

+$Pt + t(~i/T)(6oe_Seo)l P (1% 

Eg’(A, T)=S(BA-T,4A+T)~{oii+~i[S,,/(2T_l)+(S,,+S,,)/2T 

2 5 AEc, E$‘, Eg’ AND Eg’ FOR OFF-DIAGONAL REGIONS . . 

Expressions similar to eqs. (18) to (20) for off-diagonal shell regions with valence 
protons and neutrons in different orbits can be obtained by introducing a particle- 
hole formalism 19*20). Shell-model formulas will be derived in this section for nuclei 
in off-diagonal regions where neutrons fill a major shell above the proton shell. 
The extension to the general case is straightforward. 

Fig. 2 displays schematically the wave functions of the ground state of a neutron- 
rich nucleus and of its isobaric analog state. The latter is derived by applying the 
isospin-lowering operator T-. The number of particles (neutrons), P, and holes 

(protons), H, can be written as 

P=T-&A-Ai+& 

H = T -$(A -Ai+*) 9 (21) 
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iti 

IGS; Z,N> = i 

7 1-l 

IIAS; Z+I,N-i) = T- 

H P 

Fig. 2. Schematic representation of the wave functions for ground states and isobaric analog states 
(IAS) of nuclei with protons and neutrons in different major shell regions. 

with 

P+H=2T, 

P-H=A-Ai+l. (22) 

Introducing the appropriate interaction energies o and T, the Coulomb displace- 
ment energies can be expressed as 

A~c(Z,N)=S(Z,N)[~(O~iZ~+oii(Z-Zi)+~~~) 

Wi_l i+lZi +Wi i+l(Z-Zi) * (23) 

Here, SH = 1 for H = odd, and zero otherwise. Eq. (23) can be simplified by 
introducing the identity 

Wi-l i+lZ +wi i+l(Zi+l-Zi)=WYi+lZi+l Y (24 

and the difference 

AW ‘wri+l-wii+l, (25) 
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which is presumably very small. Eq. (23) becomes 

Combining eqs. (26) and (3) with eq. (5) applied to the ground states of the most 
neutron-rich and proton-rich members of an isospin multiplet makes it possible to 
derive expression for the scalar, vector and tensor Coulomb energies. The result is 

~~‘(Ai+~+~-~,~(P+H)) 

=S(~Ai+l_H,~Ai+l+P)i~w~~Ai(Ai_2)+aw~iAi(Ai+l_Ai) 

+~uii(Ai,l_Ai)(Ai+l_Ai_2)+a~i(Ai,l_Ai) 

-aam iAiH +aori+lAi+l P 

-$uii(Ai+l -Ai)H+aoiiH(H+2)-~(wyi+l_Aw)PH+aoi+, i+lP(P-1) 

-~~~(2HIfsH)+~rri+*(P-Sp)}, (27) 

&*‘(A. +P-H,$(P+H)) c r+l 

=S(SAi+I-H,~Ai+l+P)~{~o;=iiAiH+qori+lAi+lP 

(28) 

+~oii(Ai+l-Ai)H-~wiiH(H + 1) 

+$wi+l i+lp(P_l)+:~i(H+SN)+S71;+1(P_Sp)}, 

I?‘(A~ C I+1 +P -H, $(P +H)) 

=S($Ai+l -H, $Ai+l+P) 

wi~(H_l)+?r,(H_SN)f2(oyi+l_Aw)PH 
+6Ji+l i+IP(P-l)+wi+l(P-SP) 

X 
6(P+H)(P+H-1) 

. (2% 

Here, SW = 1 or 0 for H = odd or even, and similarly for Sp. In heavy nuclei eq. 
(3) with eqs. (27), (28) and (29) should be applied preferably to the neutron-rich 
members of an isospin multiplet where it is expected to give better agreement with 
the data. 

3. Data base 

Most of the Coulomb displacement energy data used in the present work were 
taken from the compilation of Courtney and Fox 2*). Only displacement energies 
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for neutron-rich ground states (or low excited states with E, < 500 keV if not 
available) were included and un~rtainties were required not to exceed 60 keV, 
The displacement energies between the ground states of mirror nuclei with T = 1 

were replaced by more precise values from a recent mass evaluation ‘*). Additional 
data for the Sn and Te isotopes 23) as well as over 25 recently measured displacement 
energies for rare-earth nuclei 6*7) were also included. Whereas only data for neutron- 
rich nuclei were considered in the least-squares adjustments, certain proton-rich 
data were used for comparison. 

4. Numerical analysis and results 

A least-squares minimization has been performed to describe the Coulomb 
displacement energies of the preceding chapter by the shell-m~el equations for 
diagonal and off-diagonal regions, eqs. (17) and (26). The interaction energies o 
and 7r together with the exponents u of the size factors, eqs. (8) to (13), are used 
as adjustable parameters. The problem is non-linear as it contains the dependence 
on the exponent cr. A computer program 24) was employed. It determines the 
minimum of the sum of squares of m functions in n variables using a finite difference 
algorithm. 

Three different procedures have been used which will be denoted (A) diagonal, 
(B) global, and (C) ground-state procedure, respectively. 

(A ) Diagonal procedure : In this procedure the parameters o and rr are obtained 
individually for each diagonal region, eq. (17). They are subsequen~y used, eq. 
(261, to predict the displacement energies for the off-diagonal regions. The interac- 
tion energies ~i_t i-l in 0, i--1= .S(Z, N)w m i-l are not included in the optimiz- 
ations. Instead, a value L?i r = RI1 = 876 keV was deduced for Z = iV = 2 from the 
Coulomb displacement energy between 3He and 3H, corrected for the different 
experimental charge radii of 3He and 4He. In the higher diagonal regions, the 
interaction energy Rr T between core-core protons can be expressed as an appropri- 
ate sum over the interaction energies RX i-l, $2~ i, Qi and Hi. This is due to 
the fact that Eo(Zi.+l, Ni+l) can be written with eq. (5) in two different ways involving 
two different shell regions. The result for 2 = N = iAiq.1 is 

and accordingly for the quantities w and r. 
There are four adjustable parameters for each diagonal region, wi-l i, mi<, ri and 

ai. In preliminary tests it was found that the values of the pairing quantity vi 
decrease rapidly with increasing i becoming practically zero for i > 4. Thus, vi was 
set equal to zero for the upper three regions reducing the number of adjustable 
parameters in these regions to three. Due to the scarcity of data for very heavy 
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TABLE 1 

Average matrix elements Rii = Siwii and J7, = Sirri for the Coulomb interactions between core-core, 
core-valence, and valence-valence protons in major shell regions (the size factors S, = S(Zi, Ni) are 

calculated for the lightest nucleus in each diagonal region) 

-5 D L 
(kev) 

2 0.50020 
8 0.86236 

20 0.21455 
28 0.92477 
50 0.86718 
82 1.41978 

2 
8 

20 
28 
50 
82 

2 0.64910 
8 0.91872 

20 0.21986 
28 0.92477 
50 0.86718 
82 1.41978 

0.42829 

0.93554 
0.258’90 
0.70843 
0.78401 
0.76568 

(0.77784) 

procedure (A): diagonal 
876.000 455,627 
485.844 461.126 
375.520 363.714 
359.159 343.989 
292.577 289.106 
250.724 257.145 

procedure (3): global 
876.000 458.100 
487.860 460.840 
371.951 363.506 
356.271 341.802 
296.970 287.582 
253.338 244.848 

(253.414) (244.774) 

procedure (C): ground staates 
876.000 451.418 
471.493 460.884 
370.581 363.435 
356.300 343.989 
291.839 289.106 
250.488 257.145 

666.930 264.5 
519.222 118.1 
329.350 76.0 
350.166 0.0 
281.612 0.0 
276.391 0.0 

628.483 283.1 
536.841 118.8 
338.727 80.6 
311.465 0.0 
269.211 0.0 
190.851 0.0 

(227.640) 0.0 

725.390 215.3 
532.830 100.8 
331.536 so.3 
350.166 0.0 
281.612 0.0 
276.391 0.0 

The quoted digits have no physical significance but are included only to facilitate numerical calculations. 

nuclei, ffs = cr7 was assumed. This effectively removes the influence from the magic 
number NS = 126. Oddodd nuclei were excluded from the least-squares adjust- 
ment. Equal weight factors were used. 

The parameters w and rr from procedure (A) are listed in table 1. The mean 
values (E) and standard deviations cr, for the differences between the experimental 
and calculated Coulomb energies are shown in table 2 for all diagonal and the 
extrapolated off -diagonal regions. Here, odd-odd nuclei are included assuming 
(Y* - fP2 = 0. Furthermore, eq. (26) for the off -diagonal regions is used with Au =I 0. 
The individual differences E between the experimental and calculated energies are 
displayed in fig. 3. The symbols which are used group the differences according to 
their positive or negative deviations from zero. 

(B) Global procedure: This procedure is very similar to procedure (A) except 
that the least-squares adjustment of the 21 parameters w, 7r and (r was carried out 
simultaneously for all diagonal and off-diagonal regions. Odd-odd nuclei were 
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Mean values (E) and standard deviations cr, for the differeu~s E between ex~rimental and calculated 
Coulomb displa~ment energies for diagonal and off-diagonal shell regions with N > 2 including the 

mirror nuclei with T = 4; the three procedures are explained in the text 

Region Number 
of cases 

Procedure (A) Procedure (B) Procedure (C) 

c&a 14 -9.3 82.9 2.6 79.6 
(333) 39 5.0 50.5 11.3 49.1 
(4,4) 33 4.8 29.7 7.4 30.7 
(525) 33 -0.7 41.0 3‘4 52.2 
(696) 29 1.7 18.2 10.3 22.0 
(727) 8 0.0 43.1 -21.5 51.9 
diagonal 156 1.6 42.4 6.2 45.9 

(293) 4 
(374) 10 
(4,5) 20 
(5,6) 40 
(6,7) 58 
off -diagonal 132 

total 288 

-95.0 68.9 -68.7 113.5 -245.5 74.5 
-34.1 27.5 -22.2 32.9 150.4 74.0 

10.8 24.9 5.1 24.0 -546.5 61.9 
-76.3 48.3 -11.7 42.3 -31.2 46.4 
-71.4 62.9 3.4 34.9 -500.1 134.8 
-58.3 60.4 -5.0 39.6 -308.1 272.4 

-25.8 60.6 1.0 43.4 -141.6 250.8 

(kzq f k%) 6s) 
WV) 

-18.6 
0.0 
3.8 

-0.7 
1.7 
0.0 

-0.7 

(k%) 

96.6 
46.5 
31.6 
41.0 
18.2 
43.1 
43.7 

excluded in the diagonal regions (only), and a2 --i/3’ = 0 and Aw = 0 was assumed 
for the off -diagonal regions. 

The parameters o and T from procedure (B) are included in table 1. Values for 
(E) and a, (including all odd-odd nuclei) are shown in table 2. The individual 
differences are displayed in fig. 4 using the same format as fig. 3. 

(C) Ground-state procedure: Procedures (A) and (C) are very similar for the 
diagonal regions, The parameters w and w are again obtained from independent 
least-squares adjustments for the diagonal regions whereas the displacement ener- 
gies for the off -diagonal regions are obtained by extrapolation. The basic difference 
between the two procedures is that in (C) instead of eqs. (17) and (26) for A&, 
eq. (5) for EC is used in all regions, and A& is simply obtained by c~culating the 
energy differences between the ground states of neigh~ring nuclei. This assumption 
is usually made for the.Coulomb energy contributions in atomic mass equations 
[see e.g. ref. 25)]. The size factors eqs. (8) to (13) are again employed. Procedure 
(C) thus assumes that the Coulomb energies of the isobaric analog states and the 
ground states in the same nucleus are equal. 

The parameters w and T from procedure (C) are also included in table 1. Similarly, 
values for (E) and a; are included in table 2, and the individual differences are 
displayed in fig. 5. 
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TABLE 3 

Mean values (E) and standard deviations (T, for the differences between experimental and calculated 
Coulomb energies of proton-rich nuclei based on the global procedure; see text 

Region 

Mirror nuclei T > $ Proton-rich IAS 

number (a) 
(k:) 

number (E) flE 

of cases (kev) of cases WV) &eV 

c&2) 6 -51.0 

(333) 24 -35.1 

(474) 3 89.6 
diagonal 33 -26.7 

(23) 1 -317.9 

(394) 2 -86.1 
off -diagonal 3 -163.4 

total 36 -38.1 

122.5 4 -64.6 86.0 
63.6 14 -30.9 44.6 
18.2 1 113.3 
81.9 19 -30.4 63.8 

1 -170.1 
27.4 1 -48.7 

135.2 2 -109.4 85.9 

93.0 21 -37.9 67.8 

A selected set of Coulomb energy data for proton-rich nuclei was compared to 
the predictions using the parameters o and r from the global procedure (B). The 
mean values (E) and standard deviations u, for the various regions shown in table 
3 are for two types of data: (i) Coulomb energy differences between the ground 
states of all available higher-order mirror nuclei (T > $), (ii) Coulomb displacement 
energies between the two most proton-rich members of an isospin multiplet. Nuclei 
which are unstable with respect to proton emission were excluded. The data of 
type (i) were compared to values calculated with eq. (5). The data of type (ii) were 
compared with eqs. (5) and (17) or (26) according to the identity 

&&p-rich) +AEc(n-rich) = (&(p-rich) -Eo(n-rich))lT. 

Fig. 6 displays the core-core, core-valence and valence-valence interaction 
energies R (including size factors) obtained from the global procedure (B) for nuclei 
along the line of &stability. Also included in fig. 6 (dotted line) is an arbitrarily 
normalized function which decreases as A-1'3. 

5. Discussion 

The approach taken in the present work to calculate the ground-state Coulomb 
energies and Coulomb displacement energies involves several important approxima- 
tions. The first approximation involves the use of a simplified shell model with 
isospin and of expressions based on first-order perturbation theory. Furthermore, 
Coulomb displacement energies are known 11S12) to contain contributions from 
numerous small effects including those from charge-dependent nuclear forces, from 
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N=28 

i 
2582 

MASS NUMBER A 

Fig. 6. Coulomb interaction energies fl(Z, N) = S(Z, N)w for core-core, core-valence, and valence- 
valence proton pairs for nuclei along the line of @-stability. The size factor S(Z, N) accounts for the 

increase in radius. The dotted line is an arbitrariiy normalized function decreasing as A-“3. 

exchange, the electromagnetic spin-orbit interaction, isospin mixing and the 
Thomas-Ehrman shift. Whereas exchange effects are included in the matrix ele- 
ments 0 of sect. 2, none of the other effects are likely to be correctly described 
by the shell-model equations. The good agreement obtained in sect. 4 suggests that 
these effects have a relatively smooth dependence on 2 and N. Therefore, it is 
reasonable to assume that a considerable part of these effects is included in the 
parameters 0 and II. Hence, the average combined direct and exchange Coulomb 
matrix elements R and II of table 1 are likely to contain systematic errors of 3 to 
lo%, particul~ly for light nuclei. Another approximation stems from the fact that 
the major shell regions are not based on a single value of i (except for the lf7,2 
shell). Therefore, the shell-model equations are only approximate and the Coulomb 
interaction energies 0 and I7 represent appropriately averaged values. Again, the 
good agreement which was achieved for the Coulomb displacement energies seems 
to justify this approach. The approach is analogous to that used by Zeldes 26) to 
describe nuclear masses on the basis of averaged nuclear interaction energies. 

A common underlying assumption used by the semi-empirical mass and the 
Coulomb energy equations is the assumed smooth variation of the interaction 
energies (except for the pairing term) within shell regions. Since the nuclear and 
Coulomb interactions are of short and long range, respectively, and the former is 
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stronger than the latter, the agreement between the experimental and calculated 
values should be considerably better for the Coulomb interaction. The present 
work shows that this expectation is indeed satisfied. 

The three procedures (A), (B) and (C) described in the preceding section lead 
to different results as is evident from table 2 and figs. 3 to 5. In the diagonal regions 
the agreement between the experimental and calculated values is equally good for 
all three procedures with a standard deviation of about 45 keV. In the off -diagonal 
regions, however, a distinctly different behavior is apparent. In procedure (A) the 
differences E between experimental and calculated values deteriorate gradually in 
the extrapolation away from the diagona\.regions. In procedure (B) the same very 
good agreement prevails for the diagonal and off-diagonal regions, whereas a 
discontinuous discrepancy of several hundred keV becomes apparent at the transi- 
tion to most off -diagonal regions in procedure (C). 

The good agreement for diagonal regions (including odd-odd nuclei) in pro- 
cedures (A) and (B) reflects upon the appropriateness of the shell-model eq. (17) 
with the size factor eq. (8). The gradual deterioration in procedure (A) in the 
off-diagonal regions is an effect quite common in the extrapolation of semi-empirical 
equations. It is particularly apparent in the off-diagonal regions (5,6) and (6,7) 
which include data relatively far from diagonal regions. However, the accumulated 
error is significantly less, -15%) of that encountered in the extrapolation of mass 
equations 27*28). An attempt was made to explain the negative values of E by 
invoking a finite value for Aw of eq. (26). However, the corrections introduced 
appear to be too small and of the wrong sign. Different analytical expressions for 
the size factors could also not explain the systematic deviations. However, it appears 
that the deviations which are particularly prominent in the regions (5,6) centered 
near A = 100 and (6,7) centered near A = 160 are of physical origin and can 
qualitatively be explained by deformation effects. Deformed shapes lead to 
increased rms radii and hence decreased Coulomb energies. Reductions up to about 
150 keV for the most strongly deformed rare-earth nuclei are indeed in agreement 
with an earlier analysis of this effect 6). No attempts have been made to explicitly 
include deformation effects by modifying the size factor, for example. Additional 
parameters would have to be introduced. The good agreement obtained for the 
strongly deformed nuclei 232Th and 238U is not significant. The scarcity of data in 
the diagonal region (7,7) made it necessary to include *09Pb, 232Th and 238U in 
the determination of the respective interaction energies w. 

The good agreement of about 45 keV obtained from procedure (B) over the 
entire range of nuclei shows that the deformation effects can be approximately 
accounted for by small changes in the interaction energies w. Unless deformation 
effects can be treated more reliably, the parameters from procedure (B) should be 
used in extrapolations even though the slightly different parameters of procedure 
(A) are probably more realistic in the description of Coulomb energies of non- 
deformed nuclei. 
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The good agreement of procedure (C) in diagonal regions is expected as it differs 
from procedure (A) only in the use of a different small pairing term. The sudden 
onset of strong discrepancies with the addition of even a single neutron or proton 
hole in an off -diagonal region (particularly for N > 28,Z < 28, N > 82 and 2 < 82) 
points to a significant difference of 400 to over 600 keV between the Coulomb 
energies in the nuclear ground and isobaric analog states of such nuclei. The reason 
for this behavior is the fact that the ground state Coulomb energy eq. (5) does not 
account for the shell occupation of the “excess” proton in the IAS (see fig. 2). Any 
discrete difference between the Coulomb interaction energies in neighboring major 
shell regions will lead to different Coulomb energies for states where the protons 
do not occupy the same major shells. The discontinuities observed in procedure 
(C) are therefore a manifestation of shell effects. 

While the dependence of Coulomb energy differences on nuclear configurations 
is well established, Coulomb energy equations often assume equal Coulomb energies 
for ground and isobaric analog states. The above results demonstrate that this is a 
reasonable assumption for regions where valence protons and neutrons occupy 
orbits in equivalent major shell regions. However, it is a very poor approximation 
when they occupy different major shell regions. The result is of particular importance 
for liquid-drop-model Coulomb energy equations with parameters deduced from 
experimental Coulomb displacement energies. Such equations are expected to 
contain systematic errors of typically 500 keV when used to calculate the (unobserv- 
able) total Coulomb energies of nuclear ground states in off-diagonal regions. The 
observed smooth transition of Coulomb ~i~p~uce~e~~ energies between diagonal 
and off-diagonal regions [e.g. fig. 8.13 of ref. 18)], on the other hand, is much better 
represented by such equations and is also in accordance with the smooth transition 
incorporated in the shell-model eq. (26) for A,?!& in off -diagonal regions. 

The size factors S(Z, N) which are introduced in subsect. 2.3 [see also eqs. (9a) 
and (9b)] change continuously at shell crossings. Other size factors with this property 
have also been considered including the approach of ref. 19) and (for regions (i, i + 1)) 

(32) 

Here P and W are again the number of particles and holes. While eq. (32) is 
somewhat more symmetric in 2 and N than eq. (9), the isotope and isotone shift 
coefficients TN and yz are not constant. The fact that eqs. (8) to (12) give much 
better agreement with the data supports the importance of isotope and isotone 
shift considerations. 

Proton-rich nuclei are not included in the determination of the interaction 
energies. However, table 3 displays the comparison based on the global procedure 
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(B) between certain experimental and calculated Coulomb energy differences. Most 
of the data are for the diagonal regions (2,2) (lp shell) and (3,3) (ld2s shell). 
Even though proton-unstable nuclei are not included in the comparison, deviations 
from zero of about -40 keV are apparent. These deviations are believed to represent 
the Thomas-Ehrman shift 29) which is inherent to unbound as well as weakly bound 
states. Reduced proton binding energies lead to increased charge radii, hence 
slightly lower Coulomb energies. 

The standard deviation of 45 keV (table 2) achieved in the global procedure (B) 
can be compared to previous work. Equally good agreement using similar equations 
has been obtained before *‘) for light nuclei where protons and neutrons occupy 
the same major shell regions. A Coulomb energy equation 30) for spherical nuclei 
with diffuse surfaces including exchange and the electromagnetic spin-orbit interac- 
tion yielded a standard deviation of 21 keV for 42 spherical nuclei with Z 2228. 
Charge-dependent nuclear forces and other small effects were included 
phenomenologically. Deformed nuclei were observed to deviate systematically. 
Simple two-parameter equations are known I*) to provide a surprisingly good global 
description of Coulomb displacement energies. Indeed, the equations 

AEc=aZ</A”3-b,, 

AEc = a&l?< +0.5)/A 1’3 - 62 , 

AEc = (a3Z, - bs)fA”3 , (33) 

with 

al = 1408 keV , bl= 641 keV, 

a2 = 1422 keV, 62 = 939 keV , 

a3 = 1375 keV , b3 = 1492 keV , (34) 

yield u1 = 73 keV, q2 = 77 keV and u3 = 81 keV which is to be compared to 
CT =43 keV of table 2 (288 cases). The mean values for the differences between 
experimental and calculated ground-state masses of higher-order mirror nuclei 
(T,=*T with T>$) are (es)=-28*150keV, (E&=-56*151 keV and (Q)= 
+8 f 192 keV which is to be compared to (E) = -38 i 93 keV of table 3 (36 cases). 
A similar evaluation of Coulomb energy equations used as part of atomic mass 
equations has been performed recently by Zeldes et al. “). Standard deviations in 
the range 120 keV to 1600 keV were found. It is concluded that the Coulomb 
energy equations with parameters from this work are significantly better than other 
equations used in global analyses of Coulomb displacement energies. They are also 
expected to provide realistic estimates of total ground-state Coulomb energies. 

The interaction energies L!(Z, N) = S(Z, N)u from the global procedure (B) 
which are plotted in fig. 6 for nuclei along the line of P-stability display discrete 
discontinuities at proton shell crossings, Neutron shell crossings have only a minor 
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effect due to the change in size factor. As mentioned earlier, the core-core interac- 
tion energies R, at the beginning of each proton shell region are equal to an 
appropriate sum of all four interaction energies at the end of the preceding shell 
region. For A > 40 the data yield R,, > R,, > R,, which is normally expected since 
valence protons occupy orbits with higher harmonic oscillator quantum numbers, 
hence increased radii. The ordering is different in the two lower major shell regions: 
R, > R,, > R,, for the lp shell and R,, > R,, > R,, for the ld2s shell. An explanation 
of these results can possibly be found from a detailed quantum mechanical analysis 
using realistic interactions. This was beyond the scope of the present work. However, 
estimates including exchange effects have been made for the two lowest shells using 
harmonic oscillator wave functions. Indeed, ((ls)‘/r .‘j(ls)*) > ((lp)z~~~‘~(lp)2) > 
(Is, lplr-‘lls, lp) is found which confirms the ordering for the lp shelf. The large 
value for a,, in the ld2s shell which involves interactions among the Ids/,, 2si,2 
and ldX12 valence protons could not be confirmed. This may be related to relatively 
large exchange integrals within the lower shells and between the valence and the 
lower shells. 

The interaction energy R,, in the shell region (7,7) is exceptionally small. 
Whereas this could have an underlying physical reason such as the onset of fission 
and increased instability towards a-decay, it is more likely just fortuitous and due 
to the Iimited data which made it necessary to in&de all data with 2, iV 2 82 in 
a single shell region. The global analysis (B) was repeated with the constraint that 
in region (7,7) the energy f2,, should not be smaller than 0.93R,,. Only R,, changes 
significantly. These values are included in table 1 and fig. 6. They are more 
“reasonable,” but the differences E for 232Th and *?J are about -270 keV. This 
is more negative than expected for the known deformations. More data in this 
region are needed to better establish the significance of these observations. 

All exponents pi in the size factors are less than unity, and the interaction energies 
R therefore decrease less rapidly than A-“’ within the shell regions. However, 
the overall decrease is not too different from the A-“’ dependence as can be seen 
from the comparison with the dotted line in fig. 6. This behavior may explain why 
equations based on Iiquid drop models are successful in describing the general 
characteristics of Coulomb energies. 

The results from this work have several important applications. Excitation ener- 
gies of IAS can be predicted and compared to new data. The coefficients of the 
isobaric multiplet mass equation can be predicted and compared to new data. The 
Coulomb matrix elements of this work can be compared to theoretical calculations. 
They can also be used to separate combined nuclear and Coulomb interaction 
energies into the two components. 

Another important application is related to the prediction of masses and binding 
energies of nuclear ground states. For any known neutron-rich nucleus, the mass 
of the proton-rich (higher-order) mirror nucleus is directly obtained by adding the 
appropriate Coulomb energy difference. These predictions are subject to the 
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Thomas-Ehrman shift 29), though, which has to be estimated independently. 
Coulomb energy expressions are an integral part of mass equations. Procedures 
where the present Coulomb energy expressions might be particularly useful are 
the shell-model equations of Zeldes 2s*26), liquid-drop-model equations 3’), and the 
method based on inhomogeneous partial difference equations 32.19). Subtracting 
the Coulomb energy contributions from the experimental binding energies makes 
it possible and mandatory to use charge-symmetric expressions to describe the 
nuclear contributions. 

6. Summary 

Shell-model Coulomb energy equations have been used to describe the experi- 
mental Coulomb displacement energies of about 288 nuclei with 4 <A < 240. A 
standard deviation of u = 45 keV has been obtained. Shell effects are apparent 
including the influence of neutron configurations on the Coulomb energy in the 
isobaric analog state. The influence of the deformed nuclear shape in the regions 
A = 100 and A = 166 is recognizable. The dependence of the Coulomb interaction 
energies between valence-valence, valence-core and core-core protons on the 
number of nucleons is discussed for the various shell regions. They decrease less 
rapidly than A -“3, and the core-core interaction energy is generally the strongest. 
Important applications for the shell-model Coulomb energy equations include their 
use in mass and binding energy equations. 

Discussions with K.T. Hecht are highly appreciated. This work was supported 
in part by the US National Science Foundation and the United States-Israel 
Binational Science Foundation. 
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