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It is frequently assumed that the mental activity which leads to a given response is made up 
of separable components or processes. One or more of the processes are assumed to contribute 
to the time required to respond. Computation of the mean, variance, and distribution of the 
reaction time is relatively straightforward when all processes are arranged in series or parallel. 
However, such is not the case when the processes have complex arrangements. A solution to a 
useful special case of the above problem is proposed. Specifically, it is shown that simple 
computations yield closed form expressions for the mean, variance, and distribution of 
reaction time when the processes can be arranged in a stochastic PERT network and when the 
durations of individual processes are sums of mutually independent, exponentially distributed 
random variables. The method of solution relies on the construction of an Order-of-Processing 
(OP) diagram from the original PERT network representation of behavior. 

The architecture of the mind is presumably quite complex. Unfortunately, the 
psychologist cannot peer inside the mind and openly inspect the structure process by 
process. Instead, the psychologist must make do with a global measure of behavior 
such as reaction time. It thus becomes of some importance to be able to compute the 
reaction time distribution associated with a particular arrangement of the mental 
processes. Summary characteristics of the reaction time distribution such as the mean 
and variance are also frequently quite useful. This paper will focus on the 
development of simple, closed form expressions for the mean, variance, and 
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FIG. 1. A representation of mental processes arranged in series. The task is finished when proces 
x,-1 completes executing. 

distribution of the duration of behaviors whose constituent processes take on more 
complex arrangements than have been considered to date. 

The Structure of Cognitive Behavior. The earliest reaction time models (Donders 
1868) of cognition assumed that the behavior of the subjects in various psychologica 
experiments was determined by elementary mental processes which followed one righ 
after another in time (i.e., the mental processes were arranged in series). If the itt 
process is labelled xi, then a model of processes arranged in series can be representec 
by the directed, acyclic graph in Fig. 1. Each arc represents a process. Note that x 
will serve as a label for the ith arc and the ith process; context will be used to clarify 
any ambiguities which might arise. Vertices v,, v~,..., v, separate the head of one arc 
from the tail of the next arc. Vertex v, will be referred to as the source and vertex v, 
will be referred to as the sink. Process xi is said to immediately precede both proces: 

Xi+l and vertex vi+ I while process xi+, is said to immediately succeed both proces: 
xi and vertex vi+ 1. 

If the random variable Xi is defined as the duration of process xi, then the duratior 
T of the task behavior (i.e., the reaction time) has a very simple expression 
T = C;=, Xi. The expected value E[ T] of the task duration T has an equally simph 
expression: E[ T] = Cy= i E[X,]. Unfortunately, closed form characterizations of tht 
distribution of the task duration T can frequently be difficult to compute. However 
when the durations of the processes making up a behavior are mutually independent 
exponentially distributed random variables, then easy-to-compute, closed forrr 
expressions for the entire distribution of the task duration can be written down (e.g. 
Christie and Lute, 1956; McGill, 1963; McGill and Gibbon, 1965). 

FIG. 2. A representation of mental processes arranged in parallel. The task is comleted when the lasl 
of the processes x, ,..., x, completes executing. 
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A different, but now common arrangement of the mental processes is one in which 
most (or all) of the processes are executed in parallel (e.g., Atkinson, Holmgren, and 
Juola, 1969; Egeth, Jonides, and Wall, 1972; Sternberg, 1969; Taylor, 1976; 
Townsend, 1974). Sometimes it is assumed that the first of the parallel processes 
connecting two vertices to finish executing terminates activity between these two 
vertices. At other times it is assumed that the activity continues until all processes 
connecting the two vertices have been executed (see Fig. 2). That is, it is assumed the 
task is not finished until each of processes x*,x*,..., x, has completed. The task 
duration T is then the maximum of X, ,X, ,..., X,, while the expected value of T is the 
expected value of the maximum of X, , X, ,..., X,, , i.e., E[ T] = E[max(X, , X, ,..., X,)]. 
The expected value of the maximum of several random variables is not always easy 
to compute. However, as above, the computations greatly simplify when the durations 
of the processes making up a particular behavior are mutually independent, exponen- 
tially distributed random variables (Townsend, 1971, 1972). 

Recently Schweickert (1978, 1980) has noted that the PERT (Program Evaluation 
and Review Technique) networks employed widely in operations research can also be 
used to describe the various arrangements that mental processes might assume. The 
reader has already been presented with two PERT networks, specifically, with the 
two graphs in Figs. 1 and 2. A more complex PERT network known as a Wheatstone 
bridge is represented in Fig. 3. The PERT network is to be interpreted as follows (a 
more formal definition of the terms used below will be given later in the paper). First, 
no process can begin executing until all processes which immediately precede it have 
completed their activity. For example, process x5 cannot begin until processes xj and 
xq have completed their activity. Second, once all processes which immediately 
precede some other process or processes have finished executing, all the processes 
which immediately succeed the immediate predecessors begin their execution. For 
example, both processes x2 and xj begin executing simultaneously as soon as process 
x, has completed its activity. 

FIG. 3. A Wheatstone bridge PERT network. 
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An example from the problem solving literature can give psychological substance 
to a complex PERT network such as a Wheatstone bridge. Suppose subjects are given 
a syllogism with two premises: “No A are B" (the first premise or P,) and “No C are 
B" (the second premise or Pz). Suppose that subjects are asked to indicate as quickly 
as possible whether the conclusion “No C are A” is possibly true or necessarily false. 
The time it takes a subject to respond is the dependent variable. 

In order to determine the logical status of the conclusion, the subject must carry 
out the following activities: (1) read the first premise (READ PI); (2) read the 
second premise (READ P2); (3) determine the logical meaning of the first premise 
(ENCODE Pl); (4) determine the logical meaning of the second premise 
(ENCODE P2); (5) decide what set relations between the subject C and the predicate 
A of the conclusion of the syllogism are implied by the first and second premises 
(COMBINE PI + P2); (6) read the conclusion (READ CONC); (7) and, finally, 
decide whether the set relations between C and A which follow from the first and 
second premise are consistent with the statement of the conclusion (READOUT). (A 
more detailed discussion of the above processes can be found in Fisher, 198 1.) 

While the above processes could be arranged in a serial network as stated, an 
extended Wheatstone bridge represents a reasonable alternative arrangement of the 
processes (see Fig. 4). Subjects start out by reading the first premise of the syllogism 
(READ Pl). After reading the first premise, they not only begin the logical encoding 
of this premise (ENCODE Pl), but also begin reading the second premise 
(READ P2). Similarly, after reading the second premise subjects not only begin the 
logical encoding of this premise, but also begin reading the conclusion. Note that 
subjects cannot combine the information from the first and second premise 
(COMBINE Pl + P2) until they have read and encoded both premises. Also, note 
that subjects cannot determine whether a particular conclusion is true (READOUT) 
until they have both read the conclusion and combined information from the first and 
second premise. 

The “duration” of a path through a PERT network is defined as the sum of the 
durations of the processes constituting the path. The task duration of a PERT 
network on a particular trial is then the duration of the longest path through the 

RERD Pl READOUT 

FIG. 4. An extended Wheatstone bridge PERT network used to represent one possible arrangement 
of the mental processes in a syllogistic reasoning task. 
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network (e.g., see Schweickert, 1978). As an example, consider the Wheatstone bridge 
in Fig. 3. There are three paths through this network, the paths represented by arcs x, 
and x2, by arcs xi, x1, and x5 and by arcs x, and x5. The task duration T on a 
particular trial is therefore equal to the maximum duration of the three paths through 
the network, i.e., 

T = maximum(X, + x,, xi + x, + x, 5 x, + X,). 

The task duration T is easy enough to compute when the network is deterministic and 
the process durations Xi remain constant from trial to trial. But the computations for 
E[T] can become very tedious when the process durations vary from trial to trial. 

Stochastic PERT Networks. When the durations of the processes arranged in a 
PERT network vary from trial to trial the PERT network is called stochastic. 
Stochastic PERT networks have been the source of much attention in the operations 
research literature (e.g., Kleindorfer, 1971; Martin, 1965: Modor and Phillips, 1970; 
Nadas, 1979; Robillard and Trahan, 1977) ever since an article by Fulkerson (1962) 
over twenty years ago. Hartley and Worthman (1966) derive exact expressions for 
the distribution of the task duration when: (1) the constituent process durations are 
mutually independent, and (2) the PERT network is composed of particular “building 
block” subnetworks. Ringer (1969) showed how additional subnetworks could serve 
as “building blocks,” and he extended the method so that, in principle, one could find 
the distribution of task duration for any PERT network whose constituent process 
durations are mutually independent. However, for both Hartley and Wortham (1966) 
and Ringer (1969) the resulting expressions are in the form of integrals which may or 
may not have an analytic solution. While analytic solutions for the expected task 
duration exist in the case where the density functions of the process durations can be 
expressed as polynomials with a finite number of coefficients (Martin, 1965). the 
computations are by no means straightforward. 

In this paper a solution to a useful special case of the stochastic PERT problem is 
proposed. Specifically, it is shown that simple matrix operations yield the mean, 
variance, and distribution of the task duration when the durations of the constituent 
processes are sums of mutually independent, exponentially distributed random 
variables. 

Summary. One can imagine a sequence of increasingly complex arrangements of 
the mental processes which mediate behavior in any given task. Relatively simple 
arrangements include serial and parallel structures. More complex arrangements can 
be described by PERT networks. (For discussions of still other structures see Note 2; 
Pritsker and Happ, 1966; Pritsker and Whitehouse, 1966.) As the structures become 
more complex so too does the computation of the mean, variance, and distribution of 
the task duration. This paper will focus on the derivation of closed form expressions 
for the above quantities when the processes are arranged in a PERT network and 
when the process durations are mutually independent, exponentially distributed 
random variables. 
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The remaining portions of this paper are organized as follows. A task system is 
given a more formal definition. It is shown how the processes in the task system can 
be arranged in a PERT network. It is then shown how the PERT network itself can 
receive an alternative representation, a representation which is labelled an Order-of- 
Processing (OP) diagram. Since the notion of an OP diagram is new with this paper, 
some time is spent describing such a diagram. Once a PERT network is represented 
as an OP diagram, computation of the mean, variance, and distribution of the task 
duration moves along reasonably straightforward lines. In the penultimate section of 
the paper, the computational methods are extended to cover more complex 
distributions of process durations. Readers interested in the major results should look 
only at the next three sections (“Task Systems,” “PERT Networks,” “Order-of 
Processing (OP) Diagrams”) and then skip to the subsection (“Example 
Computations: The Mean”) which discusses the use of the OP method to obtain the 
mean of both a simple parallel network and a Wheatstone bridge network. 

TASK SYSTEMS 

Let {xi} be a finite set of processes. Let X’ = (X, , X2,..., X,) be a random vector of 
process durations and let t’ = (ti, tZ,..., t,) be a vector of constants. Then a task 
system will be defined as the set (xi} of n processes, a strict partial order <R (<R is 
an asymmetric, transitive binary relation) on the set of processes, and a known and 
continuous joint probability density functionfx(t’) for the durations Xi of each of the 
processes xi. Process xi will be said to precede process xi if xi <R Xj while process xi 
will be said to succeed process xj if xj cR xi. It is assumed that all processes in a task 
system which have no predecessors begin executing simultaneously at the start of the 
task. It is assumed that a process which has one or more predecessors begins at the 
moment when all of its predecessors have finished executing. Also, it is assumed that 
once a process has begun execution, it continues uninterrupted until it has finished 
executing. Finally, it is assumed that a task is not completed until all processes in the 
task have completed their execution. (A more detailed discussion of task systems is 
given in Coffman, 1976.) 

Two other terms should be defined at this point. First, a process xi will be defined 
as an immediate predecessor of a process xj if xi <R xi and if there is no process xk 
such that xi cR xk and xk cR xi. For example, suppose that the five processes x, 
through x5 in a task have the following partial order: x1 <R x2, x, <R x3, x3 <R x5, 
x4 <R x5. Then process x1 is a predecessor of processes x2, x3, and x5 (x, <R x3, 
x3 <R x5 imply x, cR x5) but process x, is an immediate predecessor of processes x2 
and x3 only. Second, a process x, will be defined as an immediate successor of a 
process xi if xi is an immediate predecessor of xj. For example, process x5 is a 
successor of processes x1, x3, and x., but is an immediate successor of processes x3 
and x4 only. 
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PERT NETWORKS 

It will be more convenient to represent the partial order on the processes in terms 
of a directed, acyclic graph G known as a PERT or CPM (Critical Path Method) 
network. Examples of such networks have already been given (see Figs. l-4). The 
networks are constructed from a partial order <R on the processes as follows. If 
process xi immediately precedes process xj then the head of arc xi and the tail of arc 
xi are attached to the same vertex. If there are no predecessors of a process, then the 
tail of the process is attached to the source, vertex n, . If there are no successors of a 
process, then the head of the arc is attached to the sink, vertex u,, where e equals the 
number of vertices in the PERT network after all arcs have been drawn and attached. 
The vertices between the source and the sink are arbitrarily labelled vi for 1 < j ( e. 

Consider as an example the construction of a PERT network from the partial order 
on the processes given above, i.e., x, cR x2, x, <R x3, x3 <R x5, x., <R x5. Since there 
are no predecessors of processes x, and x, the tails of the corresponding arcs are 
attached to vertex vi. Next, the head of arc x, and the tails of arcs x2 and xj must be 
attached to the same vertex (since process x1 immediately precedes processes x2 and 
x3), say vertex v2, and the head of arcs x3 and x4 and the tail of arc x5 must be 
attached to the same vertex (since processes xj and x, immediately precede process 
x5), say vertex uJ. Finally, since processes x2 and x5 have no successors, the heads of 
arcs x2 and x5 are attached to vertex v4. The final result is the Wheatstone bridge 
network diagrammed in Fig. 3. 

Finally, a path through a PERT network should be given a more formal definition. 
Specifically, a path is defined as a sequence of arcs (xi,, xi*,..., xi,) such that the head 
of arc xij is at the tail of arc xii+, for j = 1, 2 ,..., k - 1. Unless otherwise stated, it will 
be assumed throughout that the paths under consideration originate at the source and 
terminate at the sink. 

ORDER-OF-PROCESSING (OP) DIAGRAMS 

The order in which the processes begin and complete execution will vary from trial 
to trial in a stochastic PERT network because the durations of the processes them- 
selves vary from trial to trial. For example, consider the two-process parallel PERT 
network in Fig. 5a. Processes xi and x2 must begin at the same time. However, on 
some trials x, will finish before x2 while on the other trials xz will finish before xi. 

Dejhition of an OP Diagram. It will be useful to have a representation for the 
various possible processing orders associated with a stochastic PERT network. This 
representation will be labelled an Order-of-Processing diagram, or more simply an 
OP diagram. The OP diagram associated with the two-process parallel PERT 
network is drawn in Fig. 5b. Each oval in an OP diagram will be referred to as a 
state. It will be assumed that there are a total off states in an OP diagram. The start 
and finish states will be labelled, respectively, s, and s,. 
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FIG. 5. (a) A two-process parallel PERT network and (b) its associated Order-of-Processing (OP) 
diagram. 

If one were to examine the status of the task system at some particular moment in 
time, one could distinguish three sets of processes: (1) processes having completed 
execution; (2) processes currently executing; and (3) processes whose execution has 
not yet begun. Associated with each state of the OP diagram will be the first two sets 
of processes, labelled simply the completed and current set. The current set of 
processes consists of all those processes which are currently executing. These are 
listed in the upper half of each state. The completed set of processes consists of all 
those processes which have finished executing. Note that, for simplicity, each process 
in the current and completed set of a state is represented by the unique integer 
subscript associated with the process, i.e., process xi is labelled as i. 

The states in the OP diagram are connected by directed arcs to one another. A 
state sj is an immediate successor of another state si if a single directed arc from state 
Si to state sj joins the two states. A state si is an immediate predecessor of a state sj if 
state sj is an immediate successor of state si. A path (s,,, So*,..., So,,,) is a sequence 
of states from state s, to state sr such that state soi is an immediate predecessor of 
state s,,+, , It should be emphasized that for all paths a, s,, = s, and s,“+, = s,. Note 
that in contrast to paths through a PERT network, paths through an OP diagram are 
always of the same length, i.e., there are it + 1 states in any path. With this notation, 
any particular path (s,,, s, *,..., se,+,) can be identified with a sequence of indices 
a = (a,, a,,..., a,,, ). It will be convenient to refer to a as a path, even though a is a 
sequence of indices while the corresponding path is a sequence of states. Lower case 
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Greek letters will be reserved for these index sequences and r = {a, /I, y,...} will 
denote the set of all paths. 

Each path through an OP diagram represents one possible processing order in a 
stochastic PERT network. Thus, a new state will be entered along a path from s, to s, 
each time a process has completed executing and, simultaneously, some (possibly no) 
processes have begun executing. For example, consider the OP diagram in Fig. 5. A 
path is formed by the sequence of states (sr , s2, 4 s ). This path defines the following 
processing order. Processes xi and x2 begin executing simultaneously at the start of a 
trial because they both appear in the current set of state s, . Process x, finishes before 
process x2 because process x, first appears in a completed set (state s,) before 
process x2 (state s,). The processing order in which xZ completes before x, is 
represented by the other path (s,, s3, s.,) through the OP diagram. 

Since it was assumed that the distributions of the durations of the processes are 
continuous and independent, the probability that processes xi and x, complete at 
exactly the same time is zero. This means that a transition directly from state s, to 
state s4 in Fig. 5 has probability zero. It will turn out that paths of probability zero 
such as the one from state s, to state s4 can be ignored when computing the expected 
task duration. Thus, rather than clutter up the OP diagram with an arc which will not 
figure in the computations, no arc is drawn between states s, and s,. More generally, 
since the probability that two or more processes tinish at exactly the same time is 
zero, no arcs are drawn between any two states si and sj in an OP diagram which 
require more than the completion of one process in the current set of state si to move 
the system from state si to state sj. 

It may be helpful to consider a second, more complex OP diagram. In particular, 
consider an OP diagram (Fig. 6) which is constructed from a Wheatstone bridge 
stochastic PERT network (Fig. 3). The path through the left-hand side of the OP 
diagram consists of the sequence of states (s,, s2, s4, s,, s,~, s,J. Along this path, 
processes xi and x, begin executing simultaneously at the start of a task since they 
appear in the current set of the start state. Process x4 is the first process to complete 
along the path since it appears in the completed set of the next state along the path, 
state s2. No new processes begin when x4 completes since all processes in the current 
set of state s2 have previously begun executing. Process x, is the second process to 
complete along the path since it appears for the first time in the completed set of the 
next state, state s4. Note that the completion of process x, is followed immediately by 
the start of the execution of processes x2 and xj since they appear in a current set for 
the first time in state s4. The interpretation of Fig. 6 continues in this fashion. 

Additional Notation. The random variable Tj will be used to indicate the duration 
of state sj. The random variable T will continue to indicate the task duration. The 
random variable X, will continue to indicate the duration of process xk. 

Consider a path a consisting of states (s,,, sa2,..., sa,+,). The system moves from 
state saj to state s,~+, when a certain process, say xa;, is completed. Let a * be the 
sequence (a:, a:,..., a,*). Thus, process xa; is thejth process to be completed if the 
system takes path a through the OP diagram. Since every process must be completed 
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FIG. 6. The Order-of-Processing (OP) diagram for the stochastic Wheatstone bridge PERT network 
represented in Fig. 3. 

for the final state to be reached, every process receives an index a: for some j, 
1 <jQn. 

Finally, let P, be an indicator random variable which equals 1 if path a is taken 
and which equals 0 otherwise. 

PERT PROCESS DURATIONS AND OP STATE DURATIONS 

Two separate representations for a task system have been presented: the OP 
diagram and the PERT network. Relations between quantities in the OP diagram and 
quantities in the PERT network will now be derived. Specifically, it will be shown 
that the state duration Ta, can be expressed as a linear combination Z,, of the process 
durations Xi, given that a particular path 01 in the OP diagram is followed (Lemma 
1). Also, it will be shown that if Fa, > 0 for j = 1, 2,..., n, then path a must have been 
taken (Lemma 2). Finally, it ~111 be shown that the relatively complex linear 
combination Zai of the process durations Xj can be computed quite simply when 
reformulated in matrix terms. 
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Notation. Define a square n by n matrix A, as consisting of components aij, 
where 

aij= 1 if process x@; is in the current set of state saj, 

aij= 0 otherwise. 

Define the random variables Zai recursively as 

z,, =&;, 
i-l 

Zai = X,f - 2 aijZnj for i = 2, 3 ,..., n. 
’ j=l 

Let both Z; = (Zal ,..., Z,“) and Xi. = (Xu; ,..., X,;) be random vectors. Finally, it 
will be convenient to have the notation TA = (7’,,,..., Tan). 

LEMMA 1. If path a is followed, then 

Tai = Zai and Li, Z,, > 0. 

Proof If P, = 1, then the duration Tu, of state sai is positive and equal to the 
duration X0; of the process which gets completed in state sai minus its duration in all 
the preceding states in which it was current, i.e., 

i-l 

Tai = Xa; - C aij Taj> 
j=l 

from which the proof follows easily by induction. 

Note that the reason for introducing the random variable Zai is that it will be 
useful to have an expression for the linear combination of the X=;‘s in cases where the 
path a is not taken, i.e., in cases where the linear combinations may possibly take on 
negative values and therefore where Tai does not equal the linear combination. 

LEMMA 2. If Zei > 0 for i = 1, 2 ,..., n, then P, = 1. 

Proof: Suppose that Z,, > 0 for i = I,2 ,..., n. Let Cei = {at 1 x~; is current in sai} 
be the set of indices of the processes which are current in state s,~. 

First, it will be shown that states s,, and s,~ are both reached and that 
Tn, = Z,, = Xu;. The proof that state s,, is reached is immediate since there is only 
one start state, namely s,,. The transition is made to state saz if and only if Xa; < X=; 
for all at in C,, - {a:}. Let at be in C,, - {a:}. Then k > 1. Now, 

k-l 

0 < Zak= Xa; - C akiZaj 
j=l 

= Xa; - ak, Xm;. 
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Since ak* is in C,, - {a:}, it is the case that ak, = 1 and therefore X,; < Xa; as 
needed. Furthermore it is clear that Ta, = Z,, = Xa; . 

Second, given the hypothesis of Lemma 2, it will be shown that (1) if states 
s a, ,..., sai are all reached and (2) if Tai = Z,, for j = l,..., i - 1, then sai+, is reached 
and Tui = Zai. Note that the transition IS made from sai to s,~+, if and only if 

i-l i-l 

0 ( Xa; - x aijTaj < X,; - C akjTaj 
j=l .,Tl 

for all a: in Cai - {a:). Moreover, if this occurs, it is clear that 

i-l i-l 

Zai=Xuf- z aijZa,=X,y - “ ai,iTaj= Tai, , j=I ’ jy 

since, by hypothesis, Tej = Zaj for j = 1, 2 ,..., i - 1. 
Let a: be in Cai - {a;}. Then k > i. By hypothesis, Zak > 0. Thus, 

k-l 

i-l k-l 

=X,; - x ak,iZai- \’ akjZ,, 
.j- I F( 
i-l k-l 

=X,; - x auTe, - s akjZai 
j=l .i= i 

i-l 

<X,; - “ akjTai - akiZai. 
,T-, 

Since a: is in C,! - {a,?), it must be the case that ski = 1. Thus, after rearranging the 
last inequality, one obtains 

i-l i-l 

O<Zai=X,:- 1 aijTei<Xa;- x akjTai, 
’ j=l .j= I 

as required. This completes the proof of Lemma 2. 

LEMMA 3. For any path a, det A, = det A; ’ = 1. 

Proof: By construction, A, is a lower triangular matrix with l’s on the diagonal. 
This follows since by definition process x~; is completed before state saiik is entered 
and therefore ai,i+k = 0 for 1 < k < n - i and since by definition process xa7 is 
completed in state sai and therefore aii = 1. Thus det A, = 1. 

Since det A, # 0, A; ’ exists. Furthermore, since 1 = det I = det [ A,] [A; ’ ] = 
[det A,] [det A;‘], it follows that det A;’ = l/det A, = 1. This completes the proof. 
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LEMMA 4. 

Z, = A, ‘X,, . 

Prooj It will be shown that A,Z, = X,, , from which Lemma 4 follows 
immediately. The ith component of A,Z, is, 

f  Uijz~,=f, UijZ,, since aij = 0 for j > i, 
j=l 

i-l 

= UiiZai + T  UijZai 

,z 

i-l 

= Zai + “ UijZaj 

,z, 
since aii = 1, 

i-l i-l 

=Xar - x a,Z,, + E UijZaj, 

I j=I j= I 

by definition of Zai, 

=xa:. , 

This completes the proof of Lemma 4. 

LEMMA 5. P, = 1 if and only if A; IX,, > 0, i.e., P, = 1 if and only if each 
component of A; ‘X,, is positive. 

Proof: If P, = 1, then by Lemma 1 T, = Z, > 0. By Lemma 4, Z, = A; ‘X,. and 
therefore if P, = 1, A;‘X,, > 0. 

If A;‘X,, > 0, then since by Lemma 4 Z, = A;‘X,., it follows by Lemma 2 that 
P,= 1. 

DISTRIBUTION OF TASK DURATION: EXPONENTIAL CASE 

In this section it is assumed that the process durations are mutually independent, 
exponentially distributed random variables. That is, 

= 0 otherwise. 

The quantity 1,; will be referred to as the rate parameter for Xa;. Closed form 
expressions for the mean, variance, and distribution of the task duration will be 
derived. 
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Mean and Variance 

The method for deriving the mean and variance relies on the following observation 
T = Cf:: Ti. This equation follows since on any particular trial Ti > 0 if state si i 
entered for i = 1,2,..., f - 1, while Ti = 0 otherwise. Note that the duration T, of th 
final state is equal to zero since the task is completed as soon as the final state i 
entered. For example, consider the OP diagram in Fig. 6. If the left-hand path i 
taken then the state durations T, , T,, T4, T,, and T,, are positive while all othe 
state durations are zero. 

If the indicator random variable Si is defined as below, 

si= 1 if state si is entered, i = I,..., f, 

=o otherwise, i = l,..., f, 

then the expected task duration E[T] can be written as a function of the condition; 
expectation E[T, ] Si = 1] of Ti given that state si is entered and the probabilit 
P(Si = 1) that state si is entered. Specifically, 

f-1 
E[T] = x E[T,] 

i=l 

f-1 

= 2 {E[T;ISi= l]P(Si=l)+E[TiISi=O]P(S;=O)} 
i=l 

= C E[Ti 1 Si= I] P(Si= l), (1 
i=l 

since Ti = 0 if Si = 0. 
A formula for the variance VAR(T) of the task duration follows in a simih 

fashion: 

f-1 

VAR(T)= x VAR[Ti] + 2 C COV[Ti, Tj] 
i=l i-Q 

f-l 

= C (E[Tf] -E[Ti]*} 
i=l 

+ 2 C {E[TiTj] -E[Ti]E[T’]} 
id 

f-1 

= r, {E[T;(S,= l]P(S,= l)-(EITiISi= l]P(S,= 1))2} 
i=l 

+2 2 {EITiT,IS,= l,Sj= l]P(S,= l,Sj= 1) 
l<J 

-E[Ti/Si= I]P(S,= I)EITjISj= l]P(S,= l)}. (; 
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The above expressions for the mean and variance make clear the need to find 
formulas for the following quantities: P(S, = l), P(S, = 1, Sj = l), frilsi= ,(t), and 
fri,rj,s,=l,s,=,(t,, tz). The computation of these quantities is most easily obtained by 
deriving expressions both for the probability P(P, = 1) that path a is taken 
(Lemma 7) and for the conditional density fraIP,= l(t’) of the times spent in each of 
the states along a path a, given that the path a was taken (Lemma 8). 

LEMMA 6. Let z’ = (z~,..., zJ. Then the density function for 2, = A; IX,, is 
given by 

fz,W> =fx,Wcz~)‘l ifz in set B,, 

=o if z not in set B,, 

where B, = { (zl ,..., z,J 1 z = A;‘y andf%,(y’) > Ofor some y}. 

Proof: A well-known result in probability theory states that 

fi,(z’> = (l/ldetA,‘Ofx,.[(A,z)‘l if z in set B,, 

=o if z is not in set B,. 

The result from Lemma 3 that det A; ’ = 1 completes the proof. 

LEMMA 7. 

p(p, = 1) = j 
r,>o 

a-* jz,>ofx,s[(A.~)‘] dz ,,...r dz,. 

Proof: Using Lemma 5, one can write 

P(P, = 1) = I, >. ... j fz,(z’) dz,,..., dz,. 
” z,>o 

Suppose z, ,..., z, > 0 and consider y = A,z. It has been observed that A, is lower 
triangular with l’s on the diagonal, and by its construction A, contains no negative 
elements. Thus each component of A,z is positive. Having assumed mutually 
independent, exponentially distributed process durations, it follows that the density 
function fxll,(A,z) is greater than zero. Furthermore, since A, has an inverse, z can 
always be written as A;‘y. Thus, if zi ,..., z, > 0 then z E B,. The desired result then 
follows immediately from Lemma 6. 

LEMMA 8. The conditional density of T, given that P, = 1 is 

fr,,rJ,A’)= P(P,= W’fz,@‘) 1yt > 0, 
=o otherwise. 

480/27/2-2 
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Prooj It will be shown that the event E, = [(Tal < tl),..., (T,, < t,), (P, = l)] is 
equivalent to the event E, = [(0 < Z,, < tl) ,..., (0 < Z,” < t,)]. 

Since, by definition, P, = 1 is equivalent to 0 < Tmi for i = 1, 2,..., n, event E, is 
equivalent to 0 < Tmi < ti for i = 1, 2,..., n. By Lemma 1, this implies event E,. 

Now suppose that event E, occurs. Since each component of Z, is positive, by 
Lemma 2 it is the case that P, = 1. This implies by Lemma 1 that Z, = T,. Thus, 
event E, implies ((0 < T=, < tl) ,..., (0 < Tan < tJ, (P, = l)]. However, P, = 1 is 
redundant with 0 < Ta, for all i. Thus, event E, implies [(T,, < tl),..., (T,, < tn), 
(P, = l)], i.e., event E, implies event E,. This completes the proof of Lemma 8. 

Before proceeding further with the derivation of closed form expressions for the 
mean and variance, three additional bits of notation will be useful. Let 

A, = J+ if the completion of process xk 

in state si moves the system immediately 

to state sj, 

=o otherwise (i.e., if there is no process whose 

completion in state si moves the system immediately 

to state sj). 

Let ci = Es=, A, be the sum of the rate parameters of the processes current in state si 
and let c,~ = xi”= I aji,l,; be the sum of the rate parameters of the processes current in 
the ith state reached along path a. (Note that ci # cai unless si = s,~.) Finally, let D 
be an f by f matrix whose (i,j) component is given by d, = (~ij/Ci). 

THEOREM 1. 

fT,,P,zl(t’) = [P(P, = l>l-’ fi 2,; eXPI--Cajtjl~ t > 0, 
j=l 

=o otherwise. 

Proof By Lemma 8, 

fr,,P,=l(f’) = w, = 111 -I fi,@‘> provided t > 0, 

= W, = W’fx,K4A’l by Lemma 6, 

= [P(P, = l)]-‘fx; [f a,,tj,..., 2 a,t,] 
j=l j=l 

= [P(P, = l)]-’ fi I,; exp [-A,; 2 aijtj] 
i=l j=l 

= IpCp, = l)l-’ (fi 1,;) (fi exP [ -Aa; ,$, aijtj]) 
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= fpCpa= l>l-’ (fi la:) (exP [J$l $I -aaFuijtl]) 

= [p(pa= 1>1-’ (fi Aay) jexP [zl tj ,$, -i,Faij]) 

= PV, = 111-l (fi 1,1) (fi exp [ tj ,$ -IO;%]) i=l 

= [P(P, = l)]-’ fi Aar exp [-if I,;a,) tj] 
j=l i=l 

= [P(P, = l)] -I fi Aaf exp[-c,,tj]. 
j=l 

This completes the proof of Theorem 1. 

THEOREM 2. 

Proof: By Lemma 7, 

W’, = 1) =I 
z,>o 

-j>ofx;[(AA’] dz1,..., dz,. 

By the proof of Theorem 1, 

fx;[(A,z)‘l = fl L; exP[-C,,Zjl. 
j=l 

Substituting and performing the integration, one obtains 

P(P, = 1) = ir (4&i). 
j=l 

This completes the proof of Theorem 2. 

COROLLARY 1. 

n 

fT,IP,=l(f’) = n C,, eXP[--C,jtjl~ t > 0, 
j=l 
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Proof: By Theorem 1, 

fT,,p,,,(t’)= [P(P,= I>]-' fi &f exP[-Ca,tjl 
j=l 

by Theorem 2, and after regrouping 

= fi C,jeXP(--C,jfj)- 

j=l 

This completes the proof of Corollary 1. 

COROLLARY 2. 
fTDilp,+W = caj ewl-c,,j4 

Proof Integrating fT,, p, = 1 (t ‘) in Corollary 1 over all t, except tk = li gives the 
above density. This completes the proof of Corollary 2. 

It follows immediately that the conditional distributions of the state durations Tmi 
are mutually independent and exponential. 

LEMMA 9. 

fTiISi=,(f) = ci ewl-qtl. 

ProoJ Suppose state si is thejth state reached along some particular path. Then 
state si will be the jth state reached on any path which contains Si. Consider the sum 
over all paths a in which the jth component of a is equal to i. This sum will be 
denoted C,= i. The probability P(Si = 1) that state si is entered can then be 
expressed as the sum Ca+ P(P, = l), i.e., the sum of the probabilities of those paths 
a in the OP diagram which pass through state s,.. The conditional density of Ti, given 
state si is entered, can now be rewritten as 

=[P(S,= 1)]-' v  aei Ic, ew(--cajOl W, = 11, 

= [P(S,= l)]-' cl exp(-c,t) c P(P,= 1) 
aj=i 

= ci exp(-c,t) 1 P(P, = 1) [P(S,= l)]-' 
[ aj=i I 

= ci exp(-c, t). 

This completes the proof of Lemma 9. 
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COROLLARY 3. E[T, 1 Si = l] = l/c, and E[ ri ] S, = 1 ] = 2/c:. 

Proof: The corollary follows immediately from Lemma 9. 

LEMMA 10. f. _ T,,T,Is~-I.s~=L(~I, f*)= lci exP(-Cif,)l[Cj exP(-CjtJl. 

ProoJ The derivation is similar to Lemma 9. 

COROLLARY 4. EITiTjISi= 1, sj= l)= l/(CiCj). 

Proof The corollary follows immediately from Lemma 10. 
Recall that D is anfXf matrix whose (i,j) component is given by d, = (Aij/ci). 

LEMMA 11. Suppose state si has q - 1 processes in its completed set. Then 

P(Si = 1) = e;Dq-‘eir 

where e, is an f-dimensional column vector with a 1 as its ith component and O’s 
everywhere else. 

ProoJ: Consider a sequence (k,, k, ,..., k,, ,), where kj E (1,2 ,..., f } for 
(1 <j < n + 1). The sequence (k,, k, ,..., k,, ,) may or may not be identical to some 
sequence of state indices a. In any case, by definition we have 

ii hjkj+,/ckj= fi 4,kj+,- 
j=l j=l 

If the sequence (k,, k, ,..., k,, ,) of indices is identical to some sequence a, then by 
Theorem 2 the above product gives the probability of taking path a, i.e., 

w, = 1) = fi (~,;lc,j> 
j=l 

= fi ('kjkj+ l/'k') I  

j=l 

= ii dkjkj+,. 
i=l 

However, if the sequence (k,, k, ,..., k,, ,) of indices is not identical to any sequence 
a, then h,k,+, = 0 for some kj, and therefore the products are both zero in Eq. (3). 

These results can be put to good use. In particular, note that the probability 
P(S, = 1) is equal to the sum of the probabilities of all paths containing state si. 
Further, since s, has q - 1 processes in its completed set, Si will be the qth state 
reached in any path which contains si. Therefore, if the sequence (k, , k, ,..., k,, 1) is 
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identical to some path a containing si, we must have k, = aq = i. Of course, we must 
also have k, = 1 and k,, , =J: It follows that 

k,m,= 1 k,+,= -1 kF1 

[dk,k,dk2k, “* dk,m,k,dk,k,,, “’ dk,k,+,l. 

Note that it would be superfluous to sum over k, or k,, i since any path must begin 
with the start state sk, = s, and end with the finish state sk,+, = sf. Rearranging the 
above equation, one obtains 

p(s$= 1) = i .** i dklk, .*. dk,m,k, 
k,=l kg-,= 1 

X i dk k 
k 

’ dk,+,k,+2 **a -+ d,n-,k,dk k 4q+, i ’ n “+I 
4+1=1 k 4+*=’ k7, II 

Since dk,k,+, = 1 (sk, has Only one task in its current Set) and since ~&i dki-,kj= 1, 
the expression in square brackets reduces to 1. Therefore, 

P(Skq= I)= 4 . . . 
kFl 

i ‘h,k,‘&, **’ 4 q-lkq* 
kqm,=l 

It is not hard to show that this expression is equal to the (k,, k,) entry of the matrix 
D4-‘. However, k, = 1. Thus, 

P(Sk4 = 1) = e; Dq-‘e,,. 

Since by assumption k, = i, this completes the proof of Lemma 11. 

LEMMA 12. Suppose state si has q - 1 processes in its completed set and that 
state sj has r - 1 processes in its completed set, and assume that r > q. Then, 

P(S, = 1, Sj = 1) = [e;Dq-‘ei] [e/ Dreqej]. 

ProoJ: Following the logic of Lemma 11, one can write 

p(S,=l,S+)= 5 . . . 4 f . . . -4 
k,= 1 k ,:=I k,T=L k,y= I k,i;;= I k;il 

Idk,k, *** dk,-,k,dk,k,+, “* dk,m,k,dk,k,+, *” dk,k,+,l 

= -+ . . . + dk,k, . . . dk,_,k, -6 ..a :- dkqk,+, ... d, _ k 
kF1 - 

‘2 r 1 r 
k,-,= I k q+1=’ k,y= I 

**’ + dk,k,+, *** dk,k,+,l 
ksl 
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since, as before, the expression in brackets reduces to 1. Thus 

P(Skq = 1, S,, = 1) = [ei DQ-‘e,,] [e[,D’ -9e,r], 
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which, rewriting, becomes the first expression. This completes the proof of Lemma 
12. 

Note that if i #j but q = r, then P(Si = 1, Sj = 1) = 0. That is, two distinct states 
with the same number of processes in their completed sets cannot both be reached on 
a single trial. This is consistent with Lemma 12 since Do = I and since the expression 
on the right will equal 0. Also note that if i =j (and therefore q = r), the term on the 
right will equal 1, and the expression reduces to that for P(Si = 1). 

THEOREM 3. Let ri denote the number of processes in the completed set of state 
si. Then 

f-1 

E[T] = c (l/ci) e;D”ei. 
i=l 

Proof: Substitute from Corollary 3 and Lemma 11 into Eq. (1). 

THEOREM 4. Let ri denote the number of processes in the completed set of state 
si. Assume that states are labelled so that j > i implies rj > ri. Then, 

f-1 

VAR[T] = c {(l/ci)’ [e;D’iei][2 -e;D”ei]} 
i=l 

+ 2 ,&j { [ l/(cicj)] [ei Driei] [(el Drjpriej) - (e; Drjej)] ). 

ProoJ Substitute from Corollaries 3, 4 and Lemmas 11, 12 into Eq. (2) and 
simplify. 

Example Computations: The Mean 

It may be useful to illustrate the required calculations for several example PERT 
networks. First, consider computations of the expected task duration of the PERT 
network displayed in Fig. 5a. (Note that the expected task duration in this situation is 
simply the expectation of the maximum of two independent, exponentially distributed 
random variables.) The associated OP diagram is displayed in Fig. 5b. Theorem 3 
stated immediately above gives the required calculations for the expected task 
duration. Since some readers may have skipped the proofs and explanation of the 
notation in Theorem 3, a brief explanation is in order. 

Six quantities require interpretation: the constants f, ci, and ri, the row vector e; , 
the column vector e,, and the matrix D. The constant f is equal to the total number of 
states in the OP diagram (f = 4 in the example in Fig. 5). The last state to be 
executed must be labelled sf and the first state to be executed must be labelled s, . In 
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labelling the intermediate states, it is convenient to follow the convention that a state 
with a larger number of processes in its completed set be given a larger index than a 
state with fewer processes in its completed set. It is always possible to label the states 
in accordance with this convention. Only states S, through sf-, are used in the 
computation of the expected task duration. 

The quantity ci is equal to the sum of the rate parameters of the processes current 
in state si. For example, in state s, two processes are current, x, and x2 (see Fig. 5) 
with rate parameters respectively of A, and A,. (Recall that it is assumed that the 
duration Xi of each process xi is exponentially distributed with rate parameter li, i.e., 
the density function f(xi) is defined as Li exp(-lixi].) Thus, in the current example, 
c,=L,+J,, c2=&, and c3=L3. 

The matrix D is a squarefxfmatrix. The component d, in the ith row and thejth 
column is equal to zero if state sj does not follow immediately after state si on a path 
in the OP diagram. So, for example, d,, = 0 since state s, does not follow state S, 
immediately. The component d, is positive if state sj does follow immediately after 
state si on a path in the OP diagram. If such is the case, then d, is set equal to the 
quotient formed by placing the rate parameter of the process that moves the system 
from state si to state sj in the numerator and by placing the quantity ci in the 
denominator. For example, d,, = A,/@, + A,) since the completion of process x, 
moves the system from state s, to state s2. Similarly, d,, = &/(A, + A,) since the 
completion of process x2 moves the system from state s, to state s,. The only other 
positive entries in D are d,, and d,,: d,, =A,/& = 1 and dj4 =J,/L, = 1. All other 
d, are set equal to zero. Recall that Do = I, where I is the identity matrix, i.e., a 
matrix with l’s on the diagonal and O’s everywhere else. 

The quantity ri is set equal to the number of processes in the completed set of state 
si. Thus, since there are no processes in the completed set of state s, , we have r, = 0. 
Similarly, rZ = r3 = 1 and rq = 2. 

Finally, the row vector e; of dimension f has a 1 in column 1 and O’s everywhere 
else. The column vector ej is also of dimension f and has a 1 in row j and O’s 
everywhere else. 

Putting all of this information together and using Theorem 3, one obtains 

3 

E[ T] = 5’ (l/c,) e; Driei 
iY1 

= (l/c,)e;D’le, + (l/c,)e;D’ze, + (1/c3)e;D”e, 

= [ l/(L, + A,)] e;D’e, + (l/L,) e;D’e, + (l/J,) e;D’e, 

= [l/(4 +&)I[11 + [~/~,1[4/(~, +&)I + I~l~*lM~, +4>1. 

One can easily show by other methods that the above quantity is indeed the expected 
value of the maximum of two independent, exponentially distributed random variables 
(e.g., see Townsend, 1974, p. 149, Eq. 6). This completes the discussion of the 
computations required to compute the expected task duration of the PERT network in 
Fig. 5. 
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The computations for more complicated networks require the specification of 
exactly the same sort of information. Thus, for each state si in the OP diagram of the 
relevant PERT network, the quantities ci, D, and Ti must be given (e; and ei follow 
by definition). For the OP diagram as a whole, the number of states f must also be 
known. Briefly, consider the OP diagram in Fig. 6. There are a total of 12 states in 
the diagram (sof= 12). Consider state sj. Since processes x2, x3, and x, are current, 
c3 = AZ f A, + A,. Since process x, completes if a transition is made from state s3 to 
state s,, d,, = A,/@, t 1, t A,). Similarly, d,, = A,/(& + A, t A,) and d,, = ~,/(~, t 
A, t A,). Finally, r3 = 1 since there is one process in the completed set of state So. 
One proceeds through the remaining states in exactly the same fashion after which 
Theorem 3 can be used to compute the expected task duration. 

The Memoryless Property 

Before concluding this section, a final remark about an initially attractive alter- 
native derivation of several of the above lemmas and theorems is in order. It can 
easily be shown that if a random variable Xi has an exponential distribution then 
P(X, - h > t 1 Xi > h) = P(X, > t). One might ask why this “memoryless” property of 
exponential random variables cannot be used to determine, say, the expected task 
duration of a state in the OP diagram, given that the state is entered along path a and 
given that there is only one process in the current set. In light of the above discussion, 
the relevant conditional probability can be written as 

PV& > t I Tai > 0, Tai_, > 0 ,..., T,, > 0) 

i-2 

I 

i-2 

0 < Xd-, - 2 ai-l,jTaj < Xa; - x akiTaj) a: E Cai_, 
j=l j=l 

i-3 i-3 

0 < Xa;_, - z ai-2,jTaj < 
j=l 

Xa; - 1 akjT,il a? E Cafe2 
j=l 

Unfortunately, the memoryless property cannot be applied as is to the above equation 
since the memoryless property is stated in terms of the constants “t” and “h” and not 
in terms of a constant “t” and a linear combination of random variables. Moreover, 
the event on which the above probability is conditioned is much more complicated 
than the one involved in the definition of the memoryless property.’ 

’ Both reviewers of this paper and the Editor suggested that the standard (univariate) memoryless 
property could be used to shorten the proofs. The authors made several attempts to shorten the proofs in 
the direction suggested, but were not successful. 
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Distribution Function 

The density function&(t) of the task duration T can be written as the sum over all 
paths in the OP diagram of the product of the conditional densityf,,,*= ,(t) times the 
probability that path a is taken, i.e., 

fT(O = 2 fT,P,= IQ> w, = 1). 
acr 

By Corollary 2 the conditional density is the convolution of a set of mutuaily 
independent, exponentially distributed random variables each with rate parameter c,~. 

McGill and Gibbon (1965) show how to obtain the conditional density. Briefly, 
they define the time constant win as 

[ 1 

-I 

Win = lJ (I1 -‘c~jIcaj) 1 

j+i 

where the notation I”&,i indicates the product of the terms where j takes on values 
from 1 to n, except for j = i. Then the conditional density function of the task 
duration can be written quite simply as a weighted sum of exponentials 

fr,P,=lW = 2 WinCcri fwbaitl for t 2 0. 
i=l 

These observations lead to 

THEOREM 5. 

ProoJ Substitute the expression for jr, p, = 1 (t) and the expression for P(P, = 1) 
from Theorem 2 into Eq. (4). The distribution function is then obtained by integrating 
over t. 

DISTRIBUTION OF TASK DURATION: GENERAL-GAMMA CASE 

The above methods have been discussed in the context of models which assume 
that the constituent process durations are mutually independent, exponentially 
distributed random variables. It should be noted that the above methods can also be 
used to determine closed form expressions for the mean, variance, and distribution of 
the task duration when the durations of individua1 processes can be expressed as the 
sum of two or more mutually independent random variables, each of which is itself 
exponentially distributed (note that this includes as a special case a gamma&p) 
when the k exponential random variables are independent and identically distributed 
with common rate parameter /I). To see this, note that each process can be considered 
as a set of subprocesses where each subprocess has a completion time which is 
exponentially distributed. 

For example, consider the PERT network in Fig. 7a. This network defines a 
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parallel system with two processes, x, and x2. Suppose that the distribution of the 
duration of each process can be expressed as the sum of two independent, exponential 
random variables. Let x,, and xi2 be the subprocesses associated with process x, and 
let A,, and A,, be the corresponding rate parameters. Similarly, let x2, and xz2 be the 
subprocesses associated with process x2 and let A,, and A,, be the corresponding rate 
parameters. Then the PERT network in Fig. 7a can be expressed as the augmented 
PERT network in Fig. 7b. The construction of the OP diagram and the computation 
of moments of the distribution of the task proceed as usual. 

This line of thought can be extended further. Rather then replace a process with a 
set of subprocesses in series, we could replace a process with an entire PERT network 
of subprocesses (cf. Hartley and Wortham, 1966; Ringer, 1969). Thus, the process 
durations need not be restricted to general-gamma; certain probability mixtures of 
general-gamma distributions can serve as well. However, this level of generality will 
not be pursued any further in this paper. 

DISCUSSION 

In the first part of this section, we illustrate the Order-of-Processing method with 
applications to the study of two psychological phenomena, memory and visual 
search. In the second and final part of this section, the flexibility of the Order-of- 
Processing method is emphasized. 

Memory and Visual Search 

The study of memory and visual search has been the focus of continuing attention 

a x1 

FIG. 7. (a) A two-process parallel PERT network and (b) an example augmentation to cover 
situations in which the process durations are mutually independent, general-gamma distributed random 
variables. 
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for the past twenty years or so. (For a recent review, see Schneider and Shiffrin, 
1977; Shiffrin and Schneider, 1977.) In broad outline, many memory and visual 
search tasks can be viewed as the problem of identifying a target character in an 
array of characters. For example, in a standard memory scanning task (e.g., 
Sternberg, 1966), subjects must indicate on each trial whether a single target display 
character appears in a previously memorized set of stimuli. In a typical visual search 
experiment, subjects are told to scan a display of characters for a prespecified target. 
The target appears on a random one-half of the trials; only distracters appear on the 
remaining trials. 

In both the memory scanning task and the visual search task, the core of the 
problem for the subject is to execute a set of cognitive processes each of which results 
in the comparison between an encoded representation of the target character and an 
encoded representation of one of the characters in the search set. Of course, the 
subject must also execute the cognitive processes which result in the characters being 
encoded. However, in the memory scanning task this is accomplished for all stimuli 
in the search set prior to the onset of the trial; only the target character remains to be 
encoded. Thus, it will simplify matters if, for the moment, we restrict attention to the 
memory scanning task. 

A number of different models of the memory scanning task have been developed 
(e.g., see Sternberg, 1975). The simplest models differ in comparison mechanisms 
(serial or parallel) and search strategies (self-terminating or exhaustive). A serial 
comparison mechanism is one which executes only one comparison at a time, while a 
parallel comparison mechanism is one which executes all comparisons 
simultaneously. A search strategy is self-terminating if comparison activity stops as 
soon as the target is identified, while a search strategy is exhaustive if comparison 
activity does not stop until1 all characters in the search set have been examined. 

The Order-of-Processing method can be used to formulate and quantify models 
with the above mechanisms and strategies. Immediately below, application of the OP 
method to both serial and parallel comparison models of memory scanning are 
discussed. Consideration is given oniy to the exhaustive search strategy. Application 
of the method to models with a self-terminating search strategy would require a more 
extensive discussion of task systems than is warranted in the current context. 

In the discussion that follows, it will be assumed that there are n stimuli in the 
(encoded) search set. Let x, ,..., x, denote the corresponding comparison processes. 
That is, xi denotes the comparison of the target character with the ith stimulus in the 
search set. (An alternate formulation would be to define xi as a process which 
includes the random selection of a stimulus from the search set, but this seems an 
unnecessary complication for our present purposes of illustration.) 

Serial Comparison. Consider first a serial comparison model. In particular, 
consider a serial comparison model with exhaustive search. Thus, each of the 
processes x, ,..., x, must be executed in turn. For the sake of simplicity, let x0 be the 
only process which precedes the first comparison and let x,+ I be the only process 
which follows the last comparison. We intend the process x,, to include the encoding 
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of the target stimulus and the process x,+, to include whatever motor processes are 
involved in responding. Assume that the durations of all processes are mutually 
independent, exponentially distributed random variables. 

The exhaustive search version of the serial comparison model is described by a 
PERT network having exactly one path, along which appear the processes 
xo,xlr...,x,+1 in that order. Thus, the OP diagram describing the model will consist 
of a single path having n + 3 states. For i = 0, I,..., n + 1, the current set of state si 
consists of the process xi. Of course, the current set of the final state s,,+* is empty. 
For i = 1, 2,..., n + 2, the completed set of state si is {x0,x, ,..., xi-i}. As usual, the 
completed set of the initial state so is empty. The expectation of the task duration T 
of a serial exhaustive search is the sum of the expectations of the state durations 7” 
(0 <j ,< n + 1). The computations follow directly from the discussion in the previous 
section. In this simple serial case, no computational advantage is achieved by using 
the OP method over more traditional methods. 

Parallel Comparison. Consider next a parallel comparison model of a memory 
search task. If it is assumed that process x0 must complete before processes 
xi, x2 ,..., x, begin, that processes x,, x2 ,..., x, are executed in parallel, and that all 
processes xi (j < n) must finish before process x,, I begins, then the OP diagram 
would be constructed as follows. There is one state, say state so, at level 0 and one 
process, x0, in its current set. There is also one state, say state s, , at level 1, n 
processes (xi ,..., xJ in the current set of this state and one process, x0, in its 
completed set. At each level i (1 < i < n) there will be a total of (i” ,) states. Each 
state will have i processes in the completed set and n - i + 1 processes in the current 
set. Formation of the contents of the current and completed sets of states at each level 
i (I < i < n) follows in a straightforward fashion from the discussion of the 
construction of OP diagrams in an earlier section. There will be one process, x, + , , in 
the current set of the one state at level n + 1 and there will be n + 1 processes 
( x0,x, ,..., x,,) in the completed set. Finally, all n + 2 processes will appear in the 
completed set of the one state at level n + 2. Computation of the expected duration of 
a parallel exhaustive search can be computed using the results presented in the 
previous section. While the OP method did not facilitate computation of the desired 
quantities for the serial model, it does systematize the computations required for the 
parallel model. 

It can be .noted in passing that the OP diagram makes transparent the reason 
parallel systems with constant processing rates are not identifiably different from 
serial systems with different processing orders (see, e.g., Townsend, 1972). Consider 
the simple parallel PERT network at the top of Fig. 5. Assume that 2L, = 2,. Then 
an equivalent serial system is (a) one in which x, is processed before x2 with 
probability ,l,/@, + A,) = 3 (the probability in the parallel system of making a tran- 
sition from state S, to state s2), in which the rate parameter governing the duration of 
x1 is 4, + A,, and in which the rate parameter governing the duration of x2 is 2L, ; 
and (b) one in which x, is processed before x, with probability $ (the probability in 
the parallel system of making a transition from state s, to state s3), in which the rate 
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parameter governing the duration of x2 is 1, + &, and in which the rate parameter 
governing the duration of X, is 1,. 

Serial-Parallel Comparison. Consider next a model of visual search behavior. As 
mentioned earlier, subjects in a typical visual search experiment are told to scan a 
display of characters for a prespecilied target. The target appears on a random one- 
half of the trials; only distracters appear on the remaining trials. Thus, in contrast to 
the memory scanning task, the target stimulus is encoded prior to the onset of the 
trial. However, the stimuli in the search set must be encoded during the trial. 

One possible hybrid serial-parallel model of visual search has been described by 
Fisher (Note 3). It is assumed that the characters in the display are encoded one at a 
time. It is also assumed that the number of comparison processes which can occur 
simultaneously is limited and greater than one. That is, it is assumed that the subject 
can compare up to k display characters with the target at any one moment in time. 

A PERT network can be used to represent the serial-parallel comparison model 
when the number of stimuli in the search set does not exceed k. For example, suppose 
there are two stimuli in the search set and k = 2 (see Fig. 8a). Process E, refers to the 
encoding or scanning of the first stimulus to which attention is directed, while process 
E, refers to the encoding or scanning of the second stimulus to which attention is 
directed. Process C, refers to the comparison of the stimulus scanned by process E, 
with the target, while process C, refers to the comparison of the stimulus scanned by 
process E, with the target. This somewhat awkward notation for the labelling of the 
processes was chosen because it considerably simplifies the labelling of the 
corresponding OP diagram. Note that the scanning processes E, and E, are executed 
sequentially whereas the comparison processes C, and C, are executed concurrently. 
The response process R, cannot begin until both comparison process C, and C, are 
finished. Since the case of k = 2 with two search stimuli is representable as a PERT 
network, there is no need to comment here on the construction of the corresponding 
OP diagram (see, Fig. 8b). Computation of the expected serial-parallel exhaustive 
task duration proceeds as usual. 

Flexibility of the OP Method 

The above approach is useful if the durations of the individual processes in the 
system are mutually independent, exponentially distributed random variables. One 
might well ask whether the durations of psychological processes or tasks are well 
approximated by exponential random variables. Some recent evidence suggests that 
this is indeed the case (Ashby, 1982; Ashby and Townsend, 1980; Kofeld, Santee, 
and Wallace, 1981), at least for certain mental processes. However, it is important to 
bear in mind that the above approach can handle more complex distributions. 
Specifically, it was noted that the approach can be used to model the durations of 
processes which have a gamma distribution, and more generally, the durations of 
tasks which are SUFZS of mutually independent, exponentially distributed random 
variables. These distributions do not have the seemingly counterintuitive memoryless 
property of the exponential distribution. In addition, with an appropriate choice of the 
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FIG. 8. (a) A PERT network used to represent the processing in a serial-parallel comparison model 
when there are two stimuli in the search set and two comparison processors. (b) The associated OP 
diagram. 

parameters these distributions are single peaked and have a skewness to the right, two 
properties which are found in many empirical studies of the reaction time 
distribution. 

CONCLUSION 

Psychological behaviors are presumably mediated by one or more cognitive 
processes. Reaction time is a function of the arrangement of the processes and of the 
distributions of the process durations. It was shown how to compute closed form 
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expressions for the mean, variance, and distribution of reaction time when the 
processes can be arranged in a PERT network and when the durations of the 
processes are either mutually independent exponential random variables or sums of 
mutually independent exponential random variables. The method relied heavily on the 
translation of the partial ordering of the processes in a PERT network into an 
ordering on the processes in an Order-Of-Processing (OP) diagram. It was also 
shown that the OP diagram could be used to obtain the expected exhaustive-search 
task durations of serial, parallel and hybrid serial-parallel models of memory and 
visual search. 

Schweickert (1978, 1980) has shown how to determine the arrangement of 
processes in a PERT network when it is assumed that the durations of the individual 
processes are constants. It remains to be seen whether the above methods can be used 
to determine the arrangement of the processes when the durations of the processes 
vary from trial to trial. 
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