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The class of first order polynomial measurement representations is defined, and a method 
for proving the existence of such representations is described. The method is used to prove the 
existence of first order polynomial generalizations of expected utility theory, difference 
measurement, and additive conjoint measurement. It is then argued that first order polynomial 
representations provide a deep and far reaching characterization of psychological invariance 
for subjective magnitudes of multiattributed stimuli. To substantiate this point, two 
applications of first order polynomial representation theory to the foundations of 
psychophysics are described. First, Relation theory, a theory of subjective magnitude 
proposed by Shepard (Journal of Mathematical Psychology, 1981, 24, 21-57) and Krantz 
(Journal of Mathematical Psychology, 1972, 9, 168-199), is generalized to a theory of 
magnitude for multiattributed stimuli. The generalization is based on a postulate of context 
invariance for the constituent uniattribute magnitudes of a multiattribute magnitude. Second, 
the power law for subjective magnitude is generalized to a multiattribute version of the power 
law. Finally, it is argued that a common logical pattern underlies multiattribute 
generalizations of psychological theories to first order polynomial representations. This 
abstract pattern suggests a strategy for theory construction in multiattribute psychophysics. 

Circa 1970, Ralph Keeney and Howard Raiffa showed how utility representations 
could be generalized to a broad class of combination rules called quasi-additive, 
quasi-separable, or multilinear utility functions (Keeney, 1968, 197 1, 1972; Keeney 
& Raiffa, 1976; Raiffa, 1969). This class of utility representations can be defined as 
the class of real valued functions determined by some polynomial in arbitrarily many 
variables, none of which is raised to a power higher than one. Essentially, Keeney 
and Raiffa found that a utility function for a multiattributed set of consequences 
could be extended to a multilinear representation whenever every attribute satisfied a 
property called utility independence with respect to all remaining attributes. An 
analogous generalization of difference measurement was achieved more recently by 
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Dyer and Sarin (1979), working in the theory of riskless value, when they showed 
that the property of utility independence could be reformulated in the framework of 
the positive difference structure. 

Although the importance of this work to theoretical and practical decision making 
is evident, it has not yet been recognized that it suggests a new and powerful 
approach to the psychophysics of subjective magnitude for multiattributed stimuli. 
This essay show how utility-inspired developments in polynomial measurement can 
be interpreted psychophysically as a natural generalization of relational theories of 
subjective magnitude proposed by Krantz (1972) and Shepard (1981). The power 
law for subjective magnitude will then be generalized to multiattributed stimuli. These 
generalizations will be found to depend on a characterization of context invariant 
psychophysical judgments. 

The essay is organized into live sections. Section I defines the basic formalism for 
a class of measurement representations called first order polynomial representations. 
Section II applies this formalism to three basic measurements structures, utility 
measurement, difference measurement, and additive conjoint measurement. The 
emphasis here will be on abstract similarities among the generalizations of these 
theories to first order polynomial representations. In Section III, a theory of 
subjective magnitude for multiattributed stimuli will be presented that generalizes 
Relation theory, a theory of subjective magnitude proposed by Shepard (1981) and 
Krantz (1972). Section IV describes a multiattribute generalization of the power law 
for subjective magnitude. Finally, it is argued in Section V that first order polynomial 
measurement provides a general methodology for the formulation of multiattribute 
psychophysical theories. The fundamental, substantive construct of this approach is 
an abstract characterization of context invariance for psychophysical judgment. 

I. FIRST ORDER POLYNOMIALS 

This section presents an abstract characterization of first order polynomial 
representations. Material drawn from the algebraic theory of polynomials (cf. 
MacLane & Birkhoff, 1967) and the foundations of measurement (cf. Krantz, Lute, 
Suppes, & Tversky, 1971) is assumed to be familiar. The principal mathematical 
properties of first order polynomial representations are stated in subsection I(A) 
while proofs establishing these properties are given in subsection I(B). The proofs can 
be skipped since an understanding of them is not presupposed anywhere in the essay. 

I(A). Representation Theory 

By a first order polynomial in N variables, we mean a real polynomial in N 
variables in which no variable is raised to a power other than 0 or 1. For example, 
the general form of a first order polynomial in three variables is 
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where ci E Re (Re = the real numbers) for i = 0, l,..., 7. We say that polynomials P 
and Q are the same if they can both be transformed into the same polynomial R by 
reordering terms and adding together the coefficients of common products of 
variables. For example, P= ulvZ + 3v, + 40, + u,uZ and Q = 2u,u, + u, + 4u, + 2u, 
are the same because they can both be transformed to R = 2u, u2 + 321, + 4u,. 
Although for greatest rigor, an equivalence relation among polynomials should be 
defined by formalizing the notions of reordering terms and summing coefficients of 
common products, we will assume that this equivalence relation is clear. Equivalence 
of the polynomials P and Q will be expressed as P = Q, since it is the equivalence 
class of a polynomial and not its typographical form that is of interest here. 

First order polynomials can be expressed in a more versatile notation as follows. 
Let N = { 1, 2,..., N} and let W be a subset of N. Let n, denote the product of all 
variables uj forj E W. For example, if W = (2, 7, 9), then n, = uZu,ug. We stipulate 
that l7, = 1, where 0 is the empty set. Under these conventions, the general form of a 
first order polynomial P in N variables is 

P= 2 c,n,, 
WrN 

where the summation is over the subsets W of N, and each cw is a real number. 
Every first order polynomial has a unique expression of this form (ignoring changes 
in the order of addition). Henceforth, we will let FOP abbreviate the expression first 
order polynomial. 

LetA=A,XA,X... x A,, where for every i, Ai is a nonempty subset of Re. Any 
x E A is an ordered sequence, and as a notational convention, xi will denote the ith 
component of x-thus, x = (xi, x2,..., xN). For each product Z7, of variables, let 
fi,: A --t Re be the function taking x E A to the multiplicative product of the Xj for 
j E W. For example, if x = (2,5,3,3) and W = { 1,3,4}, then n,(x) = 2 . 3 . 3 = 18. 
(By convention, n&x) = 1 for any x E A). We now define the FOP function 
P: A + Re corresponding to P = C c,n, by the rule that for any x E A, 

F(x) = z] c,l7,(x), 
where summation is over all subsets W of N. 

The main mathematical result of this section is to identify the following necessary 
and sufficient condition for a function F: A + Re to be represented by a FOP P in the 
sense that P=F. Let A=A,XA*X a.. X A, C Re”’ for some N > 1. In order to 
eliminate trivial cases, we assume that every Ai contains at least two elements. Let xi 
denote the Cartesian product that is like A except that the ith factor is deleted, i.e., 

&=A, x a** XAi-1 XAi+l X *em XA N’ 

For any x E A, let Zi denote the element in & that is like x except that the ith 
component has been deleted, i.e., 

xi = (x, )...) xi-, , xi+, )...) x,). 
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We adopt a convention whereby if N = 1,x, = {a} and for any x E A = A 1, X, = 0. 
The characteristic property of FOP functions is stated in the following definition. 

DEFINITION 1. Let A=A,xA,x...xA,GR~~ and let F:A-+Re be any 
function. We say that F is multiaffine iff for every i E N there exist functions 
Gi : zi -t Re and H, : Ai -+ Re such that for every x E A, 

F(X) = Gi(~i) Xi + Hi. (1) 

The measurement theory of FOP representations is based on the fact, asserted in 
Lemma 1, that the multiafftne property is necessary and sufficient for a function F to 
be represented by a FOP P. 

LEMMA 1 (Representation lemma for multiaffine functions of real variables). Let 
A =A, XA, x .a* XA,, where each Ai c Re contains at least two elements, and let 
F: A + Re be any function. Then, 

(i) There exists a FOP P satisfying F = p iff F is multiaflne. 

(ii) If P and Q are any FOPS satisfying P= F = 0, then P = Q. 

It is easy to prove that F is multiaffine whenever F = p for some FOP P. The 
converse implication and the uniqueness of P are proved in subsection I(B) by 
induction on the dimensionality N of A. 

A minor generalization of Lemma 1 is useful in the context of measurement theory. 
Let K=K, XK, x . . . x KN be a Cartesian product of arbitrary sets, and let 
F: K + Re be any function. We need to define what it means for F to be representable 
as a FOP. 

By a scale pi on Ki, we simply mean any function di: K, + Re. Let 
0 = (4 I 9 h T-..Y 4,) b e a sequence of scales on Ki, for each i E N. For any x E K, 
define Q(x) by 

Suppose P is any FOP in N variables. We let P . # denote the polynomial resulting 
from the replacement of u, by #r (for every i) throughout the polynomial. In other 
words, let n,(4) denote the formal product of scales $j for j E W, and then by 
definition, P - ( = C c,n,(#). We regard $i, &,..., 4, as the N variables of the 
p$ynomial P - 4. To any n,(() there exists a function d,(4): K + Re defined by 
n,(#)[x] = n,@(x)) for any x E K. In other words, fi,,#)[x] denotes the product of 
the real numbers (!(xJ for i E W. Corresponding to the polynomial P . 4 is a 
@ynomial function, denoted p - ), that is defined by the condition: for any x E K, 

p - i(x) = c %fiw(4)[Xl. It is easy to check that F - 4(x) = F@(x)). We say that a 
function F: K + Re is representable by the polynomial P . ) iff F = p. 4. 

The distinction between the polynomial P . 4 regarded as a purely formal object, 
and the function P - 4: K + Re may seem overly technical, but it is useful in 



156 JOHN M.MIYAMOTO 

discussing the uniqueness of representations. For if $ and A are different sequences of 
scales, and P and Q are polynomials whose coefficients differ, then necessarily 
P - $ # Q . A, but it is still possible that p. 4 = Q . II. Hence, if F = P. 4 = Q . 1, the 
function F is representable by two different polynomials, P - Q and Q . A. 

Definition 1 and Lemma 1 can now be reformulated in a way that is better suited 
to measurement theoretic endeavors. We maintain the notation whereby 

Ki=K, x *a* X Ki-1 X Ki+l X *** X K,, 

xi = (x, )...) xi-, ) Xi+ * )...) x&J. 

By convention, K, = {a} and X1 = 0 when N = 1. To eliminate trivial cases from the 
lemma, we assume once again that every Ki is essential in the sense that for every i, 
there exist x, y E K such that xj = vj for all j # i, and xi # yi and F(x) # F(y). Some 
notation will be useful in expressing this more simply. For any x E K and a E Ki, let 
xha denote the sequence which is like x except that the ith component has been 
replaced by a, that is, 

In these terms, the factor Ki is essential iff there exist a, b E Ki and x E K such that 
F(Xlia) Z P(xltb)* T o motivate the assumption that every factor is essential, it will be 
useful to introduce the important concept of a function F that is multiaffine with 
respect to a sequence 4 of scales. 

DEFINITION 2. Let K = K, x K, x .+- x K, be a Cartesian product of arbitrary 
sets, let F: K -+ Re be any function, and let d = (#1, # 2,..., #,,,) be a sequence of scales, 
where oi : Ki -+ Re for every i E N. Then we say that F is multiaflne with respect to 
the sequence # of scales iff for every i E N, there exist functions Gi: Ki + Re and 
Hi : Ki -+ Re such that for every x E K, 

F(X) = Gi(~i) pi + Hi. 

When F is multiaffine with respect to 4, F(xlia) # F(xlib) implies that $i(a) # #i(b). 
The main purpose of the assumption that every Ki is essential is to establish the 
existence of a, b E K, satisfying this last inequality. Using these concepts, Lemma 2 
generalizes Lemma 1 to Cartesian products of arbitrary sets. 

LEMMA 2. Let K=K, XK,X .-. x KN be a Cartesian product of arbitrary sets 
and let F: K + Re be any function such that for every i E N, there exist a, b E Ki and 
x E K satisfying F(xlia) # F(x Ii b). Then for any sequence $ of scales, 

(i) F = P- $ for some FOP P iff F is multiaflne with respect to $. 

(ii) If P and Q are any FOPS satisfying P. 4 = F = Q . (, then P = Q. 

In addition to the uniqueness result stated in Lemma 2, we must also consider the 
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question of the relationship between FOPS P and Q such that F = p. (s = 0 . 1 for 
distinct sequences 4 and A of scales. To this end, let F: K + Re be any function that is 
multiaffine with respect to two different sequences 4 and il of scales, and let 

P= x c,n, and Q = K’ d,Il,: 
w’s N UCN 

be two FOPS satisfying p. Q = F = Q . A. If every factor K, is essential, then for any 
i E N, there exist real ai and pi such that $j = aidi +/Ii and ai # 0. Furthermore, 
letting a = (a,, a2 ,..., (I~) and p = (/I,, /I2 ,..., /I,,,), the coeffkients d, of Q are related to 
the coeffkients c, of P by the equation 

d, = &(a) \‘ c,fi,-,#) 
WTU 

for any UG N. Here, n,(a) denotes the multiplicative product of the ai for i E U, 
and If,-,(p) denotes the multiplicative product of the pi for j E W- U. Since 
D@(a) = Zi’JJ) = 1 by convention, the preceding expression can be simplified in the 
case where U = 0 to 

d, = L’ cwfiw(/3). 
WTN 

As Lemma 3 asserts, these relationships between 0 and A and between the coefficients 
of P and Q are sufficient as well as necessary for p. Q = Q . 1. 

LEMMA 3. Let K, x K, x ... x KN be a Cartesian product of arbitrary sets, and 
let F: K -+ Re be any function such that for every i E N, there exist a, b E Ki and 
x E K satisfying F(xlia) # F(xl,b). Suppose P is a FOP and 4 a sequence of scales 
such that F = p. 4, and let Q be any other FOP and 1 any other sequence of scales. 
If we express P and Q in the form 

P= s c,n, and Q= c 44’w 
WEN USN 

then p 1 $ = F = 0. A zr (i) and (ii) hold: 

(i) For every i E N, there exist ai, pi E Re such that $i = aili + pi and ai # 0. 

(ii) Let a = (a,, a2 ,..., aN) and /I = (/3,, p2 ,..., pN) for the ai and pi satisfying (i). 
Then 

d,=fi,(a) v c,fi,-.(p) 
WZU 

for any U G N, and 

d,= r c,fi,@). 
WrN 
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I(B). .Proofs 

Proof of Lemma 1. First, we prove that if there exists a FOP P satisfying F = p, 
then F is multiaffine. Suppose that F = p for some FOP P. Let N* denote the power 
set of N. For any i, partition N* into subsets ri and Ai by the conditions w  E Ti iff 
iEWandWEA,iffi@W.Now 

P= K- cwnw= -c cwnw + L‘ c,n, 
WZ’ WEi) WEdi 

= L7 

wSri 
cWnW-[i) Vi+ x CWDW* 

WEAN 

LetR,=C WEri Cw17w_,i, and Si = cWsAi Cwnw. Then P = Riui + Si, so 

F(X) = I = R,(~i) Xi + Si(~i) 

for any x E A. Hence F is multiafftne. This proves half of part (i) of the lemma. 
Note that if the hypotheses of part (ii) are satisfied, i.e., that P and Q are FOPS 

satisfying P= F = 0, then by what we have just proved, F is multiaffine. If we now 
show that to any multiaffine function F there exists a unique FOP P satisfying F = p, 
then the remaining half of part (i) and part (ii) of the lemma will be established. Let 
F be a multialfine function. We prove that there exists a unique FOP P (up to 
equivalence) satisfying F = p by induction on A’, the dimensionality of the domain of 
F. 

For N = 1, A = A, and F multiaffine means that there exist G, and H, satisfying 

F(x) = G,@)x + H,(0) 

for every x E A. Let P = G,(0) ui + H,(0). Evidently, F(x) = @) for any x E A. 
Let Q = au, + p be any other FOP of one variable satisfying F = Q. Choose x, y E A 
such that F(x) # F(y). Since P= F = 0, 

G,(0)x + H,(0) = ax + p, 

G,(0)y + H,(0) = w  + P. 

Therefore G,(0)(x - JJ) = a(x - y). Since x - y # 0, G,(0) = a. Hence, H,(0) = p. 
Hence P = Q, and,the lemma holds for N = 1. 

Now assume the lemma holds for some iV > 1, and we establish it for N + 1. For 
notational simplicity, let M denote N + 1. Let F be a multiaffine function with 
domain A=A, x ... xA,. For any tEA,, define a function F,:&,-+Re as 
follows. For any u E A,, choose x E A such that XM = u and let F,(u) = F(x I,,,t), 
where the notation x),t is defined in the text. Note that the value of Fl(u) does not 
depend on the particular x chosen, for if z E A is any other element satisfying z;M = u, 
then zl,t = xIMft’ By our notational conventions, (xJ~~)~ denotes the sequence that is 
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like x j,t except that the kth component is omitted. Since F is multiaffine by 
hypothesis, we have for any x E A and any k E N, that 

Fttz~) = F(xl~f) = Gk(t4dM xk + Hk((xhff )k)’ (2) 

For any k E N, let A,, denote the Cartesian product that is like A, except that the 
factor A, has been deleted, and let ZkM denote the element of A,, that is like x E A 
except that the kth and the Mth components have been omitted. (I,# = {0} and 
ZkkM = 0 when M = 2). Define functions G,*: xk, + Re and Hz: lk,,, + Re by 

Gk*t-%.u) = Gk((Xl,+d)kh Hk*(zkM) = Hk((Xhff )k)* 

These function are well defined because if 2 kM = jjkjikM, then x IM t and y I,,, t differ at 
most on the kth compon_ent, so (~j~t)~ = (yj,t),. 

But now for any u E A, and k E N, choose x E A such that FM = U, and (2) can be 
rewritten as 

F,(u) =F(xl,d) = Gk*@,m) xk + &?@kM) 

= Gf(Uk) uk t Hf(&) 

since uk = xk and U;, = XkM. Thus, F, is a multiafftne function whose domain A, has 
N factors A, ,..., A,. By the induction hypothesis there exists a FOP Q, in the 
variables u , ,..., uN such that F, = Q,. Since t E A, was chosen arbitrarily, any t E A, 
determines a function FI : A, -+ Re and a FOP Q, satisfying F, = Qt. 

Note that for any x E A and t E A,,,, we have (xly t ),,, = &, by the definitions of 
the operations IM and (-),,,. Since F is multiaffrne, we have 

= G,dCh,~M~ + ~a+,((-Wh,) 
= G,,&,)f t H,,,(&,). (3) 

A similar derivation yields Fs(XM) = G,(X,,,)s + HFn(&) for any other s # t such that 
s E A,. Hence 

F,(&) -F&J = G,(&)(t - s). (4) 

Let Q, and Q, be FOPS satisfying Qt = Ft and Qs = F,, for any fixed choice of 
t, s E A, such that t # s. Define the polynomial R by R = (t - s)-‘(Q, - Q,). Since 
Q, and Q, are FOPS in the variables 5, ,..., u,,,, R is also a FOP in these variables. 
Moreover, (4) implies that G,&,) = R(&) for any x EA. From (3) and the iden- 
tities e,=F, and I?= G,, we have H,(2M) = Q,(f,,,) - I?(Z,)t. Let S be the 
polynomial determined by S = Q, - tR. Evidently S is a FOP in the variables 
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v, ,..., vN satisfying HM = s Define a polynomial P by P = Rv, + S. Since v,+, is not a 
variable of R, Rv, is a FOP, hence so is P. For any x E A, 

F(x) = G&d x, + H,&w) 

= &f,) x, t g(&) = Rv, t S(x) 

= F(x). 

Thus F = p for the FOP P. 
Now let Q = C d,Zl, be any other FOP satisfying F = 0. Letting ri and di be the 

partition of M*, the power set of M, defined at the beginning of the proof, we must 
have 

Q= x d,l7,= c dJ7, t c d,n, 
ucw UErM UEAM uM t 2 dun, 

UEA, 

= R’v, + S’, 

where R’ = JJ dJ7U-,M, and S’ = C d,ZZ, (summation over elements of r,,,, and 
AM). Note that R’ and S’ are FOPS in the N variables v,,..., vN. 

Since P= 0, we have 
-- 
R(xM) x,,, t s(XM) = if’&,) x, t if?(&) 

for any x E A. Successively setting xy q e ual to elements a and b of A, such that 
a # b yields 

R(q& + S(&) = R’(X& t F (YM), 

E(.Qb t S(..q = R’ (&)b t s, (fM). 

Hence q&&2 - b) = R’(q$&l - 6). Since a-b#O, we must have 
lqZM) = R’(Q, and furthermore, this implies g(ZM) = ,?‘(Z-,). Since x E A was 
arbitrary, we have proved I?= R’ and ,!?= $‘. The domain A, of R and s has N 
factors, and hence, the induction hypothesis implies that R = R’ and S = S’. 
Therefore, P = Rv, $ S = Q. Q.E.D. 

Proof of Lemma 2. We first prove part (i) of Lemma 2 for the case N = 1. 
Suppose N = 1 and F = p s # for some FOP P. Then P - $ = alI t /I for real a and /3. 
Define G, and H, by G,(0) = a and H,(B) =/?. Then F(x) = G,(.f,) (I(xl) t H,(.f,) 
for any x E K =K, so F is multiafflne with respect to 4. Conversely, if F is 
multitine with respect to 4 = (#,), then P = G,(0) v, t H,(0) satisfies F = p. 4. 

Now suppose that N > 1. We prove directly that F = p. 4 for some FOP P iff F is 
multiaffine with respect to $. First suppose that F = p. 4 for some FOP P. From the 
proof of Lemma 1, we know that for any i E N, there exist FOPS Ri and Si in the 
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variables vi forj # i such that P = Rivi + Si. Let $i denote the sequence of scales that 
is like Q but with the ith component omitted. Then for any x E K, 

F(x) = F * 4(x) = F(~(x)) 
- - - - 

= Ri@i(fi>) #i(Xi) + Si(#i(‘i)>* 

Hence F is multiaffine with respect to 4. 
Next suppose that F is multiaffine with respect to 4. Let Im 4 denote the set of all 

q E Re”’ such that r,~ = $(x) for some x E K, and define Im ii similarly (for every 
i E N). Suppose there exists a function F*: Im 4 -+ Re, and for every i, there exist 
a, b E Ki and functions Gjr : Im Ji --f Re and Hi*: Im Ji + Re such that 

F” (4(x)> = F(x), 

#i(a) + #i(b), 

Gi”(q&)) = Gi(Zi), 

HT (&(,q)) = Hi(&), 

for all x E K. We first show that these assumptions yield an easy proof of the 
existence and uniqueness of the FOP P satisfying F = p. 4, and then show that if F is 
multiaffine with respect to 4, the desired functions F*, CT, and Hi*, and elements 
a, b E Ki exist. 

Since F is multiaffine with respect to 4, and assuming the existence of F*, G”, and 
H:, we must have 

F*(d(x)) = F(x) 

= Gi(-fi) #i(xi) + Hi(fi) 

= Gjr($i(zl)) #i(Xi> + ff,*(Ji(~i>> 

for any 4(x) E Im Q and i E N. Hence F* is multiafftine in the sense of definition 1. 
Since 

Im Q = d,(Kl) x &WA x **. x AVKV) 
and we are assuming that for every i, there exist a, b E Ki such that d,(u) # gi(b), the 
hypotheses of Lemma 1 are satisfied and there exists a FOP P such that F* = E 
Therefore F = F* . Q = p. 4 and part (i) of the lemma has been proven. To prove 
part (ii), let Q be any other FOP satisfying F = Q . (. Since this implies that 
P= F* = Q, we may invoke Lemma 1 to deduce P = Q. Thus the proof of Lemma 2 
is completed once the existence of the required functions F*, G,+, Hr and elements 
a, b E K, has been established under the assumption that F is multiaffine with respect 
to $li 

We first show that $(x) = b(y) implies that F(x) = F(y) for any x, y E K. Suppose 
4(x) = 4(y) and define a sequence u’, ul,..., uN of elements of K by 
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uo = (x,,xz ,“.) XJ =x, 

u’ = (YlYX 2Y.,XN) =uOIIY1, 

Uk = (Yl ,.*., y,, xk+ 1 ,*.., XN) = Uk-’ ikyk, 

UN = (Y*vY 1 2 3”*, YN = UN- ’ IN y, = y. 

We show by induction that F(x) = F(u’) for all j E N. If j = 0, F(x) = F(u”) by 
definition of u’. Now suppose F(x) = F(u’) for all j,< k < A$ and we prove 
F(x) = F(u~+ ‘). For notational simplicity, let m = k + 1, let u = uk and let w  = ukt ‘. 
The sequences u and w  differ only on the mth component since w  7 u Irn y,,, by 
definition. Hence V; = tim. Moreover, #,Ju,,J = 4,(x,,,) = #,( y,,J = $,,,(w,J because 
o(x) = ((y). Hence, these identities and the fact that F is multiaffrne with respect to 4 
yields that 

F(x) = F(u) = G,(~,) hn@m> + H,(fltn) 

= GA@,,) $m(~rn) + HA*,) 

= F(w) = F(Uk+ I). 

Hence, F(x) = F(uN) = F(y), and we have proved that $(x) =4(y) implies 
F(x) = F(y). But this shows that the condition F*@(x)) = F(x) determines a well- 
defined function F*: Im 4 -+ Re, so the existence of F* has been established. 

Now we show that for any i E N, there exist a, b E K, such that $,(a) # pi. Note 
that for any x E K and Q E Ki, (xlia )i = fi by definition of the operations (-)i and Ii. 
Now choose x E K and Q, b E Ki such that F(xlia) # F(xl, b). Since F is multiaffine 
with respect to 4, 

G,(zi) #t(a) + Hi(fi) = Gi((XIia )i) #i(a) + Hi((XIiQ)i) 

= F(xI,a) 

f f’(Xlib) 

= G,((xlib>i) tii(b> + Hi((xIib)i) 
= Gi(T,) #i(b) + Hi(fi)* 

Therefore #*(a) # (i(b). 
Finally we show that $JZ,) = Ji(V;) implies that G,(%,) = G,(jji) and 

H,&) = H,(yi) for any x, y E K. Suppose &(Zi) = $Jjj,). Then #(xl,t) = #(y l,t) for 
any t E K,, and hence F(x Iit) = F( y lit). But then 

G,(-fi) g,(t) + Ht(fi) = J’(xItt) = f’(Y Iit) 

= GAYi) #l(t) + ff&LYi). 
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Hence [G&ii) - G,(jj*)] 4,(t) + [H,&) - Hi( = 0. Since this last relationship 
holds when we set t equal to elements a or b of Ki such that di(U) # 4&b), we must 
have G,(fi) = G,( jji) and Hi(Ri) = H,( yi). Having established that (i(Zi) = $i( yi) 
imp& G,(,Yi) = Gin and _Hi(fi) = H,(yi), it is clear that the conditions 
G,*<#i(-f,>> = Gi(fi) and Hi*(#i(Zi)) = Hi(fi) determine well defined functions 
Gjr:Im#i+ReandH~:Im#i-+Re. Q.E.D. 

Proof of Lemma 3. First assume that 7. $ = F = 0 . A. We show that (i) and (ii) 
hold. 

(i) Since Lemma 2 implies that F is multiaffine with respect to 4 and A, there 
exist functions Gi, Hi, gi, and hi satisfying 

F(X) = Gi(fi) #((Xi) + Hi(-fi) 

= gi(zj) nj(xi> + hi(fi) 

for any iE N and x E K. Now choose u E K and a, b E Ki such that 
F(ulia)#F(u(ib). Since (~l~t)~=%~ for any XE K and tE Ki, we must have 

0 f F(u Iia) - F(u lib) = Gi(ui) [#i(a) - Pi(b)I 
= gi(Qi)[li(a) - nil* 

Hence Gi(tii) # 0, gi(Ui) # 0, I # di(b), and A,(U) # I. Furthermore, 

F(u Iit) = Gi(ci) #i(f) + ffi(ci) 

= gi(Uj) nj(t) + hj(Ej) 

for any t E Ki. Therefore 

Bi(t> = [ gd~i)/Gdfii)l J,(t) + [hi(ui) - Hi(fii)IIGd~;) 
= aj(cj) nj(t) + Bdcj)7 

where ai(zii) = [ g,(@/G,(C*)] # 0 and /Ii = [hi(tsi) - Hi(~J]/Gi(@,). TO see that 
a,(zTJ and /I,(&) do not really depend on i,, suppose that di(t) = ai A,(t) + pi(Wi) 
for some other Wr. Then [ai - ai( Ai = pi(tiJ - /Ii( Since there exists 
U, b E Ki such that n,(U) # l,(b), it must be that ai - a,(tii) = 0 and pi(Ui) - 
/Ii = 0. Hence, )i(t) = a,A,(t) + pi for ai = a,(CJ and pi = pie for any choice of 
U, such that G,(C,) # 0. 

(ii) Let a = (a,, az ,..., aN) and fi = (J, ,& ,..., /IN) and define al and al + p to be 
the sequences 

~22 = (a,4, a,&,..., a.&,), 

f.d + P = (a,& + PI, a,& + &,..., a,& + P,). 
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By part (i), aA +p and $ are identical sequences of scales. Therefore 
B,(4) = fi,(aA + /?) for any W c N. But a simple induction on the size of the set W 
gives 

fi,(aA + /I) = y 
“EW 

E!,(d) r?,- &?). 

Hence 

= -T- c, T- 
W?N UEW 

n,(an> n, - “Go) 
1 

= -T- iif, 

“EN [ 
-T cwG,(P> 

WYU 1 
= =T- 

"EN 

if,(a) s c,17,-“co) n,(A). 
W211 1 (5) 

Let Q’ = C e,lZ, be the FOP whose coeffkients are determined by the condition 

e, = fiu(a) C cwfiw-&9. 
WIU 

Then (5) implies 81 . II = p. 4 = Q - A. But now, the hypotheses of Lemma 2(ii) are 
satisfied by Q’ . A and Q. 1, so Q’ = Q. Hence d, = e, for every U c N, so the 
expression for d, in part (ii) is established. Evidently, the expression for d, simplifies 
in the case U= 0 to 

d,= -T cwfiw@). 
W:N 

Now suppose that (i) and (ii) hold. To show that p. 4 = Q + A, let a, p and al + p 
be defined as in (i) and the preceding derivation. Since by hypothesis 4 and aA + p 
denote the same sequence of scales, we may use (ii) and the identities in (5) above to 
conclude 

Fe 4 = 2 cwrlw(q4) = 2 c,fi,(aA +D) 
W&N WrN 

= C 
LIEN [ 

IT,(a) C c,fi 
WZU 

= “TN 

d&,(A) = s . A. Q.E.D. 
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II. THREE FOP REPRESENTATION THEOREMS 

This section presents FOP generalizations of three well-known measurement 
representations, the utility representation of expected utility theory, the algebraic 
difference representation, and the additive conjoint representation. Although these 
generalizations differ in formal details, each makes use of the same strategy of 
axiomatization and proof. The informal proofs of the FOP representation theorems 
given here will emphasize the similarity of the role played by Lemmas 1 and 2 in 
establishing the existence of the representations. For the sake of simplicity, all 
representations will be restricted to the case where sign independence holds; extending 
the representations to the case where proper sign dependence can obtain is 
straightforward, but it requires certain formal complications that are not germane to 
the principal questions of interest.’ Fishburn and Keeney (1974, 1975) develop a 
FOP utility theory that takes into account the possibility of proper sign dependence. 
Their formal development applies, mutatis mutandis, to the other FOP theories 
described in this section. 

II(A). The FOP Utility Representation 

The basic constituents of expected utility (EU) theory are a set K of consequences, 
a set L of lotteries for consequences in K and a preference order <I, among lotteries 
(Lute & Raiffa, 1957). An empirical relational structure of EU theory is thus a triple 
(L, K, <,,). If the EU axioms as stated, for example, in Lute & Raiffa (1957) hold of 
(L, K, <&, then there exists an order preserving utility function U: K + Re satisfying 
the expected utility hypothesis (cf. Lute & Raiffa, 1957). Without attempting to state 
the EU representation theorem precisely, we pass to the essential point relating to the 
present work. The EU axioms imply that the utility representation U is unique up to 
an affine transformation: if U’: K --) Re is any other function satisfying the EU 
representation, then U’ = aU + p for some positive real a and real /3. 

Next, the utility representation will be generalized to a FOP utility representation 
(what Keeney & Raiffa (1976) call a multilinear utility function). Suppose that the 
set of consequences K is a Cartesian product K = K, X K, X ... x KN of N attributes 
and that the relational structure (L, K, <,) satisfies the EU axioms. Hence, by the EU 
representation theorem, there exists an affinely unique utility representation U for 
(L K <,I. 

To formulate a FOP generalization of EU theory, one must first identify 
substructures of (L, K, 4,) that are built from lotteries in which only one attribute 
varies. For any x E K, i E N and a E Ki, let xJia denote the sequence which is like x 
expect that the ith component has been replaced by a, let K, denote the set (xlib: for 
some b E K,}, let L, s L denote the subset of lotteries with consequences in Kix, and 
let =& denote the restriction of <p to L,. Evidently, the structure (Lix, Kixr =&) 
satisfies all the necessary properties of EU theory since it is a substructure of 
(L, K, <,). Assuming that for any i and x, the set K, is sufficiently rich in the sense 

1 See Chap. 7 of Krantz et nl. (1972) for definitions of independence and sign dependence. 
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that the utility function U sends K,, onto an interval of real numbers, the structure 
(LiX, Kix, &) also satisfies nonnecessary, structural axioms of EU theory. 

Since for lotteries in Lix, only the outcome on the ith factor varies, one may wish 
to regard L,, as a set of lotteries for outcomes in Ki to be received or experienced 
along with the fixed consequences Y(. This intuition may be formalized as follows. 
Let L, denote the set of lotteries with consequences in Ki. Define a function 
Bi,: Li + L, by the condition that for any g E Li, S,,(g) is the lottery that results 
from g when each outcome a of g is replaced by xlia. Define an ordering $2 of Li by 

g<i*, g’ iff eix( g> 6.x eiA g’> 

for any g, g’ E Li. Evidently 8, is an isomorphism between the structure 
(L,,Ki,<&) and (Lix,Kix,~ix). Since (Lix,Kix,dix) satisfies EU theory, SO must 
(Li, Ki, =$.). Recalling that U is a utility function for (L, K, Q, the restriction of U 
to K, (denoted U,,) is a utility function for (Lix, Kix, =&). Hence, the composition 
Vi, . 8, is a utility function for (Li, Ki , <g). 

Up to this point, we have only assumed that (L, K, <,) satisfies EU theory and the 
technical assumption that K, is sufficiently rich for any i and x. The FOP utility 
representation is implied by a single additional postulate called uniuttribute utility 
independence: for any i E N and x, y E K, the structures (Li, K,, <i”,) and 
(Li, K,, <$) are identical. This postulate is equivalent to asserting that the orderings 
=$$ and <;C are the same. 

Under these assumptions, an elementary proof of the FOP utility representation 
theorem can be given. Let U be a utility function for (L, K, <,) and choose any 
arbitrary fixed y E K. Define a sequence 4 = (0,) tir,..., @N) of scales by $r = Ui, . Oi, 
for each i E N. As previously noted, di = Ui, . tii, is an affrnely unique representation 
for (L,, Ki, <i*y). Moreover, since Ki, is sufficiently rich, there exist b, c E Ki such 
that U(y(,b) # U(ylic), and thus, 4,(b) # d,(c) by definition of #i, Ui, and ei,. 

Consider any x E K. Vi, . eiX is a utility representation for (Li, Ki, <z) and uniat- 
tribute utility independence asserts that (L,., K,, <i*,) and (Li, Ki, $) are identical. 
Since @i is a utility representations for this latter structure, there exist real numbers 
A, and B,, depending in general on i and x such that 

u, * 8, = A& + B,. (6) 

To see that the A, and B,, satisfying (6) must be unique, suppose a, and piX also 
satisfy (6) and choose b, c E K, such that $,(b) # tii(c). Then, Ui, . B,(b) - 

uix . 4,(c) =A&@) - h(c)1 = ajAW) - sW)l. Since h(b) - h(c) + 0, we have 
‘4, = a,,. Hence B,, = pi,. Moreover,. note that if f, = Z; for any other z E K, then 
xl14 = t 1,~ for any u E K,. Hence U,, = U,, and BiX = 8,, ; consequently, Ui, . Oi, = 
Vi, . 8,, . Thus, the A,, and B,, satisfying (6) depend only on i and Zi. 

Since the A,, and B,, satisfying (6) are unique and depend only on i and fi, there 
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exist well-defined functions Gi: Ki + Re and Hi: Ki + Re determined by the rule 
Gi(fi) = A iX and Hi&) = B,,. But now we have the identity 

U(X) = U, * 0,(X,) =A,-i(Xi) + B, 

= Gi(Xi) #)(-Xi) + Hi(xi) 

for any x E K and i E N. Thus by Definition 2, U is multiaffine with respect to the 
sequence 4 of scales. By Lemma 2, there exists a FOP P such that U = p. 4. 
Furthermore, the uniqueness of P is as follows. If U’ is any other utility function and 
U’ = 0. i for some FOP Q and sequence 13 of scales, then there exist positive real a 
and real p such that U’ = c&J + ,!?. Hence, @ - A = a@ - #) + j?, so the coefficients of 
Q . J are related to the coefficients of a(P . 4) + p by Lemma 3. 

We have proved the following theorem. Let K = K, X K, X ..a x KN be a Cartesian 
product of arbitrary sets, and let (L, K, <,) be an expected utility structure with 
utility function U: K + Re. We make the technical assumption that U maps K, onto 
an interval of real numbers for any i E N and x E K. In addition, we assume that 
(L, K, <,) satisfies uniattribute utility independence: for any i E N, the preference 
ordering of lotteries for outcomes in Ki to be received along with the fixed sequence 
Xi of outcomes on the remaining attributes does not depend on the choice of Xi. Then, 
there exists a FOP P and a sequence 4 of scales such that U = p. 4. 

II(B). The FOP Difference Representation 

Dyer and Sarin (1979) showed that the strategy of axiomatization used in 
generalizing EU theory to a FOP utility representation could also be applied to 
difference representations. The present exposition alters slightly their approach, but 
retains their basic method for axiomatizing the FOP difference representation, 

By an algebraic difJ‘erence structure, we mean a pair (K X K, &), where K is an 
arbitrary set and & is an ordering of K X K, such that (K X K, &) satisfies the 
axioms stated in Definition 3, Chap. 4 of Krantz et al. (197 1, p. 15 1). By 
Theorem 4.2 of that work, if (K x K, &) is an algebraic difference structure, there 
exists an affinely unique function f: K --t Re such that for any w, x, y, z E K, 

wx& yz iff SW -f(x) G f(v) - S(z), (7) 

where wx and yz denote the ordered pairs (w, x) and (y, z), respectively. A functionf 
satisfying (7) is called an algebraic difference representation for (K x K, &). Now 
suppose that K is itself a Cartesian product of arbitrary sets, that is, 
K=K,xK2x... X KN. We wish to establish conditions under which f = p. 4 for 
some FOP P and sequence 4 of scales; when there exists an f satisfying (7) such that 
f=P.qi, then P-4 will b e called a FOP difference representation. 

For any i E N and x E K, let K, = {xlia: for some a E Ki} and let =& denote the 
restriction of <,, to K, X K,. The structure (KiX X Ki,, nix) must satisfy all the 
necessary properties of an algebraic difference structure, since it is a substructure of 
(K x K, &). Making the technical assumption that any Ki, is sufficiently rich in the 

480/27/2-J 
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sense that f sends K, onto an interval of real numbers, (KiX x KiXr =&) will also 
satisfy the nonnecessary, solvability axiom. Thus, (KiX X Kix, <,.J is an algebraic 
difference structure and the restriction of f to Ki, (denoted A,) is an algebraic 
difference representation for (KiX X Ki,, &). Let <z be an ordering of Ki X Ki 
defined by 

ab <i*, cd iff (xlia)(xlib>%, (xlic)(xlid) 

for any a, b, c, d E Ki. Define a function eiX: Ki -+ K, by O,,(a) = xlia for any 
aEKi. Evidently, BiX is an isomorphism between (Ki x Ki, <$) and 
(KiX x KiX, &); hence, (Ki x K,, <z) is an algebraic difference structure and& . 0, 
is an algebraic difference representation for (Ki X Ki, <$.). 

Now we are in a formally analogous position to the point in the utility 
axiomatization where the uniattribute utility independence axiom was proposed. The 
analogous postulate to be adopted here will be called mutual context invariance, and 
is stated as follows: for any i E N and x, y E K, the structures (Ki x Ki, <i*,) and 
(Ki x Ki, <$) are identical. An equivalent statement of mutual context invariance 
can be given in the primitive terminology: for any i E N, x, y E K and a, b, c, d E Ki, 

(xlia>(xlib) Qti (xIic>(xIid) iff (ylia)(.4ib) Qti (Ylic)(Ylid)* 

It is easy to check that this qualitative axiom is equivalent to asserting that the 
orderings 4; and <i”, are identical, for any i E N and x, y E K. 

Adding mutual context invariance to the assumptions that (K X K, &) is an 
algebraic difference structure and that every Ki, is sufficiently rich, we may now 
prove the FOP difference representation theorem. Let f be an algebraic difference 
representation for (K x K, =&) and choose any arbitrary, fixed y E K. Define a 
sequence 4 = (4,) 4 2,..., #,,,) of scales by #i = fi, . Bi, for each i E N, where fi, is the 
restriction off to Ki, and 8,,, is the function taking any a E Ki to y lia. As previously 
noted, Qi = A, . Bi, is an affinely unique, algebraic difference representation for 
(Ki X Ki,<$). Furthermore, since Ki, is sufficiently rich, there exist b, c E Ki such 
that U(yl,b) # U(ylic), and thus, g,(b) # $i(c) by definition of ~i,J;.y and Bi,. 

Consider any x E K. Since fi, . 8, is an algebraic difference representation for 
(Ki x Ki, <i”,) and mutual context invariance asserts that (Ki X Ki, <z) and 
(Ki x Ki, ai”,) are identical, we must have 

J;:, * 0, =AixQi + Bix (8) 

for some positive real A, and real B,. To see that A, and B, must be unique, 
suppose that aiX and pi1 also satisfy (8) and choose b, c E Ki such that #i(b) # #i(c)* 
Then, fi, . e,,(b) -fi, 9 ei,(c) =A,[#i(b) - #i(C)] = a,[tii(b) - $i(C)]* Since #i(b) - 
tii(c) # 0, we have A, = OLix. Hence B, = /IiX. Moreover, note that if Xi = Yi for any 
other z E K, then xlia = z lia for any a E Ki. Hence, J;:, = 4; and 8, = 8, ; conse- 
quently, Ax . 8, = fi, - ei,, so the A, and B,, satisfying (8) depend only on i and 2;. 
Thus, there are well-defined function Gi: Ki + Re and Hi: Ki--+ Re given by 
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Gi(~i) =Aix and Hi(xi) = B, for the A, and B, satisfying (8). But now, for any 
xEK and iEN, we have 

S(X) = Ax . e,.r(xt> = A ix #[(Xi) + Bi.x 

= Gi(fi) Qi(xi) + H&i). 

By Definition 2, f is multiaffine with respect to the sequence 4 of scales. By Lemma 2, 
there exists a FOP P such that f = p. 4, and the FOP difference representation is 
established. The uniqueness of this representation is essentially the same as that of the 
FOP utility representation stated near the end of subsection I(A). 

II(C). The Additive Representation with FOP Components 

The FOP generalizations of the utility and algebraic difference representations 
depend crucially on the interval scale uniqueness of the representations. Since 
additive conjoint measurement also leads to interval scales on its components, one 
might expect that it too possesses a FOP generalization. This is indeed the case. The 
material in this subsection II(C) can be omitted on first reading for it will not be built 
upon in later discussions. 

Here, we will solve the following problem. Let r = T, X r, X ... X r, and 
A=A,xA,x... x A, be Cartesian products of arbitrary sets (for N, M > l), and let 
<, be an ordering of r x A. Find conditions under which there exist sequences of 
scales $ = (II, 42,..., &) and rl = (rl, , v2,..., r,,, ) and FOPS P and Q such that for 
every UX, vy E r x A 

ux <, VY iff Pa 4(u) + Q f V(x) < P. 4(v) + Q. v(y). (9) 

If (r x A, 6,) has a representation of the form (9), it will be said to have an additive 
representation with FOP components. 

In order to achieve the desired generalization of additive conjoint measurement, we 
will need to make use of properties of symmetric additive conjoint structures, where 
an additive conjoint structure (r x A, <,) is symmetric iff for any u, v E r there exists 
y, z E A such that uy -e vz and for any w, x E A there exist s, t E r such that 
SW Ne tx. We will need to use of the following relationship between symmetric 
additive conjoint structures and algebraic difference structures. 

LEMMA 4. Let (r x A, <,) be any symmetric additive conjoint structure (see 
Krantz et al., 1971, Definition 7, Chap. 6, p. 256). Then (r x I’, R) and (A x A, T) 
are algebraic diflerence structures, where the orderings R and T are defined by 

(i) Foranys,t,u,vEr,stRuviffsy~,tzandvz~,uyforsomey,zEA. 

(ii) For any w,x, y, z E A, wx T yz 13 VW<, ux and uz<, vy for some 
U, v E r. 
Since (r x A, <,) is an additive conjoint structure, it has an additive representation 
and therefore satisfies triple cancellation (as defined in Chap 6 of Krantz et al., 
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197 1). The proof that (r x r, R) and (A x A, 7’) satisfy the algebraic difference 
axioms follows from triple cancellation and the symmetric additive conjoint axioms. 
Chapter 6 of Krantz et al. (1971) discusses the relationship between the symmetric 
additive conjoint structure and the positive difference structure, and their discussion 
can be applied with only slight changes to the algebraic difference structure. 

The following corollary to Lemma 4 will be useful. 

COROLLARY 4.1. Let (T x A, =$,) be a symmetric additive conjoint structure and 
let F: r-+ Re and S: A + Re be the scales of an additive representation of (r X A, <,). 
Then F is an algebraic dt@erence representation for (r X r, R) and S is an algebraic 
dlflerence representation for (A X A, T). 

The proof of the corollary is an elementary consequence of the definitions of the 
structures (r x I’, R) and (A x A, 7’). 

These relationships between additive conjoint and algebraic difference 
measurament will be crucial to the FOP generalization of additive conjoint 
measurement, to which we now turn. Let r=r, xrzx --. xr, and 
A=A,xA,x..- x A, be Cartesian products of arbitrary sets (for N, M > 1) and let 
4, be an ordering of r x A. We assume that (r X A, <,) is an additive conjoint 
structure, and hence, there exist functions F: T-t Re and S: A + Re such that 

la <, VY iff F(u) + S(x) Q F(v) + S(y) 

for any u, v E r and x, y EA. 
For any u E r and i E N, let ri, = {u l,.c1: for some a E ri} and for any x E A and 

j E M, let A, = {xIjp: for some p E j). Let <ij,, be the restriction of <, to ri, X Aj,. 
Since (ri, x Aj, , <ijuX) is a substructure of (r x A, <,), it must satisfy all the 
necessary axioms of the additive conjoint structure. We assume that any substructure 

(riu x AjxT <ijux) is symmetric, and in addition, we make the technical assumption 
that F maps ri, and S maps A,, onto intervals of real numbers (ri, and Aj, are 
sufficiently rich). Under this last assumption, (ri, X A,,, =$j,,) also satisfies the 
additive conjoint solvability condition and the assumption that each component is 
essential (i.e., nontrivial). Thus, (ri, X A,, ,i,ux < ) is a symmetric additive conjoint 
structure. Let F,., denote the restriction of F to ri, and let Sj, denote the restriction of 
S to Aj,. Fi, and S,, are the component scales of an additive representation for 
(ri, X Ajx, <ijux>* 

Since (ri, x Ajx, =$ijuX) is a symmetric additive conjoint structure, one can define 
algebraic difference structures (ri, x I’,,, Rlj,,) and (Ajx X Ajx, Tij,,) as in Lemma 4. 
Define functions ei,, : ri + ri, and JjX: A, + Aj, by 

4,(a) = ul,a for any a E ri, 

Ajx(P) =xljP for anypEAj. 
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Define orderings R& and T&,, of ri X ri and Aj X Aj, respectively, by 

ab R&,x cd iff eda) eiutb) Rijuxeiutc) eiu(dX 

pq T&, rs iff S,(P) Sx(S) TijuxLjx(r) Ajx(s)* 

Evidently, (ri x ri, R&) and (Aj X Aj, T&,) are algebraic difference structures that 
are isomorphic to (ri, X ri,, Rij”,) and (Ajx X A,,, Tij,,) under the respective 
isomorphisms Bi, and ~jx. 

We are now able to state the key axiom needed for the desired generalization of 
additive conjoint measurement. As with the previous generalizations of utility and 
algebraic difference representations, the required axiom is equivalent to asserting that 
unidimensional substructures are invariant with respect to changes in the stimulus 
context defining the substructure. 

Axiom of Mutual Context Invariance for Additive Conjoint Intervals: 

(i) For any i E N, if for some u E r, x, y E A and a, b, c, d E ri the relations 
(ulia)x=& (ul,b)y and (ulid)y<= (u&)x hold, then for any v E r and x’,y’ E A, if 
(vIia)x’ >, (Vlib)Y’v then (VIiC)x’ 2, (Vlid)y’* 

(ii) For any j E M, if for some x E A, u, v E r and p, q, r, s E Aj the relations 
uCxlj P) <, v(xlj(7) and v(xljs)<, u(xlj r), then for any y E A and u’, v’ E r, if 
u’(YIjP) >c V’(Yljq>, then u’(YljrI3, V’(YljS)* 

Part (i) of the axiom implies that (ri x ri, R&J and (ri x ri, R&,,,) are identical 
for any i E N, j, k E M, u, v E r and x, y E A. To see this, suppose that ab R$UX cd 
for some a, b, c, d E I’,.. By definition of R&,, (ulia)(ulib) Rijux (u(,.c)(ulid). Using 
the definition of Rijux by means of Lemma 4, we know there exist p, q E Aj such that 
(Ul,-a)(xI,p)<, (Ulib>(XljS) and (UIid>(XljS)<e (UIiC)(XljP)* For any 0th k E M, 
y E A and v E r, we know that there exist r, s E A, such that (v],a)(ylkr) -P 
(vlib)(ylks), because (ri, X Aky, &,,,) is symmetric. Therefore (vl,c)(y j,r) >, 
(vlid)(yl,s) by part (i) of the axiom. By the definition of Rikry, we have 
(vlia)(vJib) Rikoy (V liC)(V lid). Thus, ab RJ&, cd and consequently, R *ijuX and R,Z&, 
are identical orderings. This proves that (ri x ri, R&J and (ri x ri, RjfEry) are iden- 
tical. The proof that (Aj x Aj, T&J and (Aj x A,, T&,,,) are identical for any 
i, n E N, j E M, u, v E r, and x, y E A is completely analogous to the preceding 
argument. 

But now it is easy to show that the function F: r-+ Re in the additive represen- 
tation of (r x A, <,) is represented by a FOP. Choose any u E ri and let 
tii = F,, - 8,, for every i E N. Note that $i is an algebraic difference representation for 
(ri x r,, R&J since F,, is an algebraic difference representation for (ri, x ri,, Rij,,) 
by Corollary 4.1 and t9,, is an isomorphism (j E M and x E A may be chosen 
arbitrarily). But then for any v E I’, k E M, and y E A, Fi, . Bit, is an algebraic 
difference representation for (r, x ri, R;Ek.,,), and this structure and (ri x ri, R&,) 
are identical. By the uniqueness of the algebraic difference representation 

Fi” * ei, = A io#i + Bit, (10) 
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for Ai, a positive real and B,, real. By arguments similar to those given in subsections 
II(A) and II(B), the A,, and Bi, satisfying (10) are unique and depend only on i and 
6,. Hence, we may define functions Gi : ri + Re and Hi : Fi + Re by Gi(Ui) = A ic, and 
Hi(fii) = Bi,. But then, for any u E r, 

F(u) = Fi” * oi”(vi) = Ai,$i(oi) + Bi, 

= Gi(iTi) #i(vi) + Hi(fii). 

Thus, F is multiaffme with respect to the sequence d of scales. By Lemma 2, there 
exists a FOP P such that F = p. 4. A similar argument using part (ii) of the axiom 
shows that S = Q. r7 for some FOP Q and sequence v of scales. 

To summarize, we have proved the following. Suppose r = r, x TZ x a .e x r,, 
A=A,xA,x**~ x A, and <, is an ordering of r x A (for N, M > 1). If (r x A, <,) 
is an additive conjoint structure, every (ri, x Ajx, <ij,,) is symmetric, every TiU and 
Aj, is sufficiently rich, and the two parts to the axiom of mutual context invariance 
for additive conjoint intervals hold, then there exist FOPS P and Q and sequences 4 
and q of scales such that the representation (9) holds for all U, u E r and x, y E A. 
The assumptions that every (ri, x A,,, =$ij,,) is symmetric and that Fi, maps ri, and 
SjX maps Aj, onto intervals of real numbers should be weakened. The required formal 
analysis lies beyond the scope of the present essay. 

II(D). Relation to Previous Work on FOP Representations 

The proofs presented here reduce the existence of FOP representations to 
Lemmas 1 and 2. The present essay appears to be the first explicit statement and 
proof of these lemmas, although Keeney and Raiffa are clearly aware of the principle 
that they formalize (cf. Keeney, 1972; Keeney and Raiffa, 1976). The analysis of the 
uniqueness of these representations given in Lemmas l-3 is new, so far as we know. 

The utility axiom which is called uniattribute utility independence in this essay was 
formulated by Keeney (1968) in a study of the two attribute case. The axiom was 
called strong conditional utility independence in Raiffa’s discussion of the two 
attribute case (Raiffa, 1969). Keeney (1972) generalized the axiom and represen- 
tation to the N attribute case, calling the axiom mutual utility independence. Later, 
Keeney and Raiffa (1976) used “mutual utility independence” to refer to a different, 
stronger property. Although they use the axiom of uniattribute utility independence to 
derive the general N attribute FOP utility representation (multilinear utility function), 
they do not adopt any specific name for this axiom. The various derivations of the 
FOP utility representation produced by Keeney and Raiffa proceed by describing a 
scaling algorithm that yields a specific FOP utility representation. They do not 
discuss the uniqueness of this representation nor the general principle that a 
multiaffine function has a FOP representation. 

Dyer and Sarin (1979) noticed that a difference representation could be generalized 
to a FOP difference representation if every attribute of a Cartesian product was 
weakly d@erence independent of all other attributes. This condition is essentially the 
axiom of mutual context invariance defined in subsection II(B). They point out that 
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this condition implies that a difference representation must be multiaffine, or 
conditionally cardinal, in their terminology. Noting that conditional cardinality is the 
key property for the derivation of the FOP utility representation in Keeney and Raif- 
fa (1976), they assert the existence of a FOP difference representation without proof 
and also without establishing its uniqueness. Dyer and Sarin apply the theory of FOP 
difference representations to the measurement of riskless value, as developed in 
Ellsberg (1954). 

The generalization of additive conjoint measurement described in subsection II(C) 
appears to be new, although it is a straightforward continuation of the formal 
approach developed by Keeney, Raiffa, Dyer, and Sarin. 

III. CONTEXT INVARIANCE AND THE MULTIATTRIBUTE 

GENERALIZATION OF RELATION THEORY 

The previous section has presented three FOP generalizations of well-known 
measurement theories. Each of these generalizations depends on a postulate asserting, 
in essence, that uniattribute substructures are invariant with respect to changes in the 
fixed levels of the remaining attributes. Next, it will be argued that this kind of 
invariance postulate has a profound psychological interpretation. 

To develop this point, we will study the multiattribute generalization of a theory of 
subjective magnitude proposed by Roger Shepard (198 1) and David Krantz (1972) 
to account for empirically established consistencies among so-called “direct” 
judgments of subjective magnitude. This theory, called Relation theory, is primarily 
concerned with the psychological structure of uniattribute magnitudes (magnitudes 
depending on the variation of a single physical parameter) or relations among uniat- 
tribute magnitudes. But since Relation theory is built upon the algebraic difference 
structure, the theory can easily be generalized to multiattribute magnitudes 
(magnitudes depending on the variation of several physical parameters) using the 
FOP difference theory developed in the previous section. The following exposition of 
Relation theory borrows extensively from Shepard (1981) and Krantz (1972) but 
deviates from their formulation in that little emphasis will be placed on the operation 
of cross-modality matching. Moreover, no attempt will be made to compare Relation 
theory to alternative theories of subjective magnitude which are discussed in Shepard 
and Krantz. 

According to Relation theory, subjective magnitude is a psychological property of 
pairs of stimuli. The fundamental or essential structure of subjective magnitude is the 
ordering of stimulus pairs by the magnitude of their sensation relations on a specified 
subjective dimension. The hypothesis that sensation constitutes a psychological 
quantity is justified in Relation theory by postulating that the ordering of stimulus‘ 
pairs satisfies axiomatic properties implying the existence of a numerical represen- 
tation of the pair ordering by the ordering of ratios of scale values. 

More formally, let K be any sensory continuum, that is, a set of stimuli that can be 
ordered with respect to some attribute such as loudness, brightness, or perceived 
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length. Although this is not a necessary assumption in Relation theory, it will ‘be 
assumed here that the sensory continuum is physically parametrized and that 
subjective magnitude is a continuous, increasing function of physical intensity. The 
magnitude ordering <, of stimulus pairs in K x K can be determined by any of a 
variety of psychophysical methods including the direct comparison of stimulus pairs, 
so-called “ratio estimation” or “ratio production” procedures, or cross-modality 
matching. Relation theory postulates that the empirical structure (K x K, <,) deter- 
mined by some method of magnitude judgment satisfies the algebraic difference 
axioms. Thus, Relation theory proposes that sensation magnitude can be represented 
by a scale w: K--t Re+ satisfying 

ab <, cd ifl vWv(b) G v(c)/W) (11) 

for all a, b, c, d E K (Re+ = the positive real numbers). 
Several remarks must be made concerning this formulation of Relation theory. 

First, the use of numerical ratios in the representation of (K X K, <,) is purely 
conventional, depending only on convenience and familiarity. The scale log(v) 
provides a difference representation of (K x K, 4,) that is empirically and 
theoretically equivalent. Indeed, the class of equivalent alternative numerical 
representations is quite broad (Krantz et al., 1971, p. 152). Second, since the log(v) 
difference representation is affinely unique, v is a log interval scale (Stevens, 1957; 
Krantz, 1972)-if I@ also satisfies (1 I), then v’ = /?w” for positive real a and p. It 
should be mentioned that if the requirements imposed on the numerical representation 
are strengthened as in Krantz’s theory of cross-modality matching, then ratio scale 
uniqueness of the representation can be established (Krantz, 1972). But within the 
weaker version of Relation theory developed here, only log interval uniqueness is 
achieved. Third, a principal motive for developing Relation theory is that several 
well-known alternative methods of magnitude judgment yield mutually consistent 
results (Krantz, 1972), suggesting that the same <, ordering could be determined by 
different psychophysical methods including, but not necessarily restricted to, the 
various methods of “direct” magnitude described by Stevens (1957, 1975) and Marks 
(1974). Indeed, part of the justification for claiming to have determined the structure 
of sensation magnitude lies in the mutually consistent results obtained by 
operationally distinct psychophysical procedures. Although the present formulation 
does not specify the psychophysical procedure used in determining the =&,, ordering, it 
may be assumed to be any method that yields results consistent with ratio estimation 
(cf. Krantz, 1972). 

The generalization of Relation theory to FOP ratio representation of multiat- 
tribute magnitude is formally a straightforward application of the results of 
subsection II(B), but here we will emphasize the psychophysical interpretation of the 
mathematical structures appearing in that theory. For the sake of concreteness, 
suppose we are concerned with loudness judgments for complex combinations of pure 
tones. Let K, denote a set of pure tones varying in intensity at some fixed frequency 
vi. Letting K = K, x K, x --. x KN, any x E K is an acoustical stimulus with 
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intensity xi at frequency vi. A psychophysical procedure like ratio estimation can be 
used to determine an ordering <, of K x K. If Relation theory is valid theory of 
multiattribute magnitude, the structure (K x K, <.,) should be an algebraic difference 
structure-loudness relations among complex stimuli are ordered like ratios of 
numerical scale values. 

Now consider uniattribute magnitude substructures of the form (Ki,r x Ki.y, nix) as 
defined in subsection II(B). The ordering <ix is simply the loudness magnitude 
ordering <,,, applied to stimulus pairs that vary in intensity only at the frequency vi, 
the remaining frequencies being held fixed at Xi. Thus, fi may be interpreted as the 
fixed stimulus context for a loudness experiment in which only the ith Frequency 
varies in intensity. Since each context .?i determines a different uniattribute 
substructure, there are many such substructures. Furthermore, no a priori constraint 
relates the fundamental magnitude orderings, <ix and &,,, for any two distinct 
substructures (Kix X Kix, &) and (K, X Ki,,, &,). 

The mutual context invariance axiom, the key to the FOP generalization of 
Relation theory, may be interpreted in either of two ways. First, since only the 
intensity at vi varies in the magnitude substructure (K, x Kix, =&), it may seem 
more natural to regard the stimuli as elements of the form a E Ki rather than of the 
form xlia E K,. To formalize this intuition, one proceeds as in the previous section. 
Define the function 19~~: Ki -+ K,., by 0,,(a) = xlia, and let (Ki x Kj, <c) denote the 
structure isomorphic to (Ki, x Kix, &.) under 8,. Since (K, x Ki, <i*,) and 
(K, x Ki,, &) are really just alternative formalisms for describing the same 
loudness experiment, we may interpret the ordering <z as the fundamental magnitude 
ordering for stimuli at frequency vi when presented in the context Xi. Mutual context 
invariance asserts that orderings <i”, and <‘i*, are identical for any x, y E K and i E N. 
Hence, in keeping with its name, mutual context invariance asserts that for every i, 
the fundamental magnitude ordering <$ for stimuli varying only at frequency vi is 
invariant with respect to changes in the stimulus context Xi. 

A deeper mathematical understanding of mutual context invariance can be derived 
from a formal development that has been omitted from the present discussion, but its 
outlines will be briefly sketched. We say that the pair xy E K X K is a positive 
interval if XX<, xy. For any positive interval xy, the equivalence class of xy is 
defined to be the set of pairs zw satisfying xy-, zw. By combining Definition 4.4 
(p. 15 1) with Definition 4.2 (p. 147) of Krantz et al. (197 l), it can be shown that 
there exists a natural binary operation under which the set of equivalence classes of 
an algebraic difference structure can be made into a semigroup. For any x, y E K, the 
uniattribute substructures (Kix x Ki,, &) and (K, X Ki,, &,) are both algebraic 
difference structures and hence, their associated equivalence classes are both 
semigroups. The essence of the mutual context invariance postulate is as follows. Let 
h be the map taking the equivalence class of (xlia)(xlib) to the equivalence class of 
(yJia)(ylib). The postulate of mutual context invariance guarantees that h is a well- 
defined semigroup isomorphism. 

If mutual context invariance holds, we know from the previous section that there 
exists a FOP P and a sequence d of scales such that P . d is an algebraic difference 
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representation for (K x K, Q,). Hence, ep’ m is a ratio representation for (K X K, <,) 
in the sense that for any w, x, y, z E K, 

wx<, YZ iff eP’@(W) 
le 

P’@(X) < eP’@(Y) P’@(Z) 
le . (12) 

The representation (12) will be called a FOP ratio representation. 
The FOP ratio representation is no mere technical device or mathematical 

amusement. Rather, it embodies a profound psychophysical theory of the perception 
of magnitude for multiattributed stimuli. Relation theory postulates that the 
fundamental structure of subjective magnitude is the ordering of stimulus pairs 
according to the magnitude of their sensation relations on a specified subjective 
dimension. When the stimuli are multiattributed, the multiattribute magnitude 
contains many uniattribute magnitudes as substructures. The FOP ratio represen- 
tation is equivalent to asserting that the fundamental structure of every uniattribute 
magnitude is invariant with respect to changes in the stimulus context. The FOP ratio 
representation can thus be seen to characterize the psychophysical law for any 
multiattribute magnitude whose constituent uniattribute magnitudes are mutually 
context invariant (in both the formal and intuitive meaning of context invariance). 

IV. POWER RATIO LAWS 

Krantz (1972) and Shepard (1981) point out that the power law for subjective 
magnitude has a simple axiomatization if Relation theory is assumed. Here, we will 
state their axiomatization and then show that it provides the basis for an interesting 
multiattribute generalization of the power law using FOP representation theory. 

Let K be a sensory continuum and let <, be an empirical ordering of K x K. As 
before, it will be assumed that the sensory continuum is physically parametrized and 
that subjective magnitude is a continuous, increasing function of physical intensity. 
Since each stimulus x E K is identified by its measure in physical units, numerical 
operations on x like scalar multiplication, addition of a constant or raising to a power 
are well defined. We say that (K x K, <,) has a power ratio representation provided 
that there exists a real positive /3 such that 

for all w, x, y, z E K. 

wx<, YZ iff w4/x4 < y4/z” (13) 

According to Relation theory, (K x K, <,) satisfies the algebraic difference 
axioms. The existence of a power ratio representation is equivalent to adding the 
following axiom to the algebraic difference axioms. 

Uniattribute Power Ratio Axiom. For every x, y E K and positive real t, 

XY -In (tx>(tY)* (14) 

It is easy to show that the power ratio representation (13) implies (14). To prove the 
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converse implication, let v: K+ Ret be a scale that represents <, as numerical 
ratios. By (14), w  satisfies 

w(x)lw(v> = v(txYv(tY>. 

Setting y = 1 and multiplying both sides of the identity by v(t)/v(l) yields 

v4txM 1) = (vwlv(l))(v(xYW(l>>~ 

Defining the function h by h(x) = v(x)/t~/(l), we have h(tx) = h(t) h(x), this last 
identity being one of the basic Cauchy functional equations (Aczel, 1966). The only 
continuous, increasing solution to this equation is h(x) =x0 for some positive real /I. 
Thus, v(x) = oxb, where a = w( 1). Since w  is a ratio representation for <,, the 
power ratio representation (13) holds. 

The present exposition of the power ratio representation is much less interesting 
than that of Krantz (1972) or Shepard (1981) because it leaves out the structure of 
cross-modality matching. Without taking cross-modality matching into consideration, 
the identity function Z(x) =x provides a power ratio representation for (K x K, 4,) 
since Z= A@ for A = l/a and B = l//3. When only a single attribute is considered, 
one need not use a power than 1.0 in the power ratio representation. Krantz and 
Shepard point out that powers other than 1.0 are required if the structure of cross- 
modality matching is included in the numerical representation. Their line of analysis 
has been omitted here, because it is not required for the development of the multiat- 
tribute generalization of the power law to which we now turn. 

Let K=K,xK,x ... x K,,,, where each Ki is a physically parametrized set. For 
example, suppose that each Ki is a set of pure tones varying in intensity at some fixed 
frequency gi. Any x E K is a complex acoustical stimulus with intensity xi at 
frequency vi. If F: K + Re+ is any function, then we way that F satisfies a multiat- 
tribute power law iff for every i, there exist functions G, : Ki --) Re + and Hi : Ki + Re + 
such that 

F(x) = ff.(,f.) xc@i’ I I 1 (15) 

for all x E K. By definition, F satisfies a multiattribute power law whenever F is a 
power function of the ith attribute K, for any i and any fixed choice Xi on the 
remaining attributes. 

The relation (15) implies that F is the exponential of a FOP function. To see this, 
note that (15) implies that 

In F(x) = G(%i)(ln xi) + In Hi(Yi) (16) 

for any x E K. Let L be the sequence of N logarithmic transformations 
L = (In, In,..., In). Then (16) asserts that In F is multiaffine with respect to L, so by 
Lemma2, InF=F.L or F=eP’L 
conversely, if F = e “’ 

for some FOP P. It is easy to show that, 
for some FOP P and L the sequence of logarithmic transfor- 

mation, then F satisfies a multiattribute power law (15). Thus, the multiattribute 
power law is equivalent to the assertion that F = ep’L. 
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The multiattribute power law will be axiomatized in terms of the formalism of 
subsection II(B). Let <,,, be an empirical ordering of K x K determined, for example, 
by ratio estimation and assume as in Relation theory that (K X K, <,) satisfies the 
algebraic difference axioms. Thus, there exists a function w: K + Re + that represents 
<, as an ordering of numerical ratios. Let K,, be the set of all xlia for a E Ki ; let wiX 
be the restriction of w  to K, ; let =&. be the restriction of <, to K, x K, ; let 
ei,: Ki -+ K, be defined by e,,(a) = xlia; and let (Ki x Ki, <i”,) be the structure 
isomorphic to (Kix X KiX, nix) under 8,. 

For any i and x, wiX . BiX is a ratio representation for (Ki X Ki, <z). The following 
axiom rephrases the uniattribute power ratio axiom (14) in terms of the uniattribute 
substructures (Ki X Ki, <i*,). 

Multiattribute Power Ratio Axiom. For every i E N, x E K, a, b E Ki and positive 
real t, 

(4i4W) wrn @lita)(xlitb). (17) 

Since by definition of =$, (17) yields ab -2 (ta)(tb), the representation wix . 8, must 
be a power function. Moreover, it is easy to show that if fi = zYi for any z E K, then 
viX *fix = viz . 19,~. It follows that there are well-defined functions G, : Ki + Re+ and 
Hi : K, + Re + satisfying 

tyix - 8,(a) = H,(fi) aGi(‘ii) (18) 

for any i E N, x E K and a E Ki. But note that by definition of Wix and Bi,, 
v(x) = wiX . O,,(xi) for any x E K. Combining this with (18) we have 

for every x E K and i E N. Thus, w  satisfies a multiattribute power law. Therefore, 
there exists a FOP P such that w  = eir.L for L = (In, In,..., In). 

We have shown that if (K x K, <,) satisfies the algebraic difference axioms and 
the multiattribute power ratio axiom, then it has a ratio representation w  satisfying a 
multiattribute power law (15) and w  = ep’L for some FOP P and the sequence L of 
logarithmic transformations. 

Stevens has been the foremost advocate of the hypothesis that the psychophysical 
law is a power law, and it may be appropriate to relate briefly the present theory to 
his work. The uniattribute power ratio axiom can fairly be read into his hypothesis 
that 

there is a general psychophysical law relating subjective magnitude to stimulus magnitude, 
and . . . this law is simply that equal stimulus ratios produce equal subjective ratios. (Stevens, 
1957). 

Stevens did not consider the possibility of a multiattribute power law (15) nor its 
relation to the exponential FOP e ‘*’ for L the sequence of logarithms, but he did 
point out that the power associated with particular attributes had been found 
empirically to vary with different contextual factors in a way that is suggestive of the 
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multiattribute power law. He called this variation the operation of a power group 
(Stevens, 1966, 197 1). 

Lute has provided two derivations of multiattribute power law in the two attribute 
case. Lute (1959a, Sect. 2.C) derives a two attribute psychophysical function ~(x, y) 
satisfying a multiattribute power law from assumptions concerning the 
discriminability of stimuli. Lute (1959b) shows that a proposed principle of theory 
construction forces ~(x, y) to satisfy a multiattribute power law if x, y and ~(x,JJ) 
are all measured on ratio scales. In both derivations, an analysis of the partial 
derivatives of v presented in Lute (1959a) is used to establish that w  has the form 

yqx, y) = axbyc+d(‘“y 

where a, b, c, d are real constants. Lute’s solution is equivalent to a FOP represen- 
tation. since 

ax Y 
b ctd(lnx) ~~lna+b~lnx~+c~ln~~+d~ln.~~~ln~‘~ 

Although Lute’s approach presumably generalizes to more than two variables, the 
derivation based on Lemmas 1 and 2 given here appears to be much simpler. The 
relationship between FOP representation theory, multiattribute psychophysics, and 
the invariance principles proposed in Lute (195913) deserves exploration, but this 
topic must be treated elsewhere.* 

V. CONCLUSION 

This essay has presented a number of FOP generalizations of standard 
measurement theories. These generalizations exhibit a logical pattern that is both a 
mathematical technique and a substantive strategy of theory construction. Before 
attempting to give an abstract characterization of this pattern, it will be useful to 
sketch the pattern in the context of the FOP generalization of EU theory. 

Suppose (L, K, <,,) is a multiattribute EU structure, i.e., K = K, x K, x ..+ x K,v is 
a Cartesian product of attributes, L is the set of lotteries based on K and <, is a 
preference relation satisfying EU axioms. To achieve the FOP generalization of the 
utility representation, it was first necessary to identify uniattribute EU substructures 
(Li, Ki, $2) which are isomorphically embedded within (L, K, 6,). These 
substructures are lotteries Li based on consequences in Ki to be received along with 
the fixed consequence Xi, with <i”, the preference relation induced by the restriction of 
4, to Lix, the isomorphic image of Li. 

The FOP utility representation is equivalent to the assumption that uniattribute 
utility independence holds, that is, that the preference relation <E of any uniattribute 
EU substructure (Li, Ki, <i*,) is invariant with respect to changes in the fixed conse- 

* An investigation of this relationship would also have to.take into account the material in Chap. 10 
of Krantz et al. (1971) and Lute (1964). I am grateful to A. A. J. Marley for pointing out this last 
reference. 
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quence fi. The technique of proof consists in showing that this assumption combines 
with the affine uniqueness of utility representations to imply that any utility function 
U: K+ Re for (L, K, =$,) must be multiaffine with respect to a sequence 4 of uniat- 
tribute scales. Lemma 2 then implies the existence of a FOP P such that F = p e 4. 

The substantive interpretation of the FOP utility representation is analogous to 
that of the FOP generalization of Relation theory. The fundamental empirical 
structure of EU theory is the preference relation over lotteries, and hence, the 
restricted preference relation =$. of the EU substructure (Li, Ki, =$) is the 
fundamental property of utility for the attribute Ki in the context of the fixed conse- 
quences Xi. The FOP generalization of utility theory is based on the assumption that 
the fundamental psychological property of uniattribute utility is invariant with respect 
to changes in the context of fixed consequences on the remaining attributes. The FOP 
utility representation thus embodies a psychological hypothesis that constituent uniat- 
tribute utilities of a multiattribute utility structure satisfy a kind of context invariance. 

As argued in Section III, the FOP generalization of Relation theory is based on a 
postulate of context invariance, and an analogous postulate underlies the FOP 
components generalization of additive conjoint measurement. We end this essay with 
some metatheoretical comments that attempt to characterize in informal, albeit 
abstract, terms the logical pattern of FOP measurement theory. 

The crucial prerequisite of a FOP axiomatization is a measurement structure that 
establishes the existence of an affinely unique scale F: K -+ Re on some set K. Any 
such measurement structure identifies a set of fundamental empirical relations and 
properties of these relations (axioms) from which the existence and uniqueness of F 
can be derived. If the basic set K is now regarded as a Cartesian product, the 
measurement structure based on K will contain many uniattribute substructures deter- 
mined by fixing all but the ith component at some context Xi and by restricting the 
fundamental empirical relations to elements of this form. To establish that the scale F 
is multiaffine with respect to a sequence 4 of scales, one must be able to prove, first, 
that every uniattribute substructure is itself an example of the measurement structure 
to be generalized, and second, that the fundamental relations of a uniattribute 
substructure are unaffected by changes in the context Xi in terms of which they are 
defined. 

The key to the FOP generalization of a measurement theory lies in finding the 
right definition of uniattribute substructures and in formulating the appropriate 
property of context invariance. Once this is accomplished, one chooses for every i, a 
scale #i that represents the relations in an arbitrarily chosen substructure on the ith 
attribute and then context invariance implies that #i represents the relations in any 
other uniattribute substructure on the ith attribute. But since F is a representation for 
the fundamental relations on K, the restriction of F to any uniattribute substructure 
must also be a representation for the relations in that substructure. Hence, for any i, 
F and I both represent the fundamental relations in any uniattribute substructure on 
the ith attribute, and it follows that F is multiaffine with respect to the sequence 
4 = (@i, &,..., 4,) of scales. Lemma 2 can then be invoked to establish the FOP 
representation. Moreover, insofar as the fundamental empirical relations of a 
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measurement theory are psychologically or behaviorally interpreted, context 
invariance, the key property of a FOP generalization, must constitute a strong 
constraint on the structure of behavior. 

It should be clear that the strategy outlined here for developing FOP represen- 
tations is not restricted to the substantive theoretical frameworks of EU theory or 
Relation theory. This is fortunate, since EU theory is well known to fail as a 
descriptive psychological theory and Relation theory might also turn out to be false. 
But insofar as a psychological theory postulates a measurement structure that implies 
the existence of an afftnely unique scale, and such theories abound, this theory is a 
candidate for FOP generalization. The rationale for interest in FOP representations 
resides in the pattern of context invariance which they characterize. Given the 
ubiquity of afftnely unique numerical representations in psychological theories, it is to 
be hoped that theoretically interesting FOP generalizations can be developed for 
many, if not all such theories. 
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