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Abstract: Log-linear and logistic models can be fitted to data in contingency tables either by an 
iterative proportional fitting algorithm or by an iteratively reweighted Newton-Raphson algorithm. 
Both algorithms provide maximum likelihood (ML) estimates of the expected cell frequencies and of 
the parameters of the model. When random zeros occur in the contingency table, numerical 
problems may be encountered in obtaining the ML estimates when using one or both of the 
algorithms. Problems in the estimation of the model's parameters, expected cell frequencies and 
degrees of freedom are described. An explicit formula is given for the evaluation of the degrees of 
freedom. 
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1. I n t r o d u c t i o n  

The two common methods to obtain maximum likelihood (ML) estimates of 
the parameters of a log-linear model  are to apply either an iterative proportional 
fitting (IPF) or an iteratively reweighted Newton -Raphson  (NR) algorithm. 
When  all cells in the frequency table have positive expected frequencies under  the 
model  fitted, both the expected frequencies and the parameter estimates are 
obtained from the IPF or N R  solutions; also there is no difficulty in determining 
the degrees of freedom (df) of the chi-square test-of-fit of the model. 

A sparse frequency table has many cell frequencies equal to zero and, as a 
result, one or more expected cell frequencies for a given model may be identically 
zero, In this article we discuss difficulties that may occur when 

(a) estimating the expected cell frequencies 
(b) determining the df of the test-of-fit 
(c) obtaining the parameter estimates 

of a log-linear model fitted to a sparse frequency table. 
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For both the NR and IPF algorithms there may be difficulties in identifying 
cells with zero expected values. Improper identification of such cells will also 
cause the degrees of freedom (df) for the test-of-fit of the log-linear model to be 
incorrectly calculated. 

When the frequency table is sparse, an additional problem is the overparame- 
trization of the model or, equivalently, the aliasing of design vectors in the 
log-linear model. Although the expected values of the cell frequencies are unique, 
the parameter estimates can differ when different implementations of the NR 
algorithm or of the matrix pivoting routine are used. In addition, the determina- 
tion of the degrees of freedom also depends upon the number of nonestimable 
parameters. This number is often evaluated by determining the rank of a singular 
matrix which may be affected by problems of numerical accuracy. We present an 
explicit formula to evaluate the number of nonestimable parameters. 

When the NR algorithm is used, the log-linear model is explicitly specified by 
the design matrix and by the inclusion or exclusion of cells with zero frequencies 
from the data input vector. The exclusion of a cell from the data input vector 
implicitly defines the cell as a structural zero. 

2. ML estimation of expected values, parameters and degrees of freedom 

The log-linear model can be expressed in matrix notation as 

In F = XX 

[5] where F is the vector of expected cell frequencies, h is the vector of parameters 
in the model, and X is the design matrix in which each row represents a cell. 

Each h-term fulfils the constraints that its sum over each of its indices is zero. 
Furthermore, let f be the vector of observed frequencies and W be a diagonal 
matrix with F along the diagonal. The matrix W is a generalized inverse of the 
asymptotic variance matrix of In F. 

When an index has two levels and represents a dependent variable, the 
log-linear model can be represented as a logistic model [3] with a vector of 
parameters to. The logistic parameters to are twice the corresponding log-linear 
parameters X. 

2.1. Algorithms to obtain M L  estimates 

Maximum likelihood estimates of the expected cell frequencies under a speci- 
fied log-linear model can be obtained either by an iterative proportional fitting 
(IPF) algorithm (see, e.g., [4]) or by an iteratively reweighted least squares 
algorithm such as a Newton-Raphson (NR) algorithm with the weights modified 
at each iteration (see, e.g., [9]). 

The IPF algorithm is applied to the cell frequencies in the observed frequency 
table. Therefore, if the data are presented in any other form, such as individual 
data records, the computer program first forms the frequency table and the 
marginal subtables corresponding to the model configurations. Using these margi- 
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nal subtables the IPF algorithm iterates to obtain the ML expected values. 
The N e w t o n - R a p h s o n  type of algorithm finds a set of parameter estimates 2~ 

such that 

F = exp( X~ ) 

for which the partial derivatives of 

with respect to the parameters X are simultaneously zero. These )~ are the 
maximum likelihood estimates [10]. Note that W is reevaluated at each iteration 
using the currently best estimates of the expected cell frequencies F. 

The estimates of the parameters ~ of the logistic model can be obtained by the 
NR algorithm in a manner  similar to that described above for the log-linear 
model. 

2.2. Expected values 

When there is a zero in a marginal configuration defined by a log-linear model, 
the cells comprising that  marginal zero have expected values that are zero. The 
IPF algorithm sets the expected values for these cells to zero on the first iteration. 
However, if a cell that  has a zero expected value does not correspond to a 
marginal zero, the IPF algorithm will not estimate the expected value as identi- 
cally zero, al though the estimated expected value asymptotically approaches zero 
as more iterations are performed. The simplest example of this occurs in a 
2 × 2 × 2 table when there are two cells with observed frequencies equal to zero 
but the two cells are in different rows, columns and layers. When the log-linear 
model that has all two-factors interactions but no three-factor interaction is fitted 
to the data, there are two zero expected frequencies. However, the IPF estimates 
of these expected frequencies converge very slowly to zero ([4], p. 70). 

Programs implementing the NR algorithm apply the algorithm to the data 
vector that is read as input. When the data vector contains only the observed data 
(such as, case-by-case or nonzero cell frequencies), the vector f to which the 
algorithm is applied will not contain cells with observed frequencies equal to zero. 
Since the algori thm assumes implicitly that the sum of the observed frequencies is 
equal to the sum of the expected ones over all cells in the vector f (i.e., l ' f =  I 'F ) ,  
the expected frequencies of all cells that are not represented in the data vector are 
set equal to zero. That  is, the cells that are omitted because they have zero 
observed frequencies will also have zero expected frequencies. 

This error can be avoided by inserting into jr and X all cells with nonzero 
expected frequencies. Thus f must contain zeros for all cells with observed 
frequencies equal to zero but whose expected frequencies are nonzero. Hence the 
vec:or of cell frequencies to be used as input to the N R  algorithm depends on the 
log-linear model to be fitted. 

The above problem with observed zeros does not  arise when the N R  algorithm 
is used to fit a logistic model. 
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2.3. Parameter estimates 

When there are no zero expected values, X can be estimated from the loga- 
rithms of the expected frequencies as in the ANOVA model which has one 
observation per cell. However, if the expected value of any cell is zero, In F is not 
defined for that cell. Parameter estimates can be obtained by solving the set of 
simultaneous equations 

Y= XX 

where Y is a column vector containing In F for all nonzero F. 
The parameter estimates 2~ and their asymptotic standard errors (ASEs) are 

obtained as 

X ~-- ( X t W X )  - i  X t W y  ( 1 ) 

since the ASEs of f, are equal to the square roots of the diagonal elements of 
( X ' W X )  -~. When X ' W X  is nonsingular,  these estimates are identically those 
obtained by the N R  algorithm at the last iteration. 

When the model is overparametrized, X ' W X  is singular. More than one 
solution for 2( is possible. We recommend solving for the parameter estimates of 
lower-order terms and setting the coefficients of the higher-order aliased terms to 
zero. 

Even when X ' W X  is singular, all parameter estimates obtained by the NR-type 
algorithm may be nonzero since the algorithm can modify different subsets of the 
parameters at each iteration. One indication of overparametrization is when some 
ASEs are either very large or zero. We recommend that the estimates be obtained 
by re-solving for )k by (1) using the expected frequencies at the last iteration. 

2.4. Degrees of freedom 

When the frequency table is inseparable with respect to the model, the formula 
for degrees of freedom is 

df = n c - n z - ( n p  - nn) 

where nc is the number of cells, in the table, n z is the number of cells with 
expected values equal to zero, n p is the number of parameters specified in the 
model and n n is the number of nonestimable parameters [4]. The number  of cells 
n c is known, the number of zero expected values nz can usually be counted and 
the number of parameters n p c a n  easily be evaluated. The number of nonestima- 
ble parameters can be obtained explicitly as described in the Appendix. 

Alternatively, if the matrix X ' W X  is formed, its rank is equal to r i p -  n n. 
However there may be problems of numerical accuracy in the determination of 
the rank. 

Incautious use of the N R  algorithm in computer programs may result in the 
following kinds of errors when evaluating the degrees of freedom. The vector of 
frequencies f may have more than one entry per cell and therefore n c is 
overestimated. This error can be avoided by evaluating the df for both the model 
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of interest and for the saturated model - the difference in df between the two 
models is the df for the chi-square test of goodness-of-fit. Since the NR algorithm 
cannot produce an expected value that is exactly zero, a tolerance limit [2,6] must 
be set to identify any cells with 'zero' expected frequency; an incorrect tolerance 
limit may give an incorrect value for n z. Lastly the rank of the matrix X ' W X  may 
be incorrectly evaluated. Hence care must be taken when evaluating the df for a 
sparse table. 

3. An example of errors that arise in fitting models to sparse tables 

Table 1 presents data from a study of 118 ears, all of which underwent the 
same surgical procedure. A possible measure of the success of the procedure is the 
ear's dryness (D) rated as dry or not dry. The investigators were interested in 
relating dryness to four other dichotomous variables present at the time of surgery 
and referred to here as E, N, M, and B. 

Since the selection of the 'correct' model is not the aim of this article, but 
rather the performance of the algorithms, we choose to fit the log-linear model 

M~ = (DEB, DN,  DM, ENMB) 

Table 1 
Cell indices and their observed frequencies (nonzero frequencies only) 

E N M B D Observed 
frequency 

1 1 1 1 1  33 
2 1 1 1 1  32 
1 2 1 1 1  8 
2 2 1 1 1  8 

2 1 2 1 1  1 

1 2 2 1 1  1 

2 1 1 2 1  1 

2 1 2 2 1  1 

1 1 1 1 2  2 
2 1 1 1 2  10 
1 2 1 1 2  3 
2 2 1 1 2  6 

1 1 2 1 2  1 
2 1 2 1 2  2 
2 2 2 1 2  2 

2 1 1 2 2  1 
2 2 1 2 2  4 

2 1 2 2 2  1 
2 2 2 2 2  2 
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where DEB, DN, DM, ENMB are the configurations that define the sufficient 
statistics and the marginal subtables that are used in the IPF iterations. The 
model is hierarchical but not direct [4]. 

The original table contains 13 random zeros. The marginal DEB table (ob- 
tained by summing over N and M) contains two zero frequencies and the 
marginal ENMB table contains four zero frequencies. The zeros in the marginal 
subtables force eight cells to have expected frequencies equal to zero under model 
M 1 • 

If dryness (D) is treated as a dependent variable, the above model M~ 
corresponds to a logistic model where the logit of D is a function of the main 
effects of all four other variables and of the interaction between E and B. This 
logistic model will be referred to as L~. Each term in L I corresponds to a term in 
M~: to to A D, to E to A ED, ton to AND, toM to A MD, toB to A BD and toEB to A EBD where 

the superscript identifies the term in the appropriate model. If all expected values 
were nonzero, each estimated to-term would be twice the corresponding A-term. 

The log-linear model M~ wasfi t ted to the data by 
(a) IPF using BMDP4F [5], 
(b) NR using GLIM [1] a n d / o r  a program based on Haberman [9], 

and the logistic model L~ was fitted by 
(c) NR using GLIM or BMDPLR [7]. 
All computations were performed in single precision on the CDC 6600 com- 

puter at Tel-Aviv University. The CDC 6600 computer has a 60-bit word, 48-bit 
mantissa, which produces at least 12 digits of numerical accuracy. 

3.1. Expected values 

Table 2 presents the expected values obtained by: 
(1) Using IPF to fit the log-linear model M~ to the observed frequencies in all 

cells. 
(2) Using 

Table 1 (i.e., 
(3) Using 

Table 1. 
Using the 

NR to fit the log-linear model M~ to the observed frequencies in 
to all nonzero observed frequencies). 
N R  to fit the logistic model L~ to the observed frequencies in 

IPF algorithm eight-cells have expected values identically equal to 
zero (cells 9, 11, 13, 15, 25, 27, 29 and 31). Therefore the model can be fitted to 
the data with any or all of these cells defined as structural zeros. None of the 
other cells have expected values equal to zero although cells 5, 8, 12, 16 and 23 
have observed zero frequencies. 

When the model M~ is fitted by the NR algorithm to the data from Table l, the 
expected frequencies differ from those yielded by IPF. The N R  values are 
identical to the ones obtained by applying the IPF algorithm to the data in the 
frequency table in which all observed zei'os are defined to be structural zeros. 
However, when the f vector is composed of the 19 observed cell frequencies in 
Table 1 and of the 5 zeros corresponding to the cells with zero observations but 
nonzero expected values, the expected frequencies obtained by the N R  algorithm 



M.B. Brown, C. Fuchs / MLE in sparse tables 9 

T a b l e  2 
Expected values when the data in T a b l e  1 are fit by the log-linear model M~ 

E M N B )  or the equivalent logistic model L~ 

= ( D E B ,  D M ,  D N ,  

Cel l  Indices (I) (2) (3) 
E N M B D I P F - M  I N R - M  I N R - L  1 

1 1 1 1 1 1 32.3 32.3 32.3 

2 2 1 1 1 1 32.8 32.5 32.8 

3 1 2 1 1 1 8.5 8.7 8.5 

4 2 2 1 1 1 6.9 7.3 6.9 

5 I 1 2 1 1 0.8 - 0.8 

6 2 1 2 1 1 1.0 1.2 1.0 

7 1 2 2 1 1 0.5 1.0 0.5 

8 2 2 2 1 1 0.4 - 0.4 

9 1 1 1 2 1  0 - - 

10 2 1 1 2 1 0.9 1.2 0.9 

11 1 2 1 2 1  0 - - 

12 2 2 1 2 1 0.7 - 0.7 

13 1 1 2 2 1  0 - - 

14 2 1 2 2 1 0.3 0.8 0.3 

15 1 2 2 2 1  0 - - 

16 2 2 2 2 1 0.1 - 0.1 

17 1 1 1 1 2 2.7 2.7 2.7 

18 2 1 1 1 2 9.2 9.5 9.2 

19 1 2 1 1 2 2.5 2.3 2.5 

20 2 2 1 1 2 7.1 6.7 7.1 

21 1 1 2 1 2 0.2 1.0 0.2 

22 2 1 2 1 2 1.0 0.8 1.0 

23 1 2 2 1 2 0.5 - 0.5 

24 2 2 2 1 2 1.6 2.0 1.6 

25 1 1 1 2 2  0 - - 

26 2 1 1 2 2 1.1 0.8 1.1 

27 1 2 1 2 2  0 - - 

28 2 2 1 2 2 3.3 4.0 3.3 

29 1 1 2 2 2  0 - - 

30 2 1 2 2 2 1.7 1.2 1.7 

31 1 2 2 2 2  0 - - 

32 2 2 2 2 2 1.9 2.0 1.9 

(1) M I fit  b y  I P F  to the f ive -way  table .  

(2) M1 fit b y  N R  to the data in T a b l e  1 (all n o n z e r o  cell frequencies). 
(3) L 3 fit  b y  N R  to the data in T a b l e  1. 

are identical to those obtained by IPF (Table 2, column 1). 
The expected frequencies obtained using the NR algorithm for the logistic 

model (Table 2, column 3) are equal to those obtained using the IPF algorithm 
for the log-linear model. As indicated earlier, the NR algorithm applied to a 
logistic model correctly identifies the cells with zero expected frequencies. 
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3. 2. Parameter estimates and degrees of freedom 

Let us first exialuate the df for the model 

M 1 = (ENMB, DEB, DN,  DM).  

There are 32 cells (no), eight of which have zero expected values (nz). The 
number of parameters in the model is 22 (the mean effect, five main effects, 10 
two-factor interactions, five three-factor interactions and one four-factor interac- 
tion). However, five parameters are nonestimable. Therefore the df are 

df = 3 2 -  8 -  ( 2 2 -  5 ) =  7. 

(Using the explicit formula described in the Appendix, the values of np(X z) - 
nn(~ z) are zeros for ~EB, ~DEB, ~ENB, ~EMB, ~ENMB and one for all other effects in 
the model.) 

The parameter estimates of the log-linear model fitted by the IPF algorithm to 
data in sparse tables are obtained as 

( x'wx)-'x'wr 

where Y = In F at the last iteration of the IPF algorithm. Since Mt is overparame- 
trized, X ' W X  is singular. The matrix sweeping (pivoting) routine used by BMDP4F 
does not pivot on the five effects XEB, ADEB, AENB, hEMB and AENMB. The first 
column in Table 3 reports the estimates obtained for the other 17 parameters. The 
magnitude of a typical asymptotic standard error for a parameter estimate is 
given by the ASE in Table 3. 

The solution produced by N R  when the input data are the nonzero frequencies 
only (Table 3, column 2) is the same as that obtained by BMDP4F when all 13 
cells with observed frequencies equal to zero are defined as structural zeros. 
Although the same number of parameters are estimated as in the first column, the 
estimates of all the parameters differ between the two analyses. The df are 2 since 
now there are effectively five fewer cells in the table. 

Columns 3 and 4 in Table 3 present NR solutions produced at the two stages 
(at the end of the NR iterations and after re-solving using the expected values 
from the N R  solution) when the tolerance limit [6] used for pivoting is 10 -3. 
Again five parameters are not estimated but they differ from those in column 1. 
Therefore some of the parameter estimates agree with those of IPF in column 1 
but others differ; the parameter estimates that differ are aliased with one or more 
nonestimated parameters. 

Columns 5 and 6 present a second pair of N R  solutions when the tolerance 
limit for pivoting is set to 10 -6 . This tolerance limit is not sufficient to prevent 
pivoting on the nonestimable parameters. Therefore all parameters are estimated, 
but many of the ASEs are very large. Since the rank of X ' W X  is overestimated (by 
5 in our example), the calculated degrees of freedom are also in error (too small 
by 5). 

Note: GLIM produces a different set of parameter estimates for both log-linear 
and logistic models. The constraints used by GLIM are that the parameter 
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Tab le  3 
Es t imates  of the parameters  of the log-l inear  model  Mt 

equ iva len t  logistic model  L I 

= (DEB, DN,  DM,  E N M B )  and of the 

Effect (1) (2) (3) (4) (5) (6) (7) 

m e a n  0.189 0.649 - 1.600 - 0 . 1 8 5  - 2 . 1 0 0  - 2 . 1 0 0  

E - 0 . 2 9 4  - 0 . 1 0 2  - 2 . 0 8 3  - 0 . 2 9 7  - 2 . 8 3 4  - 2 . 8 3 4  

N 0.080 0.108 0.111 0.080 0.111 0.111 
"t 

M 0.854 0.533 ,0.741 0.819 0.741 0.741 

B 0.661 0.528 2.450 0.664 3.120 3.120 

D - 0 . 1 0 6  0.231 - 0 . 0 6 1  - 0 . 1 0 6  - 0 . 0 6 1  - 0 . 0 6 1  0.020 

EB - - 1.789 - 2.539 2.539 

D E  0.307 0.312 0.352 0.308 0.352 0.352 0.805 

DB 0.381 0.206 0.337 0.383 0.337 0.337 0.572 

D N  0.324 0.286 0.324 0.324 0.324 0.324 0.648 

D M  0.340 0.203 0.340 0.340 0.340 0.340 0.680 

E M  0.035 - 0.168 - 0.078 - - 0.078 - 0.078 

E N  - 0.074 0.158 - 0.043 - 0.074 - 0.043 - 0.043 

BM 0.438 0.425 0.551 0.474 0.551 0.551 

BN 0.130 0.193 0.099 0.130 0.099 0.099 

M N  - 0.013 - 0.182 0.027 - 0.320 0.027 0.027 

D E B  - - - 0 . 0 4 5  - - 0 . 0 4 5  - 0 . 0 4 5  0.191 

EBM - - 0.113 0.037 0.113 0.113 

EBN - - - 0.031 - - 0.031 - 0.031 

E M N  0.020 - 0.204 0.059 - 0.059 0.059 

B M N  0.204 0.296 0.164 0.224 0.164 0. i 64 

E B M N  - - - 0.040 0.020 - 0.040 - 0.040 

A S E  0.2 - - 0.2 - 12.0 0.5 

X 2 8.97 0.90 8.97 8.97 8.97 8.97 8.97 

df  7 2 7 7 2 2 6 

(1) M~ fitted by IPF.  

(2) M I fit ted by IPF  when all observed zeros are defined as s t ructural  zeros ( N R  us ing only  the data  

in Tab le  1). 

(3) Mt fitted by N R  with to le rance  l imit  set to 10 -3. Est imates at last i teration. 

(4) Same as (3) bu t  est imates ob t a ined  by  re-solving for A after last i teration. 

(5) S a m e  as (3) bu t  tolerance l imit  set t o  10  - 6  . 

(6) Same as (4) bu t  tolerance l imit  set to 10 -6  . 

(7) L I fitted by NR.  Est imates  at last i terat ion.  

corresponding to one level of each index is equal to zero (and not that the sum 
over an index is zero). This definition of the constraints may cause parameter 
estimates that are highly correlated. High correlations of this form may cause 
problems of numerical accuracy in the matrix inversion that is part of the NR 
algorithm. 

The last column (7) in Table 3 presents the six parameter estimates obtained 
when fitting the logistic model L 1 by BMDPLR. Each estimate is printed on the 
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line that corresponds to the equivalent term in model MI: w to ~D, wE t o  ~DE, etc. 
This program does not  re-solve for the parameter estimates after the last iteration. 
Therefore all parameter estimates are nonzero although w EB is aliased with three 
others, w E, W a and w. Two estimates w N and w M are, as expected, equal to twice 
the estimate of kDN and X DM respectively. 

4. Discuss ion 

When using the NR algorithm, the vector of frequencies used as input must 
include all cells but those having zero expected values under the model to be 
fitted. Cells with zero observed frequencies should be included unless their 
expected values under the log-linear model are zero. The parameter estimates 
should be obtained by re-solving for the estimates using the expected frequencies 
from the last iteration. The degrees of freedom may be computed using the rank 
of X ' W X  but there may be a loss of accuracy if the wrong tolerance limit is used. 
The explicit formula given in the Appendix can be used instead. 

When parameter estimates are aliased with others, problems in interpretation 
of the coefficients arise. We choose to retain the lower order parameter estimates 
among those that are aliased and to omit (set to zero) the higher order estimates. 
Algorithms that do not choose among the aliased parameter estimates produce 
estimates with very large asymptotic standard errors. 

When the number of estimable parameters is less than the number of parame- 
ters, it is not possible to replace the model by the model excluding the nonestima- 
ble parameters and then expect to obtain the same results. For example, in Mt 
there are five nonestimable parameters. A model excluding the five nonestimable 
parameters is 

M 2 = (DM, DN, ENM, NMB). 

When this model is fitted to the data, the chi-square statistic is 15.24 with 15 df as 
compared to 8.97 with 7 df when model M l is fitted. The difference in df is due in 
part to the fact that fitting model M 2 produces no zero expected values whereas 
fitting M I creates 8 zeros. That is, the difference in df between two nested models 
is also affected by the difference in the number of zero expected values produced 
by the two models. The models M 1 and M 2 do not differ in the parameters 
estimated, but do differ in the chi-square tests-of-fit and dfs. Therefore, the 
difference between their chi-squares is not  a test solely for the difference in 
estimable parameters between the two models; what is being tested is the 
difference in the lack-of-fit between the two models. 

Additionally, the difference in df of two models that differ by a single effect 
may exceed the number of parameters associated with that effect. For example, 
when the model 

M 3 = (B, ENMD) 

is fitted to the data, six cells have zero expected values. Therefore 

df (M3)=  3 2 - 6 - ( 1 7 -  3 )=  12. 
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However, if the model 

M 4 ~" (B, ENM, END,  EMD, NMD) 

is fitted, there are no zero expected values and 

df ( M 4 ) =  3 2 - 0 - ( 1 6 -  0) = 16. 

Models M 3 and M 4 differ in only one effect ?~ENMD that defines a single 
parameter; therefore their df's should differ by one. The df's differ by four (and 
not one) because the addition of ~ENMD caused six zero expected values that 
resulted in three parameters becoming aliased with other parameters. 

Both the IPF and the NR algorithms can produce the maximum likelihood 
estimates in sparse contingency tables. However, it is necessary to be aware of the 
numerical and conceptual problems that can arise when using the algorithms to fit 
log-linear models. Due to the rapid proliferation of new computer programs to fit 
these models, we recommend that the results from one program be cross-validated 
against the results from another, preferably one using a different algorithm. 

Although proper implementation of both algorithms yields identical estimates 
for the class of hierarchical models described in this paper, the choice of which 
algorithm is preferable depends on the characteristics of the problem and of the 
computational facilities available. In general, if the model is direct and there are 
no structural zeros, the expected values can be stated explicitly and the IPF 
algorithm requires only one iteration. Otherwise, its rate of convergence is linear. 
In all cases the rate of convergence of the N R  algorithm is quadratic [11]. 
However, the NR algorithm requires that a p x p covariance matrix be formed at 
each iteration, where p is the number of parameters to be estimated. If p is large, 
the computation of the covariance matrix will offset any gain due to fewer 
iterations. There are other classes of models for which the IPF algorithm is either 
very slow to converge, such as when the categories are ordered, or inapplicable, 
such as when the model is not hierarchical. 

If all expected values in a sparse frequency table are small, the asymptotic 
properties of the maximum likelihood estimates and the chi-square statistics 
cannot be assumed to hold. Haberman [8] shows that the asymptotic properties 
are applicable when both the sample size and the number of cells in the table are 
large, even if individual expected frequencies are small. In addition, the test of the 
difference between two models is more robust than each of the tests of the 
individual models (Haberman, personal communication). 

Appendix - An explicit formula for the number of nonestimable parameters 

Let kz represent an effect in the log-linear model. Form the marginal subtable 
T O corresponding to the configuration Z. Let 
n0(k z) = number of zeros in table To, 
n~(k z) = number of zeros in all subtables formed by collapsing T O over exactly 

one index in Z, 
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n2(~k z) = number  of zeros in all subtables formed by collapsing T o over exactly 
two indices in Z, 

n k (~z) = number  of zeros in all subtables formed by collapsing To over exactly k 
indices in Z. 

In the above, as soon as n i (~  z) is zero for any i, then nj (~  z) is zero for a l l j  > i. 
The number of nonest imable parameters in ~z is 

n o ( X z ) = , , 0 ( X z ) - n , ( X z ) + n 2 ( X  z) . . . .  + . . . .  

The total number  of nonestimable parameters is 

no=En°(X z) 
where the summation is over all terms in the log-linear model. 

The df can now be calculated as 

df = n c -  n z -  ( n p -  n , ) .  

The above was derived empirically and is implemented in BMDP4F [5]. We 
have not as yet found any problems for which the above calculation of df is not 
correct. 
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