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Abstract Electrostatic waves excited by a field-aligned electron current sheet of finite thickness are 
investigated. The finite width of the current sheet gives rise to boundary conditions to be satisfied at the sheet 
edge.This resultsinarestriction to thenumberofmodes which maybedriven unstable.Ductedandevanescent 
mode solutions are obtained. It is shown that the finite thickness of the current sheet partially stabilizes the 
system and contributes to the coherence of the excited waves. 

INTRODUCTION 

Fietd-aligned currents play an important rofe in the 
physics of the aurora1 zone. They represent part of the 
electrodynamic coupling between the ionosphere and 
the magnetosphere. At the same time, such currents 
often affect this coupling by exciting growing waves 
which, upon saturation, render the plasma turbulent. 
This results in anomalous electrical resistivity and the 
consequent field-aligned potential drops. 

The subject of field-aligned currents has been 

reviewed by Arnoldy (1974), and Anderson and 
Vondrak (I 975). Observations strongly indicate that 
upward field-aligned currents are associated with 

amoral displays (Arnoldy, 1974) and with plasma 
turbulence (Gurnett and Frank, 1973). It has also been 
suggested that held-aligned current driven instabilities 
lead to the generation of low frequency electrostatic 
noise in the high altitude aurora1 plasma (Gurnett and 
Frank, 1977). 

The two most important current-driven instabilities 
in the high altitude aurora1 zone plasma are the ion 
acoustic and electrostatic ion cyclotron instabilities. 
One of the first investigations of the ion acoustic wave 
instability in an unmagnetized plasma has been carried 
out by Fried and Gould (1961). They showed that the 
critical drift velocity for instability decreases as the 
temperature ratio T,/T increases. Drummond and 
Rosenbluth (1962) investigated the electrostatic ion 
cyclotron instability, and showed that for temperature 
ratios T,/TI near unity the critical drift velocity for 
instability is smaller than that for the ion acoustic 
instability. Kindel and Kennel (1971) extended the 
studyoftheselowfrequencyelectrostaticinstabilities to 
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a broader range of T,jq and discussed both types of 
instabilities with reference to aurora1 conditions. 

In all of the above treatments, the authors restricted 
themselves to currents or beams which are uniform and 
infinite in all directions, i.e., to a purely one- 
dimensional model. This, ofcourse, is not correct in the 
applications, and it is desirable to investigate more 
realistic models. Recently, Elliott (1975) Dungey and 
Strangeway (1976) and also Strangeway (1977, 1980, 
1981) have studied the electromagnetic modes of 
oscillation driven by a finite thickness current sheet in a 
plasma with a magnetic field parallel to the sheet. They 
showed that the instability threshold and the frequency 
range ofunstable waves are markedly altered when the 
finite thickness of the current sheet is taken into 
account. 

The object of our investigation is to determine the 
instability threshold and growth rates for ion acoustic 
and electrostatic ion cyclotron ins~bilities in a 
magnetized plasma driven by a current sheet of Iinite 
width. Some of our results have been reported earlier 
(Hwang eb al., 1979, 1981). We employ an idealized 
model in which the velocity distributions of the 
electrons and ions in the direction perpendicular to the 
sheet are represented by Maxwell~ans. Thus, the plasma 
has a perpendicular temperature. On the other hand. 
the parallel electron velocity distribution is Maxwellian 
outside the sheet and a delta function with a drift inside 
the sheet. ‘The parallel ion distribution is a delta 
function everywhere. The nonzero perpendicular 
electron te~~peralure allows ion-acoustic waves to 
propagate in the background plasma. The problem is 
essentially a two-dimensional one in the xz-plane. The 
z-axis is delincd as the direction ofthe electron drift and 
the background magnetic field, while the .x-axis is 
normal to the boundaries of the current sheet. The 
mathematical model is formulated in Section 2, and the 
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basic equations are discussed. The dispersion relations 
are derived in Section 3 and the ducted mode solutions 

are discussed in Section 4. 

2. FORMULATION OF THE PROBLEM 

Consider the configuration as shown in Fig. 1 where 
the current is confined to the finite region I of half-width 
n, and region II represents the stationary background 
plasma (].x] 2- a). 

Let the electrons and ions be represented by an 
u~pett~rbed velocity djstr~butjon function of the form 

where 1= I, II, refers to the two regions in space,j = e, 
i refers to electrons and ions, u, and uI are the parallel 
and perpendicular velocity components respectively, nj 
is the number density of species j, hy) is the parallel 
velocity distribution function, which is left unspecified 
at this time. 

u& = 2kBTj/hj 
k, = ~oltzmann’s constant 
7 = perpendicular temperature of species j 

pnj = mass of species j 

We assume quasi-neutrality, i.e., n, = pti = n. As we are 
interested in electrostatic waves, Maxwell’s equations 
reduce to 

VxE=O (2) 

V-E= 4np (3) 

where p is the charge density, 
The perturbations to the system are assumed to be 

--_ 
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FIG, 1. TW~-~~~ffS~~~~L MODEL OF CURRENT SHEJZT OF FINITE 

WIDTH. 

caused by electrostatic waves which are ~nde~ndent of 
y. The dispersion relation governing the behavior of 
these waves is obtained by evaluating the perturbation 
tothezeroarder quantitiesdescribing thesystem.Thus, 
we let 

.I’j”(r, v, t) = A%)(v) -t &Q(r, v, t) (4) 

where $i)(r, v, t) is the first order distribution function 
and E is a dimensianless parameter which is small 
compared to unity. Further, 

E = EQ, t) 

B = I.%,. 

We assume that there is no background electric field, 
and that the perturbation magnetic field may be 
neglected as we are restricting ourselves to smaI1 
amplitude electrostatic waves. Specifically, we are 
looking for first order quantities of the form 

A,@, t) = A i(x) ei(“‘-k=‘) (5) 

where A”, stands for either ,$l) or I?,. In equation (5) the 
frequency is complex, i.e., o = u,+ioi while k, is 
assumed to be real Thus, we are considering wave-like 
perturbations which are independent of y and 
harmonic in the z-direction. Hence, the problem is a 
two~imens~onal one and all vectors have only 
components in the x and z directions. The waves above 
are travelling in the positive z-direction if k, > 0. If the 
electron velocity distribution function were to have a 
positive slope at the phase velocity, then the waves 
would be amplified by the negative Landau damping. 
For this reason, we shall use w and the parallel phase 
velocity o/k, as parameters describing the wave when 
presenting the results of the analysis. 

Under the assumptions mentioned previously, the 
equations governing the problem are the linearized 
Ylasov and Maxwell equations : 

v x B, =o. (8) 

The differential equation (6) can be solved by the 
method of characteristics (Krali and Trivelpiece, 1973). 
We introduce a set of primed variables which are 
defmed by the unperturbed partieie orbits: 

dr’ __~ = “’ 
dt’ 
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dv’ qj v’ x B, 

z=m,y 

with the boundary conditions 

r’(t’ = t) = r 

v’(t’ = t) = v. 

(9) 

The solutions ofequations (9) with the above boundary 
conditions are : 

and 

0: = VI cos (4 + njz, 

u; = ul sin($+Qj7) (10) 

v: = v, 

x’ = x-(uJQj) [sin(4+Rj7)-sin 41 

y’ = y-(v,/nj)[cos(~+nj7)-cos $1 (11) 

2’ = z-v=7 

where 

and 

7 = t-t’ (12) 

!Aj = qjB,/mjc 

the gyrofrequency of thejth constituent. 
Expanding all functions of x’ in a Taylor series about 

x’ = x yields to first order in x’-x 

.4(x’) z A(x) - 2 $[sin(4+!Ajr)-sin f#~] (13) 
I 

where, again, A stands for either fjl or E,. This first 
order approximation is valid as long as u,/Rja << 1, 
where a is the half-width of the beam (see Fig. 1) 
and ~$2, = rj is the jth constituent Larmor radius. 
For a typical beam width of the order of 10 km, this 
inequality is usually satisfied in the top-side ionosphere 
(see Table 1 for the two cases treated here). 

The integration over unperturbed orbits yields the 
following formal solution of equation (6) (Krall and 
Trivelpiece, 1973): 

&)(r’, t’) - V,.f$(v’) dt’. (14) 

From equations (l), (S), (8), (lo), (1 l), (12), (13) and (14), 
the charge density becomes 

where 

(1) 2 
“()j = cupj s (16) 

s m cYh~‘/&, 

_ a, (o - kp,) dvz (17) 

and wpj = (4nnjq;/mj)1/2 is the plasma frequency of the 
jth constituent. The quantities ccoj contain the gyro- 
resonance whereas the flj contain the Landau 
resonance. 

Combining equations (7) and (15), we obtain a wave 
equation of the form 

a2,7(1) 

$ + {kSf’}2E’/‘, = 0 

where 

(19) 

is the dispersion relation for either region under 
consideration (1 = 1,II). The properties of {kc))’ 

determine the propagation characteristics of the wave 
in the x-direction. The I-dependence of kc) refers to the 

region under consideration (inside or outside the 
current sheet). Since the parallel distribution functions 
hy) are different in the two regions, the propagation 
characteristics are expected to be different also. In the 
next section the propagation characteristic for a simple 
model will be discussed. In addition, the boundary 
conditions at the sheet edge will be applied, which will 
result in a restriction on the number of the allowed 
modes. The boundary conditions will thus give rise to a 
set of eigenvalue equations. 

TABLE 1. DERIVED PARAMETERS USED IN THIS STUDY* 

Example 0.i 
number (2, 

ape V T, V 

W) 
T. G ri 

(Hz) (cm s-‘) (cm s-‘) (cm s-l) (em) 

1 3.05 * 10’ 6.56.103 5.59.104 2.81 * 10’ 1.06. lo6 5.88. 10’ 1.62. lo6 3.48. lo4 
2 1.37. lo2 1.76. lo4 2.52. 10’ 7.53.105 1.10. lo6 5.77.10’ 1.24. lo6 8.03. lo3 

* Based on the model ionospheres listed in Table 2. 



288 K. S. HWANT~. EKNE~T G. FONTHEIM and R. S. B. ONG 

3. ErG~~VALUE EQUATIONS 

We first specify the x-dependence of the parallel 
distribution functions. For a first look at the effect of a 
current sheet of finite thickness, we chose a simple 
model, a cold stream of electrons inside the sheet, warm 
stationary electrons outside the sheet and cold 
stationary ions everywhere. (Note that the per- 
pendicular velocity distributions of the electrons and 
ions are assumed to be Maxwellian; see equation (I).) 

Thus, 

hy’ = S(v, - LID 

hf” = rJ(L&) I /.x/ < a (20) 

1 p =: -__ 
P 

Jl’%7., 
exp ( - z$/z$,) 

Ix/ > a (21) 

h!“’ =: S(rj ) z 

Substituting these expressions into equations (16) and 
(17) we can then evaluate {ksf)}’ from equation (19) : 

(22) 

where 

and 

KW 

D(1) = w;&-(w - k,qJ2 - tl,Z] + w$‘(w2 -Cl,“) - 1 

(23b) 

(24) 

Z(r/) E 71-1’2 s oc emx2dx 
_____ 

-0c x-r? 
(25) 

Z’h) = --Xl + rlzm. 

We first investigate ion-acoustic modes. In this case 
CO, -=z O+ and (cu,jk) < c, (the ion-acoustic velocity), 
where k = (kz+k2)*‘2 if k, is real, and k = k, if k, is 
imaginary. For the wave to be unstable, the electron 
drift velocity must exceed the-_-component ofthe phase 
velocity, while it is usually lower than the electron 

thermal velocity. For ion-acoustic waves it is therefore 
reasonable to assume that * 

q, = (w/k,u,) i< I ; 

therefore it follows that 

Z’($,) 2 -2 

and for o, CC 0, 

Z(rle + A\,) - Z(V, - AJ z 2Z,(A,) 

where Z,(A,) is the real part of Z(A,). Hence N(H) and 
D(II) are approximately given by 

N(U) = (- 2u;,jk,Z&$ + w;&u” - 1 (264 

D(H) = (w&/k, %+,A,)Z,(A,) + o,“~/(w~ - fzi”) - 1. (26b) 

Equations (22) and (23a, b) as well as (24) and (26a, b) 
are the dispersion relations for ion-acoustic waves in 
the finite sheet region and the background plasma, 
respectively. We are interested in investigating the 
threshold conditions for absolute instabilities. Thus, 
from now on, we let ctii = 0. This corresponds to the 
limit where there is neither Landau damping nor an 
instability, i.e. w = w,, from which it follows that k’,“‘/ki 

is real. Hence, the ratio kffz,/k,2 can be either positive or 
negative. In the first case, kz) is real (since k, is taken to 
be real), and the solution of equation (18) yields the 
x-component of electrostatic waves propagating 
obliquely to the magnetic field with the angle of 
propagation determined by k$)/k,. In the second case, 
k$)is imaginary which implies an evanescent amplitude 
in the x-direction and electrostatic wave propagation 
restricted to the z-direction. This is illustrated in Figs. 
2a, 2b and 2c for example 1. Table 2 lists the parameters 
used in this study. They were obtained from the paper 
by Fontheim et al. (1978) representing stormtime 
conditions at altitudes of 10,000 km (example 1) and 
5000 km (example 2) respectively. Based on the above 
discussion, the solutions of equation (18) are therefore 

for 1x1 < a 

E’:;(x) = 
1 

E’:;. cos k!$x if kf) = k$ (27a) 

E$‘?, cash kj,‘jx if kc’ = ikt! (27b) 

where kt/ and k$ are real and for 1x1 > a 

El’:)(x) = 
I 

EyL)o em- $,!L’l.fl if k($ = k$:) (2ga) 

q1;; e - $!:‘lsl if kc’*) = ik$’ (28b) I 

where kz!‘and kjff are real. All ofthe abovesolutions are 
symmetrical about the planes = 0 and are bounded as 
[XI --f co. The complete solutions for the perturbation 
electric field are given by (see equation (5)) : 
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hide the current sheet ({xl < a) the numerator of TA~LE~.M~~uE~I~~NDsPH~RE~IJS~~~~NTHISSTUUY* 

-(k$)/k,f2 is always positive for o, < tuPi (equation 
__I -.. .-____- 

(23a)). For the magnetic stormtime parameters of 
Example 
number n,. (cm _ ‘) r, (“K) 7; (“K) H,, (gauss) 

example 1, the sign of the denominator D(I) changes 
across the curves D(1) = 0 and D(T) = cxj as shown on I 9.8*IOZ 1.142. IO5 6.X24.10” 2.0. 1O-2 

Fig, 2a. The square of the perpendicular wave vector kc) 
2 7.054.10’ 1.097. IO’ 7.292.10 9.0. lo-’ 

.-- -- 
changes sign across these limiting curves. From *The ions are assumed to be H + 
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equations (22) and (23b) it follows that The boundary conditions at the edge of the sheet 

(a) k$) = 0 when D(1) = co, 
(x = + a) restrict the number of permissible modes due 
to the finite thickness of region I. Next, the possible 
combinations of solutions and resulting eigenvalue 
relations will be discussed. The first boundary 
condition states that the tangential component of E, 
must be continuous, i.e., 

i.e. either (w - k,z& = 0: 

corresponding to the Doppler-shifted electron gyro- 
resonance represented by the curve labelled D(1) = co 
in Figs. 2a and 2c 

or w2 = n; 

corresponding to the ion gyro-resonance not shown on 
the Figures because the ratio $/w,, (- 5 x 10 -3) is too 
small, and 

(b) X k”’ = a when D(I) = 0, 

In the regions where - (kf)/k,)2 < 0, k!$ is rear, and the 
solutionisoftheform(27a). Where -(k$‘/kJ2 > 0, klf’is 
imaginary, and the solution is of the form (27b). 

Outside the sheet region (1x1 > a) both N(I1) and 
D(II) can change sign. This is shown in Fig. 2b. These 
curves correspond to kf’) = co (when D(II) = 0) and 
klf’) = 0 (when N(II) = 0 or D(II) = co). From 

equations (24), (26a) and (26b) it follows that the 
limiting frequencies are given by 

(a) for kf’) = n;, 

which for Q,/u+,~ << 1 and w~Ju+,~ CC 1 becomes 

approximately the lower hybrid frequency and 

(b) x for k(“) = 0 

or 

the ion gyro-resonance. As explained above, the curve 
corresponding to the latter frequency is not shown on 
Figs 2b and c. Similarly, if -(kp”/kJ2 < 0, then kf*’ is 
real, and the solution is of the form (28a). When 
-(kIf1)/kJ2 > 0, then k!j’)is imaginary, and the solution 
is of the form (28b). Figure 2c shows both sets ofcurves, 
those across which (k~)/k=)’ changes sign and those 
across which (k~1)/k~)2 changes sign. The various 
regions bounded by the curves define the combinations 
of solutions (27a, b) and (28a, b) existing in those 
respective regions. 

EC” lrlx=a- - - E’::‘,x=a+. (29) 

To obtain the secondary boundary condition, we 
combine equations (7) and (15): 

Since the coefficients CY$ and fij” are independent of the 
coordinates, this can be written in the form : 

where 

v . $zda = () (30) 

If equation (30) is integrated over a volume element 
containing the edge of the sheet and with surfaces 
parallel and perpendicular to the boundary (i.e., a “pill- 
box”), then one obtains using Gauss’ theorem : 

i’ 
V.Pd3x- P*ndA=O. 

v Y! s 

We let the perpendicular surfaces approach zero and 
obtain’in the limit the second boundary condition : 

F(‘)*n1,=,_ = ZF(“)-nIx=a+ (32) 

or 

From Maxwell’s equation (8) and the z-dependence of 
the form (5) one obtains for an electrostatic wave 

(33) 

This finally leads to the second boundary condition for 

Et,: 

where k, has been assumed continuous across the edge 
of the current sheet. 

4. DUCTED &MODE SOLUTIONS 

Consider solutions to the wave equation (1X) such 
that k’,” is real and kl;“’ is imaginary. This corresponds 
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to: 

where kz’ = k$ and k$” = ik$!). Inside the sheet this pair 
of solutions corresponds to a standing wave pattern in 
the transverse direction propagating in the parallel 
direction, while outside the sheet the amplitude falls off 
exponentially with distance away from the sheet. This 
pair of solutions is therefore called by us the ducted 
wave mode. These solutions are lying in regions 1 and 5 
of Fig. 2c. 

We notice that in region 1 of Fig. 2c the waves are 
located between the Doppler-shifted electron gyro- 
frequency and the lower hybrid frequency. Applying 
the boundary conditions (29) and (34) yields at x = a: 

E$, cos (kjlja) = Ey$, exp (- k!J!)a) 

( > 
1 - cct$ k$E’:k,, sin (k$!a) 

j 

= (1 - ~z@)k!j).Ef~~ exp (-klf,!)a). 

We divide these two equations by each other and use 
the de~nit~ons of k$)and kiji. The result is the following 
eigenvalue relation : 

(1 -t(:‘b-aaD”“t-B~)-PI”- 1)“2 tan (j&f 

= (I _ a$:) - @)“z( I+ fir’) + /j-j”)““_ (36) 

The functions CC$$ and flf’ are defined in equations (16) 
and (17), with the parallel distribution functions ky) 

given by expressions (20) and (21). Hence, equation (36) 
gives the relation between the wave parameters w, k$ 
and k, on the one hand and the parameters of the two 
piasma regions on the other. The latter are the electron 
drift and thermal velocities (u,, ur,), the electron and 
ion gyrofrequencies (Q,,Ri), the electron and ion 

plasmafrequencies(~~~, wPi), and thesheet half-width a. 
Equation (36) is not a dispersion relation as is evident 
from the fact that it depends on the properties of both 
plasma regions. Rather it restricts the possible modes 
(Q k$ k,) which can exist at threshold conditions in a 
current sheet embedded in a background plasma. Such 
a separate condition defining the allowable modes 
based on boundary conditions is commonly referred to 
as an eigenvalue equation, 

Restricting ourselves to real values of ~0, we thus 
obtain the marginal stability curves for the ducted 
modes. These are shown in Fig. 3 for example I. For any 
particular value of the sheet half-width a, the region 
below and to the right of the curve indicates values of 
wr/kz and complex w with (ui < 0 satisfying the relation 
(36).Thus, in this region negative Landaudampingmay 

o.oj 
0.0 

J 

0.2 0.4 0.6 0.8 I .o 
W/k, VD 

FIG. 3. EIGENVALUE SOLUTIONS OF THE DUCTED WAVE FOK 

EXAMPLE 1 WITHTHECUKRENTHALF-WIDTHASAPARAMETER. 

The gap in these curves and in those of Figs. 4-7 represents the 
jump across region 7 of Fig. 2c associated with refracted 

modes. 

lead to instabilities, excited by the electron drift current. 
The region of instability extends to the right of each 
marginal curve up to at most the tine u)/k,v, = 1. 
Hence, we can see from Fig. 3 that, with vn fixed, a thick 
current sheet is more unstabfe than a thin one. We can 
also fix the sheet half-width rr and obtain the relation 
between a/k, and w with theelectron drift current vn as 
a parameter. These are shown in Fig. 4 again for 
example 1. Just as in Fig. 3, the instability region for a 
given drift velocity is located between the correspond- 
ing threshold curve and the line o/k,v, = 1. Since the 
normalization of the phase velocity w/k, is with respect 
to the drift velocity vu, each of the curves of Figs. 4 and 6 
is normalized to its own value ofv,. The respective sizes 
of the instability regions for various drift velocities can 

0.0 0.2 0.4 0.6 0.8 1.0 

Wfk, ‘Jo 

Fro. 4. &XNVALUE SOLUTIONS OF THE DUCTED WAVE FOR 

EXAMPLE I W~THTHEDRIFTVELOC~TYU,ASA PARAMETEK. 
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therefore not be compared directly in those two figures. 
It can be shown, however, that the number of 
potentially unstable modes slightly increases with 
increasing vn. 

Similar curves for the parameters of example 2 are 
shown in Figs. 5 and 6. The ducted mode curves in Figs. 
3-6 originate in the narrow wedge-shaped region 5 of 
Fig. 2c at the origin and continue up to the boundary 
curve N(H) = 0. They are discontinuous across region 7 
which is associated with refracted wave modes 
(propagating waves both inside and outside the current 
sheet) with frequencies of the order of o/oPi * 0.2 and 
then continue in region 1 of Fig. 2~. The refracted modes 
will be discussed in a separate paper. 

DucTED wAvE 
EXAMPLE 2 

0.8-, 
VD=0.6 VTe 

._ 0.6-. 

0.0 0.2 0.4 0.6 0.8 1.0 

W/k,VD 

FIG. 5. EIGENVALUE SOLUTIONS OF THE DUCTED WAVE FOIZ 

EXAMPLE2WITHTHECURRENTHALF-WIDTHASAPARAMETER. 
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FIG. 6. EIOENVALUE SOLUTIONS OF THE DUCTED WAVE I;OK 

EXAMPLR2WITHTHEDKIFTVELOtITYDDASA PARAMETER. 

DUCTED WAVE 

EXAMPLE I 
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v,=o.svTe 

0.07 q q 

I 0.06 

; 

------+c 
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N 

_= 

32 0.0 30 - * 

0.0 1 
0021 J 

0.0 0.2 0.4 0.6 0.8 I.0 

WA&pi 

FE.% THEMAGNITUDEOF k$~Jk,vswJopi OF THEDUCTEDWAVE 
ATVARIOUS kj,'a FOREXAMPLE 1. 

We note that in region(I), i.e., inside the current sheet, 
both k$’ and k, are real. This means that the waves are 
propagating in a direction oblique to the background 
magnetic field. The ratio k$/k, for a wave with kfl)a 
z 50 is shown in Fig. 7 as a function of w/tu,i. It is to be 
observed that k$‘, although non-zero, is very small 
compared with k,. Thus, the waves propagate in a 
direction almost parallel with the background 
magnetic field. As k$'/k, = Elx/EIZ, we also see that the 
transverse wave electric field E,, is much smaller than 
the longitudinal component E, *. Figure 7 shows similar 
results for the cases where k")a zz 40 and 30. One can see 
from these curves that kf’/k:decreases as k$‘adecreases. 
This confirms that for a fixed beam width the electric 
field becomes more field-aligned as the wavelength 
increases, which is a property of electrostatic waves. It 
also shows that for fixed wavelength the electric field 
becomes more held-aligned as the beam width 
decreases. As explained above, the discontinuity in each 
curve represents the jump across region 7 of Fig. 2c. 

5. DISCUSSION 

By means of a simple model we have studied the 
excitation of ion-acoustic instabilities by a finite 
thickness cold electron current sheet in a plasma with a 
background magnetic field directed parallel to the 
sheet. Theelectron and iondjstribution functions in the 
plane perpendicular to the magnetic field are taken to 
be Maxwellian. The parallel ion distribution is a delta 
function with zero drift everywhere, and the parallel 
electron distribution is a delta function with drift 
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velocity vD inside the sheet and with zero drift outside 
the sheet. As the parallel ion distribution inside the 

sheet is assumed to be a delta function, ion Landau 
damping is not taken into account. The boundaries of 
the current sheet are assumed to be sharp. This is 
reasonable as the typical thickness of the electron 
current sheet in the high altitude aurora1 zone (10-30 
km) is much larger than the corresponding ion Larmor 
radius (see Table 1). 

The threshold conditions for ion acoustic in- 
stabilities have been carefully examined. The main 
results of the analysis are summarized by the various 
regions in Fig. 2~. Regions 1 and 5 yield ducted mode 
solutions. In this case only ion-acoustic waves can be 
excited as the frequency range in these regions far 
exceeds the ion cyclotron frequency (Sz, CC B < w,J. 
These waves propagate in a direction almost parallel to 
the background magnetic field. For a constant electron 
drift velocity, a thick current sheet is found to be more 
unstable than a thin one. Moreover, fewer modes can 
turn unstable as the current sheet thickness is reduced. 
Thus, the finite thickness of the electron current sheet 
contributes to the coherence of the excited waves. 

The regions 2, 4, 6 and 8 of Fig. 2c correspond to 
evanescent modes. These are ion-acoustic waves 
propagating parallel to the background magnetic field. 
The wave amplitude of these waves increases 
perpendicular to B, inside the current sheet and 
decreases outside the sheet. 

Regions 3,7 and 9 are very similar; they correspond 
to the situation where the excited mode has a periodic 
solution outside the current sheet (kc’) is real). Thus, in 
this case, the cold electron current excites radiating 

modes which propagate in the background plasma 
outside the sheet. In region 9 of Fig. 2c not only ion- 
acoustic waves, but also electrostatic ion cyclotron 
waves with frequencies in the neighbourhood of the ion 
cyclotron frequency can be excited. 

In conclusion, we find that the finite thickness of the 
electron current sheet partialty stabilizes the system in 
regard to the excitation ofelectrostatic waves. It is more 
difficult to excite electrostatic waves as the thickness of 
the current sheet is decreased. Also the range in wave 
frequencies and phase velocities of the unstable waves 
arc reduced. This indicates that the finite thickness of 
the electron current sheet tends to make the excited 
electrostatic waves more coherent. 
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