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AbstraetPatienta in the mental health care system typically make more or less irregularly spaced visits to 
psychiatrists, both within and between episodes of a given illness. A Markov model is constructed which can 
predict the utilization of psychiatric services for such patients. Unlike previous Markov models of utilization, the 
current model takes as its starting point a model of an actual disease, specifically, endogenous depression It is 
shown how one can estimate the parameters of both the model of utilization and the model of depression using data 
which were collected for clinical research purposes. The models provide reasonable fits to the data. Several 
applications of the models are worked out. In addition to predicting the utilization of mental health services, the 

models can be used to predict incidence. prevalence and recovery rates and to predict the changes in utilization 
which parallel changes in treatment regimens. 

Prediction of the utilization of medical services has 
become increasingly important. In this paper a model of 
utilization is constructed which can be used to predict 
the use of both outpatient and inpatient services by 
endogenously depressed patients. The model is 
influenced by the incidence. prevalence and recovery 
rates of depression and the severity of the disease at 
each moment in time. Some attempt is made at the end 
of the paper to show how one might incorporate into the 
model of utilization various of the economic factors 
which have been shown to have an affect on utiIization (a 
detailed discussion of the economic factors can be found 
in [l]). 

Note that from the standpoint of utilization, depres- 
sion is an important disease to consider. It is widely 
spread throughout major portions of the population, And 
recently there have come into existence therapeutic 
regimens which have the potential for greatly increasing 
the recovery rates of endogenously depressed 
patients[2]. It is of some consequence to be able to 
predict the effect that changes in these rates will have on 
utilization. 

The literature on health services planning is extensive 
(for a general review see [l]), in part because of the 
variety of existing services offered by the medical pro- 
fession and in part because of the many different cate- 
gories of patients which must be considered. In certain 
cases it has been possible to construct detailed mathe- 
matical models of utilization. A systematic review of 
these models will not be attempted here since the num- 
ber of different types of such models which have been 
used for medical planning is itself quite large (e.g. see 
recent work by Kao [3-5] and Sullivan and Blair [6]). This 
paper will confine itself to Markov models. Markov 
models have been used extensively in medical planning 
on both a system wide basis (e.g.[7-101) and within more 
restricted health contexts (e.g.[S, I l-17]). Only recently 
have Markov models been used for mental health plan- 

ning. Specifically, Sweillam and Tardiff 1181 employed 
Markov models to predict personnel requirements for 
inpatient psychiatric services. This paper will focus on 
the development of Markov models which can be used 
for both inpatient and outpatient services. 

The problem of health services planning is particularly 
difficult when the disease being considered is endogenous 
depression or one similar to it, i.e. when patients’ needs 
are irregularly spaced over reasonably long periods of 
time[19-221. In fact, no models of utilization have been 
constructed to date which explicitly take account of a 
protracted disease process. Models of utilization specific 
to long term disorders have not been developed if only 
because related models of the underlying disease pro- 
cesses are difficult to construct and test. Such models 
generally require data from a prospective longitudinal 
survey of a geographically stable, non-hospitalized 
population, data which until now have not been 
collected[23]. However, acceptable alternatives to a 
longitudinal survey exist in certain cases. One such 
alternative is explored in this study. Once a working 
model of the disease process is constructed, it is then 
possible to consider a model of utilization which is 
sensitive to the disease process. 

In addition to requiring a model of the disease process, 
a model of utilization developed for patients in the 
mental health care context will require a more detailed 
specification of the state space than has been considered 
to date. Note that the Markov models constructed to 
date have considered one and the same (for purposes of 
prediction) a patient’s state of health and a patient’s 
utilization of services: very sick patients required exten- 
sive services, moderately sick patients required relatively 
few services, and so on. The extension of the mental 
health planning context to outpatients as well as in- 
patients requires a separation of the state of health and 
the levei of personnel utilization when it is desirable to 
use a small unit time interval such as the day. Note that a 
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very sick patient may or may not make a demand on the 
time of mental health personnel on a given day. For 
example. a sick patient not in the hospital and currently 
receiving some form of treatment makes only periodic 
demands on a psychiatrist’s time, perhaps once every 
two weeks for an hour or so whereas a patient who is in 
the hospital uses various forms of psychiatric services 
throughout the day every day he or she remains an 
inpatient. The approach used to deal with the separation 
of states of illness and levels of utilization will depend 
greatly on the particular illness being considered. In this 
paper, as noted above, only one illness will be examined, 
specifically, endogenous depression. 

One final problem presents itself before a model of 
utilization can actually be tested. In particular, it must be 
possible to estimate the model parameters. This is not 
always an easy process. especially when the more con- 
venient parameter estimation procedures require know- 
ledge of the level of daily functioning for each patient. 
Unfortunately, information is typically collected from 
each patient only when the patient actually makes a visit 
to an outpatient clinic. Thus large, sporadic gaps exist in 
the data. Since it is expensive to gather daily data from 
outpatients, it would be nice if one could use the clinical 
data in its current form. Methods are described in this 
paper which permit the investigator to obtain the 
parameter estimates from the existing clinical data 

In summary, if one wants to predict the utilization of 
psychiatric services by endogenously depressed patients, 
then there are three problems which must be overcome. 
First, a model of depression which approximates the 
disease process must be constructed. Second, a model of 
utilization must be developed which at one and the same 
time is kept separate from the model of depression (since 
depressed outpatients do not make a visit every day) and 
is dependent on it (since the more depressed patients 
make more frequent visits). Finally, a way of estimating 
model parameters from clinical data must be devised. 
Once the models are developed and the parameters 
estimated, it is then possible to test the fit of the models 
to the data. 

MODEL OF DEPRESSION 

In this section a model will be constructed which can 
be used to predict the disease course of endogenously 
depressed patients. Endogenous depression is an illness 
which frequently recurs over the course of a lifetime, 
which is more severe at some times than others, and 
which is not closely correlated with events in a patient’s 
history[24]. The patients used in this study were in a 
program of intensive therapy. While the model con- 
structed in this section will be referred to as simply a 
model of depression, it shouid be kept in mind that the 
model extends only to endogenously depressed patients 
receiving intensive therapy. The model of depression will 
be used to predict a patient’s state s, of depression on 
day rkr given knowledge of the patient’s state of depres- 
sion s, at some point earlier in time. 

Recently, several different stochastic models of 
depression have been developed[23]. These models are 
used to predict the incidence, prevalence and recovery 
rates of patients diagnosed as depressed (note that no 
distinction was made between endogenous depression 
and other forms of depression). The models used the 
year as the unit of time and used only two states of 
depression, depressed and not depressed. It is important 
to note that the Markov property did not obtain for the 

patients in the study. That is. the probability that a 
patient was depressed in year y, depended not only on a 
patient’s state of depression in year y,. ,, but also on a 
patient’s state of depression at least five years previous. 
This finding does not argue against the use of a Markov 
process to model endogenous depression since the 
patient sample in the Dunn and Skuse [23] study probably 
included both exogenously depressed individuals (in- 
dividuals whose depression can be traced to changing 
circumstances in their personal lives) as well as endo- 
genously depressed patients. 

Four assumptions about the behavior of endogenously 
depressed patients define the stochastic model des- 
cribed in this section. First. it is assumed that patients 
can be placed into one of seven mutually exclusive and 
exhaustive states (these states are defined in the Method 
Section). Second, it is assumed that subjects make at 
most one transition between states over the course of a 
single day. Third, it is assumed that the probability that a 
patient makes a transition to state s, on day tk depends 
on only the state of the individual on the immediately 
preceding day tk_,, Finally, it is assumed that the prob- 
ability that a patient makes a transition from state s, to 
state sk does not depend on the day the patient makes 
the transition. Together, these assumptions define the 
stochastic model as a stationary, finite state, discrete 
time, first order Markov process, or more simply, as a 
Markov chain. 

It is well known that knowledge of the transition 
probabilities p,, between states s, and s, and knowledge 
of the entering state of a patient allows one to predict the 
probability that a patient is in a given state on any 
specified day in the future. More generally, if one knows 
the transition probabilities and the number n,(r,) of 
patients in each state s, on the first or entering day t(,, 
then one can predict the number n,(&) of patients in each 
state s, on any day 4. In matrix notation, if one defines 
the entering status vector N(to) as consisting of entries 
n,(#& then the status vector N(t,) for day tr can be 
obtained from the matrix P of transition probabilities as 
follows: 

N(t,) = N(to)P! (1) 

As is evident from eqn (l), the matrix P of transition 
probabilities figures critically in the predictions. Not all 
transitions between states s, and s, are allowed in the 
model. The characteristics of depression suggest that 
only certain transitions will be critical, i.e. will have 
probabilities significantly greater than zero. These tran- 
sitions are indicated by the presence of a positive integer 
in Fig. I. Transitions which are labelled with identical 
integers (e.g. transitions from states sz, s1 and s., to sJ 
are assumed to have the same probabiIity of occurrence. 

In order to arrive at actual predictions and compare 
the predictions with observed data, it is necessary first to 
establish rules for placing patients into the various states 
of depression and then actually to estimate the transition 
probabilities. 

Su~jecfs. Individuals in the sample of 77 patients used 
in this study were all diagnosed as endogenously 
depressed. Most were given antidepressant medications. 
Some were also seen in psychotherapy. The earliest 
records go back to 1974. The latest records used extend 
through September 1980. 
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State 

I State On Day tk+, 

Note: a positive integer in a cell indicates 

a first order transition is permitted: a zero in a 

cell Indicates that a first order transltion 1s 

not permltted. 

Note: s,=nct depressed: s2=mildly depressed; 

s3=moderately depressed; s4=severely depressed: 

s5=hospital: s6=left treatment depressed: s,=left 

treatment not depressed. 

Fig. 1. Permissible first order transitions in the model of depression. 

States of depression. Subjects were placed in state s, 
(not depressed), sZ (mildly depressed), sj (moderately 
depressed) or s., (very depressed) for a given day on the 
basis of their score on the Carroll Depression Rating, a 
self-administered form of the Hamilton Depression 
Rating[25]. Specifically, the following correspondence 
was made between states of depression and scale ratings: 
state s, was recorded if the scores on the Carroll 
Depression Rating were in the range l-7 inclusive; state 
sz was recorded if the scores were in the range 8-12; 
state s, was recorded if the scores were in the range 
13-19; and state s., was recorded if the scores were in the 
range 20-52. Patients in the hospital were placed in state 
ss. Finally, two states of termination were defined. 
Patients were placed in state s6 if they were depressed 
(i.e. in states sZ through s5) when they last made a visit 
while patients were placed in state s7 if they were not 
depressed (i.e. in state sI) when they last made a visit. 

Parameter estimation. Figure 1 makes clear the 19 
unique transition probabilities which required estimation. 
A four step procedure was used, a different step for four 
mutually exclusive and exhaustive subsets of the com- 
plete set of 19 transition probabilities. The four step 
procedure is needed because the data were collected 
from outpatients only on those days a visit to a psy- 
chiatrist was made. Therefore, the data reflect the great 
heterogeneity in the spacing of visits. T~oughout the 
discussion of parameter estimation it will be important to 
keep in mind the distinction between a true matrix M of 
transition probabilities and an estimated matrix 1 of 
transition probabilities which is made optimal according 
to some criterion (more generally, italics will be used to 
indicate any estimate which is being optimized). Unless 

otherwise indicated, a least squares criterion was used as 
the optimizing criterion. A least squares criterion selects 
as parameter estimates those values of the parameters 
which minimize the sum of the squares of the differences 
between observed and predicted scores. 

In step 1 only those cells in the upper left hand 4 by 4 
subma~ix of Fig. 1 were examined. The transition prob- 
abilities p. in these cells give the probability that a 
patient in states s, through sq will make a transition on 
the very next day to one of the first four states. The 
clinical data are in such a form that rather than estimat- 
ing the transition probabilities directly, it is easiest to 
estimate what will be referred to as modified transition 
probabilities q$,. A modified transition probab~ity qtj is 
the probability that a patient will be in state s, (i = 1,2,3, 
4) on day fL+, given that the patient was in state s, (1 = 1, 
2, 3, 4) on day 4 and given that the patient did not enter 
any one of states ss, s6 or s, on day fk+l. This means that 
the modified transition probabilities sum to one across 
the first four columns, i.e. 

k qv= Ifori=1,2,3,4. (2) 

These modified estimates are corrected in a later step 
(see step 3 and Appendix A), i.e. it is shown how to 
compute p*, from the corresponding q,, 

Estimates of the matrix Q of true modified transition 
probabilities were obtained as follows. Let V(k) and 
W;(k) be 1 by 4 row vectors. The entry u,(k) in vector 
V(k) represents the number of patients who have made 
recorded visits (recorded visits are visits in which the 
Carroll Depression Rating was administered; this rating 
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was not administered on all visits) on days t, and t,, k, 
who were in state s, on day t, and who did not move to 
states sc, sh or s, sometime between days t, and frtl\. The 
entry n,,,(k) in vector W,(k) represents the number of 
patients who have made recorded visits on days t, and 
t, + I, who were in state s, on day t, who were in state s, 
on day frtl, and who did not move to states s5, sh or s, 
sometime between days t, and fr+k. 

A prediction of the quantity w*,,(k) can be obtained if 
one makes two simplifying assumptions. In order to 
motivate these assumptions, note that w,,(k) can be writ- 
ten as the product: 

w,,(k) = u,(k)P(S,, I = j. V,, k = II 

s,=i.v,=1,v,+,=1,B=1), 
(34 

= u,(k)P(i. j. r. k). (3b) 

where S, is a random variable set equal to the state of a 
patient on day t,; where V, is an indicator random 
variable set equal to 1 if the patient is visiting a therapist 
on day t, and is equal to 0 otherwise; and where the 
indicator random variable B equals 1 if the patient does 
not enter any one of states sl, sh or s, in the days 
intervening between the two visits. Let C be the event 
{S,=i V,=l, V,,r = 1, B = I}. Then the above con- 
ditional probability P(i, j, r, k) can be rewritten as the 
sum of the product of three conditional probabilities: 

P(S,+L~~~ = n. V,,r , = ulS,+, = m, V,,, 
= b, C) 

P(S,, , = m, V,, , = blC). (4) 

The assumptions one must make can now be made 
clear. First, assume that knowledge that a patient has 
made or will make a visit to a psychiatrist does not 
change the course of endogenous depression. In parti- 
cular assume that the conditional probability P(S, = 
s,lS, P= s ,,.... S+,=S~, Vdt4=a ,..., V, h=b, B= 
I) can be rewritten as P(& = s,lS,, ,. = s,, . , S,, , = sk. 
B = 1). This assumption seems reasonable enough when 
the depression is endogenous. Visits to a therapist in this 
case serve other purposes, e.g. monitoring physical 
health, keeping track of responses to drug therapy, etc. 

Second., ,assume that the random variables S, and V, 
are condtttonally independent so that P(Sd = s,, V, = 
clSd_e = s,, . . . , S,,_, = sk. V,,,, = a,. . , V,, ,, = b, B = 
1) can be rewritten as the product of two probabilities: 
P(S, = s,(S, p = s ,,...‘S, ,=sk. Vdig=u ,..., Vd h= 
b. B = 1) and P( V, = rlSdme = s,, . . , Sd_, = sk. V,,, = 
a,. . , Vrlmh = b, B = I). Note that by the assumption 
described in the previous paragraph the first term in the 
product reduces to P(S, = s,lS,~ e = s,, . . . , Sd--/ = sk, 
B = 1). This in turn can be written more simply as 
the multistep transition probability q,,(e) = 
P(S,, = s,lS,, <.= s,, B = 1) by virtue of the Markov 
assumption in the model of depression, or if e = I, as q,,. 
Also note that when summing over a, b = 1, 2 in eqn (4) 
the second probability in the above product equals I. 

Finally, it should be mentioned that the second assump- 
tion is reasonable if the great majority of visits are 
scheduled by the psychiatrist ahead of time (an assump- 
tion which, empirically, has much support). 

In short, if the above two assumptions are met, then 
one can predict the quantity w,,(k) from the relation. 

where q,,,,(k - 2) is the conditional multistep transition 
probability (i.e. the probability that a patient is in state 
s,, given that the patient was in state s, k - 2 days 
previous). In matrix notation, Equation (5) can be 
rewritten as: 

N;,(k) = u,(k)E,‘[ I)]‘& (6) 

where E,’ is a row vector with a 1 in the ith column and 
O’s everywhere else and where E, is a column vector with 
a I in the jth row and O’s everywhere else. 

A program was used[26] which then minimized the 
sum Y? of squared differences between observations 
w,,(k) and predictions %tl;,(k) over all intervisit intervals 
up to and including a 49 day intervisit interval: 

min@)=min 2 2 2 
[ I-1, I, I 

(7) 

Step 2 involves the estimation of transition prob- 
abilities from state s5 to states s,, s5 and sh (numbers 15, 
I6 and 17 in Fig. I). Since data for every such transition 
is available, it is possible to estimate these using simple 
frequency counts or proportions. 

In step 3 the transition probabilities from states s, 
through s., to states sr, and s, and from states s1 and sq to 
sc are estimated (numbers 3. 7, 11 and 14 in Fig. 1). Note 
that neither of the procedures outlined in the above two 
steps can be used to estimate the present set of transition 
probabilities (see Appendix B). Nor can the 
present procedure be used to estimate the transition 
probabilities in steps I and 2. Instead, the current step 
uses the mean first passage times from state s, to state s,. 
The mean first passage time from state s, to state s, is 
defined as the expected number f,, of days it takes the 
patient to reach state s,. given that the patient starts in 
state s, on day to. Note that when computing the mean 
first passage times, it was assumed that the transition 
probabilities from states sh and s, to state s, were equal 
to one (see discussion of step 4 below). 

The program by Becker[26] was again used to obtain 
the least squares estimates of the parameters: 

min(%)=min i i($,,-f,,)’ 
[ ,=, ,=h 

+&%-f,$ 
,=I I 

Note that F,, is an estimate of the expected first passage 
time derived from the 7 by 7 matrix P (see Appendix A) 
of transition probabilities while f,, is computed directly 
from the data: 
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where n is the number of individuals starting in state Si 
and terminating in state s, and where xi,k is the number 
of days intervening between entries to the two states for 
patient k, 

The fourth and final step requires estimating the tran- 
sition proba~ities from state s6 to states s1 and s6 and 
from state s, to states s, and s, (numbers 18 and 19 in 
Fig, 1). Unfortunately, there was not enough information 
to form reliable estimates. In the absence of this in- 
formation, it seems reasonable in the current context to 
set the transition probabilities from states s6 and s, to 
state s, equal to one. This seems reasonable for the 
transition probab~ity from state s7 to s, since, by 
definition of state s,, a patient had been in state s, on the 
last visit. And this seems reasonable for the transition 
probability from state s6 to s, since, although the patient 
was not in state s, on the last visit, it is known that the 
patient has not made a visit to a psychiatrist for some 
period of time and therefore, is presumably not sick. 
Note that if these assumptions are seriously violated, 
then the agreement between the predicted and observed 
first passage times in step 3 will not be good. 

Results 
The least squares estimate CP of the matrix of tran- 

sition probabilities is displayed in Fig. 2. The estimates 
of the transition probabilities make good clinical sense, 
indicating at a very broad level that the multistep 
parameter estimation procedure is not disto~ng the true 
probabilities beyond all recognition. For example, note 
that the probability of making a transition from being 
very depressed as an outpatient (state s.J to the hospital 
(state ss) is relatively high and clearly greater than the 
probability of making the same transition from a state of 
only moderate depression (state So). 

More quantitative indications of fit can be provided. 
As previously explained, the estimated matrix $2. of 
modified transition probabilities can be used to predict 
the number WJk) of patients who made visits on days tr 
and tr+k, who were in state s, on day tr+k, who were in 
state s, on day t, and who did not visit states sj, s6 or s7 
on any inte~ening days. The matrix $2 is displayed in 
Fig. 3 while Fig. 4 presents the observed w,(49) and 
predicted ‘W,,(49) quantities for an intervisit interval of 

State On Day t,_+l 

s1 s2 s3 54 s5 s6 Y 
I I I I I I 

State 

On 

Day $ 

Fig. 2. Matrix P of predicted first order transition probabilities. 

Day tk 

I 

Sl 

52 

53 

34 

State On Day tk+, 

s1 52 53 S4 

.995 .005 0.0 0.0 

.O35 .904 .064 0.0 

0.0 .055 .a91 .046 

0.0 0.0 .033 .968 

Note: the transition probabilities within a row will 

not always sum exactly to one because of rounding errors. 

a It is shown in the text and Appendix A how to 

obtain the matrix Q from the matrix P. 

Fig. 3. The matrix 1 of modified predicted first order transition probabilities for depressed patients. 
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- 

state 

0" 

Day 

tk 

Predicted 

Observed 

Predicted 

Observed 

PredIcted 

Observed 

PredIcted 

Observed 

state 0” Day tk+4g 

a Note that patients quallfled as having made 

vlslts exactly 7 weeks apart eve” if they made 

intervening visits. 

b The quantity 24.9 is the predlcted number of 

patients in state 5, 7 weeks after having started I” 

state s,, given that the number of patients observed 

making vlslts exactly 7 weeks apart starting I” state 

sll finishing in states s, through s4 and not 

entering states 55, s6 or s7 I” between is equal to 

29 (26+1+2+0). 

Fig. 4. The predicted and observed number of patients making visits separated by 7 weeks’ to states S, and F, 

49 days. Eleven out of the sixteen predictions differ from 
the observations by less than 2. No difference is greater 
than 4. The root mean square deviation for visits 
separated by exactly seven weeks is only 1.78. 

A comparison of observed and predicted mean first 
passage times can also give an indication of fit. Figure 5 
shows that there is a very close agreement between the 
observations and predictions (see transitions from state 
sj to state s5, and from states sq and s5 to states s5. s6 
and s,). The exceedingly long expected first passage 
times to state s,, reflect the fact that many patients go 
directly from state s3 to the hospital (thereby bypassing 
state sq as an outpatient) and that very depressed 
patients go almost immediately to the hospital. 

Discussion 
The Markov model of depression described in this 

section can be used to predict the number of individuals 
in a particular state of depression at some point in the 
future. The model can also be used to predict the mean 
first passage time from one state to another. The 
agreement between the various predictions and the 
observations is encouraging, especially given the need 
for a multistep parameter estimation procedure. It 
should be emphasized that the relative success of the 
multistep parameter estimation procedure has important 
practical applications. In particular, clinicians can con- 
tinue to collect data on a visit only basis. Such data are 
sufficient for current modelling and therefore increase 
the potential use of the models in applied settings. 

Unfortunately, there was no easy way to perform 
statistical tests of the model since information on a 
patient’s state of illness was not recorded every day (had 
such information been recorded, one could have formed 
maximum likelihood estimates of the parameters and 
then tested the estimates against various hypotheses). 
Ideally, one would like to know whether the rather 
counterintuitive stationarity and memoryless assump- 
tions hold up in practice. More theoretical studies of the 
disease process would presumably want to gather the 
needed additional observations. 

The computation of incidence, prevalence and reco- 
very rates can easily be determined from the matrix CP. 
Suppose a person is defined as beginning an episode of 
depression if, starting in states s,. sZ or s,, the individual 
passes to states s,, s,,, s5 or s6 by the end of the week. 
Make states s3 through s6 absorbing. Then the incidence 
rate R, for a week beginning on day t, and having 
entering status vector N(t,,) can be written as: 

R, = ,& g3 a,1(7)n,(r,), 

C = {1,2,7}, (10) 

where ~(7) is the probability that an individual in state 
s, on day t, is in state sL on day rr+,. This probability is 
computed using matrix CP when states s3 through s6 are 
made absorbing. The quantity n,(t,) is computed using 
eqn (1) and the entering status vector N(t,). 

The recovery rate R, for a week beginning on day t, 
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state 5 

Predicted 

Observed 

Predicted 

Observed 

Predicted 

Observed 

Predicted 

Observed 

PredIcted 

Observed 

=z =4 s5 '6 '7 

1 201 879 

* * * 

301 456 

* * 

14 47 678 

* * * 

19906 1250 

* * ! 19704 1049 

* * 

100 470 

* * 

36 227 513 19026 371 236 493 

* * * * 371 * * 

42 243 919 18785 189 

* * * * 186 

48 249 927 

* * * 

19954 27 

* 5 

281 499 

2'39 532 

329 504 

296 470 
i 

state 5; 

Note: entry designated by “*” indicates that 

there were no observations. 

Fig. 5. Matrix 9 of predicted and observed mean first passage times from state s, to state s, 

and having entering status vector N(t,,) is computed 
similarly. 

R = 2 j h,V’h(fr). 
,tc =3 

C={1,2,7}. (11) 

The quantity b,,(7) is the multistep transition probability 
computed using matrix B when s, and s2 are made 
absorbing. Note that it is assumed, as above, that a 
patient is depressed if in states s3 through sh and not 
depressed if in states s,, s2 or s,. 

Finally, the prevalence rate for day t, given entering 
status vector N(to) is simply the sum, 

i n,(tr). (12) 

i.e. it is simply the number of patients in the more 
depressed states. 

MODELOFUTILIZATION 

Given that a suitable model of the disease process has 
been constructed it is then possible to construct a model 
of utilization which is tied to the model of the disease 
process. It needs to be emphasized that, by itself, the 
model of depression cannot be used to predict the num- 
ber of mental health personnel required for the treatment 
of a given sample of patients. As noted in the intro- 
duction. knowledge that a patient is, say, very depressed 
on day t, does not indicate whether the patient will or 
will not be receiving treatment on that day. What is 
needed is a model that predicts the number of patients 
receiving treatment on a particular day in a particular 
state. One can then use the predicted number of patients 
reciving treatment to obtain the predicted use of mental 
health personnel. In this section a Markov model of 
utilization is developed from which one can obtain both 

of the above predictions. It should be noted that the 
Markov model of utilization is formally identical to the 
Markov model of depression, i.e. both are Markov 
chains. 

Throughout most of this section attention will be 
focussed on the development of the model of utilization 
to the point where it can make the first type of prediction 
referred to above, that is, to the point where it can 
predict the probability that a patient will be making a 
visit to a therapist in a particular state on a given day. 
Since visits are generally in terms of integer multiples of 
weeks, it would be easiest to use the week as the basic 
unit of time in the Markov model. However, this would 
do some injustice to the data since the patients in the 
most depressed state frequently make visits separated by 
only a couple of days. Thus the day was kept as the basic 
time unit. 

The model of utilization differs from the model of 
depression in the assignment of outpatient states. 
Specifically, outpatient states in the model of utilization 
identify not only the severity of a patient’s depression 
but also (a) whether the patient is or is not visiting a 
therapist and (b) whether the patient made a visit exactly 
k weeks previous, k weeks and 1 day previous, k weeks 
and 2 days previous, etc. Expanding the outpatients 
states in this fashion makes it possible to model the 
observation that visits are spaced exactly an integer 
number of weeks apart for mildly or moderately depres- 
sed patients while visits are much more closely spaced 
for very depressed patients. 

More concretely, each of states s, through s4 in the 
model of depression becomes one of eight states in the 
model of utilization. The eight states are listed in Fig. 6 
down the left hand column: states s,, and states s,, 
through s,,. Outpatients in state s, of the model of 
depression making a visit are placed in state s,,. Having 
made a visit, outpatients can either make another visit on 
the very next day (in which case they go to state s,,, 
s,~~,, or s,+,,,) or not make a visit, in which case they go 
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s 
17 sl” s1-1," 'l+l,v 'il 'i-1,1 51+1,1 

Note: the above matrix applies only for the states s2 and 

s3, l.e., 1=2,3. TransItIons between state s 
ICI 

and s I-1,r at-e 

not possible if i=l: similarly transItIons between states s 
I¶ 

and s. 1+, ~ are not possible if i=4. 

Fig. 6. One day transitions in model of utilization. 

to state s,*, s,-,.~ or s,, I,Z. Thus, for example, a patlent 
who remained in state s, and who made visits on the first 
and fourth days would have entered states s,,., s,?, s,? 
and s,,. Alternatively, a patient who made visits on the 
first and tenth days would have entered states s,,, slz. 
SI1, $14, SI<, Slh. s17, SII. sIZ. s,,,. Finally, a patient who 
remained in state s, and who made visits on the first, 
third and sixth days would have entered states s,,, s,?. 
sl,, slZI s13 and sIv. 

As noted above, the model has the virtue of being able 
to mimic the predominance of weekly visits for 
moderately depressed patients while still allowing more 
closely spaced visits for very depressed patients. This is 
easily accomplished by making the probability pEt, that a 
moderately depressed patient in one of states s,,, s,, , . , 
sib on day t, visits a therapist in state s,, on day t,+, very 
small and by making the probability q,” that patient in 
state sI, on day t, visits a therapist in state s,, on day t, + , 
relatively high. Thus, it will typically take 7k (k 2 7, k an 
integer) days for a moderately depressed patient to make 
a return visit. For more severely depressed patients one 
can simply increase the probability p,. that the patient in 
one of states s,,, s,,, . . . , s16 will make a visit to a 
therapist in state s,, on the very next day. The reader 
will note that the above discussion assumes that the 
probability p,” of going from states s,,, s,,, . . . , st6 to 
state s,, does not vary with the day. A more complex 
model would need to consider possible variations in this 
parameter. 

Finally, note that the complete model of utilization 
consists of 35 states: the 32 states associated with states 
s, through sq in the model of depression (8 states of 
utilization for each of the 4 states of depression) plus 
states ss, se and s, (these states are identical in the 
models of utilization and depression). 

Method 
Subjects. The same patients were used to fit the 

models of depression and utilization. 
Parameter estimation. There are a total of 8 

parameters to estimate, two (P,~ and q,C,) for each of the 
four states of depression s, through s,,. Suppose that it is 
currently day t,-, and that as of tomorrow the patient 
will have made a visit an integral number of weeks 
previous, i.e. the patient is in state s,,. The probability 
that the patient makes a transition to state s,, will be 
defined as the product of probabilities p,,qlu where pr, is 
the usual transition probability. The probability that the 
patient makes a transition to state s,, is defined as the 
product of probabilities p,,(l - q,o). Suppose instead that 
the patient is not in state s,, for i = 1, 2, 3, 4. Then the 
probability that the patient makes a transition from state 
s,, to state s,, or from state s,~ (k = 1, 2, 3, 4, 5, 6) to 
state s,, is defined as the product of probabilities p,,p,.. 
An example is displayed in Fig. 7 for the transition from 
state sZq (4 is one of the elements of the set G = {u. 1. 
2 . . . ,7}) on day th to state s3, (r an element of set G) on 
day th, ,. Note that the probability pz3 needed to com- 
pute the product p2qz. is obtained directly from the 
least squares matrix 9 in the model of depression. 

Unlike the model of depression, only one step is 
needed to estimate the 8 parameters of the model of 
utilization. Let S be the 35 by 35 matrix of transition 
probabilities which define the model of utilization (note 
that the majority of cells contain structural zeros). 
Assume that the first row contains the transition prob- 
abilities from state s,, to states s,,, s,,, . , s,,, s2,, 
SZI.. . 1 s2,, . , s4,, sz, s6 and s,; that the second row 
contains the transition probabilities from state s,, to the 
aforementioned states: and so on. Let R be the 33 by 33 
submatrix which is obtained by omitting states s,, and s,. 
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tk 
'25 P 0 0 0 0 0 P' 0 

=26 P 0 0 0 0 0 0 P' 

=27 9 q' 0 0 0 0 0 0 

Note: p=~2~p~" and p'=~~~(l-p~~) while q=pz3qzv and 

q’=p23(l-q2v) where p23 1s the transItIon probablllty from the 

model of depresslon and where p2" and qzv are the two 

parameters associated with state s2 which require estlmatlon. 

Fig. 7. Parameters in model of utilization. 

Then the matrix R can be used to predict the number of 
visits a patient makes as an outpatient in states s,,,, sZv 
sjr and sj,, before leaving the system for either states sh or 
s,. If the matrix N is set equal to (I-R)-‘, then the sum 
of selected elements within the ith row of N (elements in 
columns 1, 9, 17 and 25; also see discussion of matrix S 
later in the paper) gives the number of outpatient visits 
made by the patient before entering states sh or s,. given 
that the patient is first observed in state s, (see [27] for a 
discussion of the derivation of the fundamental matrix 

N). 
Again, the Becker [26] program was used to obtain the 

least squares estimates of the parameters. Specifically. 

C={1,9,17.25}. (13) 

where u, is the observed number of patients starting in 
state sI, and making exactly u, visits before being ab- 
sorbed in either states se or s,. 

Results 
Estimates of the parameters P,~ and q,t, were as 

expected, i.e. the probability of visiting a psychiatrist on 
the very next day was much higher for the very depres- 
sed patients than for the moderately depressed patients. 
An indication of the overall fit of the model of utilization 
can easily be obtained. The predicted number of visits 
from states slur sZc, s3” and sdU to states sg or s, was, 
respectively, 20.9, 7.3, 14.6 and 17.1 while the cor- 
responding observed number of visits was 15.1, 24.8, 15.4 
and 17.5. The agreement is good to a first order ap- 
proximation except for the predicted number of visits 

from state sZ to states sh or s, (7.3 predicted visits as 
compared with 24.8 observed visits). This may indicate a 
violation of the assumptions of the model of utilization. 
However, the observed number is based on very few 
patients (5) and may therefore be rather less than reli- 
able. 

Discussion 
The model of utilization has been developed to the 

point where it can be used to predict the number of 
patients making a visit to a psychiatrist in state s,, on 
day tk, given knowledge of the number of patients in 
each state s,,, on the day they enter the system (this 
follows from eqn (1) and the fact that estimates of all the 
parameters of the full 35 by 35 matrix S of transition 
probabilities have now been obtained). It remains to 
estimate the utilization of psychiatric services on day tk 
for patients in states s,,. through s.+” and state s+ Note 
that in this context the utilization of psychiatric services 
by patients in state s, on day fk will be defined as the 
expected number of physician hours that will need to be 
devoted to patients in state s, on day &, given a parti- 
cular history of patient arrivals on days to through tk. 

This estimate, U(k), can be obtained quite simply from 
the matrix S and two other vectors, fl and Z(k), which 
will be defined shortly. First however it will be con- 
venient to relabel the states of S. The states in S which 
are important from the standpoint of personnel utiliza- 
tion are states slU through sdv and state ss. If states s,, 
and s,, through s,, are relabelled, respectively, U, 
through ug, states sZv through s2, as us through u16, 
states sX, through sj, as u17 through uZ4, and states sdv 
through s4, as uZl through uX2 and if states ssr se and s, 
are relabelled, respectively, u3), ujq and u,~, then the 
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states which are important from the standpoint of per- 
sonnel utilization are now u,. uu. u,,, uZ5 and u?+ 

Let the vector H contain entries h, which represent 
the time required to meet the needs of a patient in state 
u,. By definition the estimates h, will be positive for i = I, 

9. 17. 25, 33 and zero otherwise. These estimates can 
presumably be obtained from patients’ charts. Let the 
vector Z(k) for k greater than zero consist of entries 
z,(k) which indicate the number of patients one expects 
to find entering the system in state u, on day tr. Again, 
z,(k) will be nonnegative for i = I, 9. 17, 25, 33 and zero 
otherwise since knowledge about a patient is not avail- 
able until the patient makes a visit to the system. These 
estimates will presumably reflect the demographic 
characteristics of a particular health planning locale. 

The estimate U(k) of the utilization of psychiatric 
services on day tA can now be written as a function of S. 
H and Z(k): 

U(k) = i z(j)S” ‘lj, 
,=o 

where z(O) gives the number of patients currently in 
each of states u, through u?~ and where s” is defined as 
the identity matrix. 

Two final remarks about the model of utilization 
should be made. First, it was claimed in the beginning of 
the paper that linking the mode1 of utilization to a model 
of the disease process had at least one potential ad- 
vantage. The advantage comes from the fact that 
changes in the disease process are automatically 
reflected in changes in the level of utilization. For 
example, suppose that one hypothesized or had evidence 
that the first order transition probabilities pjI and p41 
were increased by some amount due to a new therapeutic 
treatment. Then, one can immediately determine the 
effect on utilization by changing p,, and pAT in matrix P 
to their new settings and calculating U(k) under the new 
settings. 

Second, it was claimed in the beginning of the paper 
that the model could incorporate at least some of the 
prevailing economic factors. One factor that would 
clearly seem to be influenced by the state of the 
economy is the frequency of visits. As funds become 
more scarce, presumably patients will have to cut back 
on visits. On might expect physicians in such a situation 
to handle the decrease by spacing out the visits of the 
least depressed patients while maintaining at the opti- 
mum spacing the visits of the most depressed patients. 
The influence of such changes in visit frequency can be 
simulated quite easily with the models discussed above. 
For example in the current hypothetical situation one 
might decrease the probabilities ql,, and qzL, that a 
patient in, respectively, states s,, or s?, on day f, visits a 
therapist on the very next day t,,, while keeping con- 
stant the probabilities q3,, and qdc. 

CONCLUSION 

The estimation of the utilization of inpatient and 
outpatient psychiatric services presents special prob- 
lems. One way of dealing with the problems is first to 
construct a model of a disease and only then to construct 
a model of utilization. Such was the approach followed 
in the current paper. 

The approach looks promising. The various predictions 
of the models are in good agreement with the obser- 
vations. Furthermore, estimates of the model parameters 

could be obtained from data which in most cases already 
are readily available or could easily be made so. Finally, 
the models can be used to predict such quantities of 
interest as the incidence, prevalence and recovery rates. 
In addition, the models can predict the consequences for 
utilization of changes in the treatment regimen. 

The major weaknesses of the approach are more or 
less self-evident. The concentration on a disease-specific 
model of utilization leaves open the question of whether 
the approach would work for other diseases. And the 
failure to incorporate the influence of changing economic 
factors on the level of utilization means that one must be 
very careful about extrapolations more than several 
years into the future. 

The above criticisms notwithstanding, the current 
paper suggests an approach to the prediction of the 
utilization of psychiatric services which is itself new and 
which can potentially be generalized to other diseases 
and areas of application. 
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APPENDIX A 

However, note that the estimates of the probabilities qlr and 
qiZ will correctly reflect pit and p,> if transitions from state sr to 
state s, are not included. That is, ignoring this transition, one 
obtains q,, = 10119 and q12 = 9/19 for the probabilities computed 
using the observations taken on only those days visits were 
obtained while one obtains p,, = 1001190 and piZ = 901190 for 
underlying t~nsitions, 

Given the matrix P of transition probabilities forming an The reader might argue that the above example was “rigged” 
ergodic Markov chain, Kemeny and Sne11[27] show how to in the sense that the proportion (0.1) of observed transitions from 
obtain the matrix F of expected first passage times. In the current state s, to s, (10) and from state s, to ,s; (9) was kept constant, 
context the matrix P is found as follows. First, the transition i.e. 10 = O.l(lOO) and 9 = 0.1(90). However, it can easily be shown 
probabilities from states sh to s, and from state s, to s, (see cells that the assumptions stated in the text (step 1) lead to constant 
labelfed 19 in Fig. 1) were set equal to zero and the transition proportions. This is left as an exercise for the reader. 

probabilities from state sg to s1 and state s:, to sI were set equal to 
one. 

Second, the entries in row i of the matrix Q are multiplied by a 
constant such that: 

I% 9t,rl = 1 -p,,; Osp,, 5 1 

~4r~'=1-p,,:O4p,~cI;i=2.3.4,5. 

The entry p,, (j = 1, 2, 3, 4) in matrix P is set equal to q,,r, and 
the entries p,, (i = 2, 3, 4, 5; j = I, 2, 3, 4) in matrix P are set 
equal to the respective entries q,r,‘. This tills in cells 1-14 in Fig. 
1. Note that this manipulation assures that the rows sum to 1 in 
the matrix P. 

Finally, the estimates of cells 15, 16, and 17 are taken directly 
from Fig. 2. 

APPENDIX B 
It needs to be shown that the procedure outlined in step I 

cannot be used to derive the probabilities plh and p,, (i = I. 2, 3, 
4). An example can best illustrate the problem. Suppose a patient 
was in the system 999 days. Suppose the patient starts and leaves 
in state si. Suppose 100 transitions are made from state s, to 
state s, and 90 transitions are made from state s, to state s2, 
Finally suppose that only 10 transitions from state s, to state s, 
are observed (i.e. recorded by the psychiatrist) and that only 9 
transitions from state s, to r2 are observed. Then, using the 
procedures of step 1 it follows that q,, = 10120, 9,? = 9120 and 
917 = l/20. But clearly q,, is an overestimate since if all transitions 
were recorded one would find that p,, = l/200. 


