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Summary--Slip at the interface between a layer and a substrate caused by a slowly moving 
tangential force on the surface of the layer is considered. The solution shows a significant 
departure from the stationary load case. In particular, a permanent tangential displacement is 
left behind the moving load, symmetry is lost, and the shear tractions have continuous 
derivatives at the trailing edge of the transition zone. 

INTRODUCTION 
The problem of frictional slip and separation between a layer and a substrate has been 
considered in recent publications[l-3]. In particular the cases of an elastic layer 
pressed uniformly on a substrate of similar material properties and subjected to a 
concentrated normal or tangential force at a fixed point on the surface of the layer 
have been studied. For a normal force two symmetric slip zones develop at the 
interface and expand as the magnitude of the force increases [1]. If the normal force is 
tensile, the two slip zones eventually coalesce and separation occurs at the center of 
the newly formed single slip zone[2]. For a tangential force, a single slip zone 
develops first behind the force at the interface [3]. As the magnitude of the force is 
increased a second slip zone appears ahead of the force at the interface and 
separation occurs inside the first slip zone. Which of these events happens first 
depends on the magnitude of the coefficient of friction. For low friction the second slip 
zone develops before separation occurs. For high friction separation appears inside 
the first slip zone before the second slip zone is formed. 

A related problem of practical interest is the effect of a load moving over the 
surface of the layer. If the load moves sufficiently slowly for inertia effects to be 
neglected, it might be thought that the solution would be identical to that for a 
stationary load[I-3] since the equations to be satisfied are identical, but this is not so 
because the inequality requiring the frictional traction to be in the direction opposing 
slip has different implications for the two problems. Suppose we focus attention on a 
point fixed in space at the interface. The tractions will increase as the load approaches 
and decrease after it passes overhead and recedes. Thus, we have in effect a loading 
and unloading problem and if slip occurs during loading, the stress field during 
unloading will depend upon the loading history. Indeed, we would anticipate that the 
moving load would leave behind a permanent tangential displacement of the layer 
with respect to the half-plane. 

No such displacement is possible with .the stationary loading problem and in [1-3] 
this fact furnishes an equation which is needed to determine the unknown extent of 
the slip region. With the moving load, this equation is lost, but in its place we find that 
the inequalities impose a more stringent condition on the asymptotic behavior of the 
stress and displacement fields at the trailing edge of the slip zone. 

Whatever symmetry existed in the static problem, is now lost. Thus, the 
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parameters specifying the extent and location of the slip and separation zones 
increase  in n u m b e r  and  the i te ra t ion  p rocedure  used for  their  de t e r mi na t i on  is, in 
c o n s e q u e n c e ,  more  compl ica ted .  

To s impli fy  mat ters  we cons ide r  here the s teady-s ta te  case of a tangent ia l  load 
mov ing  sufficiently s lowly for the iner t ia  effects to be neglec ted ,  and  we limit the 

magn i tude  of the force  so that  on ly  one  slip zone  occurs .  The  fo rmu la t i on  and 

ana lys i s  is the same as in the static p rob lem[3] .  F o r  this r ea son  m a n y  details  are 

omi t ted ,  but  in each s tep re l evan t  expres s ions  are quo ted  for  comple t enes s .  

FORMULATION 
Consider an elastic layer with shear modulus p, and Poisson's ratio v pressed against a half plane of 

similar elastic properties by a uniform pressure P0. The thickness of the layer is denoted by h. A tangential 
force of magnitude Q moves steadily on the surface of the layer with constant speed c. We consider a 
stationary frame of reference (.L ~) and a frame of reference (x. y) moving with velocity c along the 
interface as shown in Fig. 1. Then 

x = ~ - c t ,  y=#.  (t) 

For very low values of the loading parameter Q/poh the interface does not slip anywhere and the quasistatic 
solution coincides with the static Flamant solution. The tractions at the interface are then 

2Q hx 2 
c,,~(x, 0) = --;- ~ (2) 

2Q h "x 
trry(x, 0) = - p 0 -  ~ (3) 

and the following inequalities are satisfied 

tryy(x, 0) < 0 (4) 

{o-,r(x, 0)1 < flrryy(x, 0)l (5) 

where f is the coefficient of friction. As the magnitude of Q[poh is increased slip starts at a point the 
rosition of which depends on the coefficient of friction (see Fig. 2 of [3]). We assume that for a given value 
3f Q/poh the slip zone occupies the interval ( - a , - b )  where a and b are unknowns. The slip zone is 
modeled by a distribution of glide dislocations with density B~(x) and the total shear S(x) and normal N(x) 
tractions at the interface are [3] 

~, i | ~ ~ | I, ~ ~ Po 

stick t - 

FIG. I. Geometry of the problem in the moving frame of reference. 
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FIG. 2. Extent and location of slip zone for given load. 
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_ 2Q hx" + 2~ Bx(O_ff~ 2~ - s(x)-T  - - -  

N ( x ) = p 0 - ~ -  h"x + 2tz - 
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(6) 

(7) 

where 

Kl(x,  6) = x - 6 + 12h"(x - 6) 64h4( x - 6) 
- 4 h Z + ( x _ O  -' [4h~-+(x_6)"]~ ' - [4h"+(x-O~ ' l  3 

24h 3 128h ~ 
K2(x, 6) = - [4h -~ + (x - 6)"]" + [4h" + (x - 6)"] ~ 

(8) 

(9) 

and K - - 3 - 4 v  for plane strain. The dislocation density B~(x) is related to the tangential displacement 
discontinuity or relative shift h(x) by 

dh(x) (10) 
Bx(X) = dx " 

The boundary conditions to be satisfied at the interface are 

I S ( x ) l  = flN(x)l - a < x  < - b  (11) 

N ( x ) < 0  - ~ < x < ~  (12) 

IS(x)l < f l N ( x ) l  x > - b ,  x < - a  (13) 

sgn S(x) -- sgn V(x)  (14) 

where V(x)  is the slip velocity defined as 

V(x)  = dh(x) = cB,(x) .  (15) 
dt 

Since the shear traction S(x) is expected to be positive in the slip zone, we may tentatively write eqn (I 1) as 

S ( x ) = - f N ( x )  - a < x < - b  (16) 

where (12) was used. Conditions of continuity and boundary conditions on the surface of the layer are 
automatically satisfied by this formulation. A net relative shift D is anticipated between the layer and the 
substrate given by 

D = f ~ - ~  B~(O d6. (17) 

It is worth pointing out the differences from the static solution. In the static solution D must vanish so 
that (17) is an auxiliary condition required by the solution. In addition, eqn (14) is replaced by 

sgn S(x)  = sgn h(x). (18) 

Since the static solution satisfied (18) with a bell-shaped h(x), it cannot satisfy (14) as seen from (15). This 
suggests that the condition D = 0, lost in the moving load problem, is to be replaced by a condition obtained 
from the inequalities. At this point it is enlightening to study the asymptotics of the transition between slip 
and stick. For the static case the relevant results can he found in [4It and can be used directly provided that 
x, y are interpreted as moving coordinates and V(x)  is given by (15). We find that for a slip zone moving 
between regions of stick equations (13) and (14) give a stronger result compared to the static case, but for 
the trailing end of the slip zone only. The result is that the shear tractions at the trailing transition point must 
have continuous derivatives. In contrast, the asymptotics allow for discontinuous derivatives (infinite slope 
on the side of the stick zone) at the leading end of the slip zone, and cause the familiar "hooks" on the 
shear tractions which are present at both ends of a slip zone surrounded by stick zones in static situations. 

RESULTS 
Substituting (6) and (7) into (16) we obtain a singular integral equation of the Cauchy type. For its 

discretization we use the method of Erdogan and Gupta[5]. The detailed equations are given in [3]. To 
simplify the numerical iterations required for the determination of the parameters a and b which appear 
nonlinearly in the equation, we interchange the roles of b and Q/poh. Thus we consider b as given and treat 
Q/poh, which appears linearly in the discretized system, as unknown. We then have to iterate only for the 

)Note the misprints in [4]. Equations (3.18) and (3.32) should read h ( x ) = - M C r  I-A sin Xrr and h(x)= 
MCr 2-A° sin X0~r respectively. 
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FIG. 3. Shear tractions for .f = 0.5, - b / h  = -0 .3 .  
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FIG. 4. Normal tractions for .f = 0.5, - b / h  = - 0 . 3 .  
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Fro. 5. Slip velocity for f -- 0.5, - b / h  --- -0 .3 .  
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FIG. 6. Shear tractions for .f = 0.75, - b / h  = 0.2 (incipient separation). 
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FIG. 7. Normal tractions for f = 0.'/5, - blh  = 0.2 (incipient separation). 
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FIG. 8. Shear tractions for f = 0.5, - b i b  = 0.5 (incipient slip). 
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FIG. 9. Normal tractions for f = 0.5, - b / h  = 0.5 (incipient slip). 

parameter a. If the value guessed for a is too big in magnitude we find that (14) is violated. If the value 
guessed for a is too small in magnitude we find that (13) is violated. In this way we are able to determine a 
unique value of a for which all the conditions of the problem are satisfied. 

Representative results are shown in Figs. 2-10. The extent and location of the slip zone for given Q/p0h 
and for two values of the coefficient of friction can be determined from Fig. 2. The curve corresponding to 
f = 0.75 ends where separation is about to occur in the slip zone (that is, the next increment in - b  would 
cause tensile normal tractions in the slip zone) and the curve corresponding to f = 0.5 stops where a second 
slip zone is about to form ahead of the force Q at the interface. In both cases the first slip zone starts at the 
location and for the load predicted by the Flamant solution. Fig. 3 shows the shear tractions for f = 0.5 and 
b/h  = -0.3.  Note the continuous transition at the trailing end of the slip zone and the "hook"  at the leading 
end. Fig. 4 shows the normal tractions and Fig. 5 the slip velocity for the same case. Fig. 6 and Fig. 7 show 
the shear and normal tractions for the case of incipient separation (f  = 0.75, - b l h  = 0.2). Figures 8 and 9 
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FIG. 10. Dimensionless total shift vs Q/poh. 

show the shear and normal tractions for the case of incipient slip ahead of Q (f = 0.5, -b /h  = 0.5). In this 
case the second slip zone develops before separation occurs in the first. Fig. 10 shows the dependence of 
the dimensionless total shift 2#D/0¢ + I)Q on the loading parameter Q/poh for f = 0.5 and f -- 0.75. The 
shift vanishes at Q]p0h corresponding to the Flamant solution (stick everywhere). 
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