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Extracellular glycosaminoglycans when precipitated by tannic acid, appear in electron 
micrographs as amorphous reticulate masses or fragments sometimes finely beaded and 
often associated with collagen fib&. An algorithm for automatic classification, segmenta- 
tion, and quantification of the amount of tannic acid-precipitable material (TAPM) and 
collagen in electron microscopic images is presented. Small patches of a region are initially 
located and the patch boundaries are traced using a binary contour tracing algorithm. The 
patches are then grown out and merged together to form one large area. This area is 
classified using a two-dimensional feature vector into one of two classes: a region with 
TAPM and collagen, or one with ceil bodies and/or processes. Once these areas are classi- 
fied and segmented, the distribution of TAPM is measured. The algorithm was tested on 
several TAPM images displaying varying amounts and configurations of TAPM with good 
results. It may also be adapted to process other electron microscopic images containing 
elements of interest which have complex or amorphous form. B 1985 Academic PXSS, I~C. 

INTRODUCTION 

Extracellular matrix is thought to play a role in many developmental pro- 
cesses involved in morphogenesis such as cell shape changes, cell migration 
and displacement, and control of cell growth and differentiation [see (I) and 
(2), for review]. The principal constituents of the extracellular matrix in embry- 
onic tissues are the glycosaminoglycans (GAGS), mainly hyaluronate and the 
chondroitin sulfates. The use of tannic acid-containing initial fixatives retains 
the extracellular GAGS in situ. These molecules then appear in electron micro- 
scopic images as small, fine filaments associated to form reticulate masses of 
variable dimensions (hyaluronate), and as small, finely beaded filaments (chon- 
droitin sulfates) (3). A method which permits the automatic identification and 
quantification of tannic acid-precipitable material (TAPM) would be a valuable 
tool for studies seeking to correlate the presence and amount of such material 
with local morphogenetic events. 

The developing secondary palatal shelves of embryonic mice contain large 
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amounts of GAGS, 60% of which is hyaluronate (4). These molecules are 
known to be involved in the major morphogenetic changes the shelves undergo 
as they remodel around the tongue to form the secondary palate (5). Thus we 
have used electron microscopic images of the mouse secondary palatal shelves 
to formulate and test our methods. An approach to automatic segmentation and 
classification of TAPM in such images is presented here. 

There are basically two different types of areas in these electron microscopic 
images; those with TAPM with or without collagen fibrils, and those with cell 
bodies or processes. Once these areas are properly classified and segmented. 
the amount of TAPM in the image can be measured. The analysis is divided into 
two steps: (i) region classification (6), and (ii) segmentation by region growing 
(7). As the image is scanned small patches of cell or TAPM regions are located 
and merged to form one large area. A binary contour tracing technique (8) is 
used throughout the entire process to trace a closed boundary of an area. This 
method has an advantage over most other approaches, such as Fourier shape 
analysis (9), in that the boundary points need not be linked to form a closed 
boundary. Each area thus located is then classified using a set of decision rules. 

One major task of all classification problems is to incorporate a priori infor- 
mation systematically into decision rules. Humans always use such information 
about an object to identify it and its background. Thus, a fundamental problem 
of object classification is the definition of relevant features characterizing the 
object. Some of the salient features of the TAPM image utilized in defining the 
decision rules to be employed were: cell body or process size, shape, mean 
gray level of the cellular components and of the extracellular space, and tex- 
ture. 

MATERIALS AND METHODS 

Tissue preparation. The secondary palatal shelves of Day 13.5 CD-l mouse 
embryos were harvested, placed in phosphate-buffered saline, pH 7.3, cut into 
three segments each, and fixed for 2 hr at room temperature in 2% glutaralde- 
hyde in phosphate buffer containing 1% (w/v) tannic acid to precipitate the 
GAGS (3) (Mallinckrodt, Kentucky). Specimens were rinsed in 0.1 M phos- 
phate buffer at room temperature for 1 hr, postfixed in 1% 0~0~ in 0.1 M 
phosphate buffer for 1 hr, and then rinsed again in buffer. Tissues were then 
dehydrated in a graded ethanol series, cleared with propylene oxide, and em- 
bedded in Epon 812 (20). 

Silver sections were stained with uranyl acetate for 30 min and lead citrate 
for 4-6 min and examined and photographed using a Philips 400 electron micro- 
scope. 

Image acquisition and characteristics. The photographic negatives of the 
EM images were digitized using an Optronics rotating drum, flying spot scan- 
ner, with a spot size of 50 pm. The images were recorded as a matrix of 
brightness values of 512 x 482 picture elements (pixels) in size. The final 
magnification of the digitized images was 50,000. 
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FIG. 1. An original EM image at 29,500~ magnification. E, epithelium; M, mesenchyme; *, FIG. 1. An original EM image at 29,500~ magnification. E, epithelium; M, mesenchyme; *, 
lamina densa; 4, TAPM; +-, collagen. lamina densa; 4, TAPM; +-, collagen. 

A typical image used to develop the algorithm is shown in Fig. 1. The image 
consists of epithelium with its underlying basal lamina, mesenchymal cells and 
their processes, and extracellular space containing TAPM and collagen in vari- 
ous planes of section. Segmentation of the image prior to measurement of the 
TAPM requires that the cells be differentiated from extracellular space (back- 
ground). Next the two main features of the background, collagen and TAPM, 
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must be discriminated from it as well as from one another. The salient features 
of the cells are (i) edges of fairly uniform thickness, (ii) edge elements of 
relatively low gray values, (iii) high variance or busyness of gray values inside 
the cell, and (iv) usually round or elliptical shapes. The prominent features of 
the background area are (i) high mean gray value, (ii) low variance in gray 
values across the region, and (iii) irregular boundary shapes. Collagen appears 
as long strands or discrete small, round shapes of low gray value while TAPM 
appears as a fuzz-like substance. The variable appearance of collagen mole- 
cules is due to their random orientation in three-dimensional space. 

Dejinitions. Some commonly used features (II) for biological image classifi- 
cation were considered for the EM images. Those features that yielded the least 
classification error, based on experimental results, were chosen as the features 
used in the analysis. In contrast to most biological images analyzed such as 
blood cells, the number of features for the EM images are limited as filtered 
color images cannot be obtained with the electron microscope. Three types of 
features were defined and grouped as follows: (i) density features; (ii) geometric 
features, and (iii) texture features. In the forthcoming discussion, g(ij) is the 
image gray value of an image at point or pixel (i,j), S,. is the cellular region, Sb is 
the background area, P, is the cell boundary, and Pb is the background bound- 
ary. The cell and background boundaries are traced using the binary contour 
tracing method discussed later. The boundary length and the inside area are 
measured by counting the number of pixels. 

Density features. 
Average density of cell: 

Average density of background: 

db = & ( zv, g(i,.i). I, . 
Standard deviation of cell: 

(11 

Standard deviation of background: 

cb = [+b ,,& [g(i,j) - db]']"'. 
I .  l 

Geometric features. 
The cellular area: 

a,= 2 1. 
WrS, 

[51 

The background area: 
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ab= 2 1. 
(LA& 

The cell perimeter: 

The background perimeter: 

Texture features. If in a 3 x 3 neighborhood in an image matrix, gray level 
values are represented as below, 

A B C 

[ 1 D E F 

G H I . 

The busyness (10) can defined by min(u, ,u,) as follows: 

u, = IA - BI + IB - Cl + ID - El + IE - FI + IG - HI + IH - II [9] 

u, = IA - DI + ID - GI + lB - El + IE - HI + IC - FI + IF - II [IO] 

where min(u, ,u,) is the minimum of u, or uY. The busyness is a measure of the 
number of transitions from a uniform region to another with different proper- 
ties. If the property of interest is the gray value, then the number of transitions 
from a black pixel to a white one, or white to black, will yield the degree of 
busyness of an image. A region with salt and pepper type of noise (12) is very 
busy whereas a region with uniform gray value is not. The variance of the gray 
values of a region also yields some measure of busyness, but one which is not 
as definitive as the transitional measure. For instance, a region with two sec- 
tions of bright and dark gray values and a region with four sections of bright and 
dark will yield the same variance (thus the same degree of busyness) whereas 
the transitional feature will clearly show that the latter case is busier. For 
simplicity the absolute difference gradient operator may be substituted for the 
busyness, 

u, = IB - El + ID - El. ill1 
The components of the feature vector. Typically, the features are combined 

in a feature vector (11). This feature vector is used to determine which regions 
of the image belong to TAPM, cell bodies or processes, or the background 
space. Based on experimental results, it was determined that only three of the 
features discussed above were needed. These features were mean gray value, 
perimeter, and busyness. The perimeter was used to condition the busyness of 
a region so as to yield better classification results. The final feature vector has 
two components. A two-dimensional feature vector 
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j$= J; 
H .fi 1121 

is defined from the features described above where: 

and where 

fi = ur?., i l (cell, background) 

and 

Cl/p; if pi < Co 
).$I = 

I otherwise 
1161 

where Co and C1 are constants determined experimentally to yield the best 
classification results, and pi is the perimeter of a cellular region or background 
space containing TAPM. The first featuref, is the mean gray value of a region. 
The second feature is the busyness of a region. This feature is obtained first by 
measuring the busyness, u,.,, of a region as discussed earlier, and then is condi- 
tioned by the perimeter of the region under test. This is reasonable since the 
small cellular regions tend to be smoother than the larger ones, so that some 
normalization is necessary. The region can now be classified using a decision 
rule such as the Bayes or the maximum likelihood classifier (1 J). The decision 
rule is 

(~--nri,.,T.c,‘.(~--~,+c,<(i:-~b)7..~h’.(~--b) [17] 

where E is the feature vector of a region, II%;, and I$:-’ is the mean and the 
inverse covariance matrix for the cell or the background, and C, is an empirical 
constant. The above equation represents a general form of the minimum dis- 
tance classifier (JO, II, 13). The values of the two features, i.e., the feature 
vector, are compared against typical values of the two EM image regions, the 
cell and the background. The region which yields the least difference is chosen 
as the correct class of region. Thus, if Eq. [17] is satisfied, then the region under 
test is classified as a cell; otherwise, as background. Before this type of classifi- 
cation method described by Eq. [ 171 can be used, one must know the values of 
db, d,, (+b, and vc. These are obtained using many test samples, where the 
correct classification of each g is known a priori. This data is known as training 
data and must be reliably obtained (II). 

Contour frucing. Before a region can be classified as being part of a cell or the 
background, potential regions must be found in the image. This process is 
known as segmentation (11). Equations [12]-[18] are computed and the regions 
are classified using Eq. [17]. Once the potential regions are segmented using 
region growing (II), the boundary points are obtained using contour tracing. 
The region is grown out by tracing the boundary by successively decrementing 
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the threshold in our contour tracing algorithm. If an image, after the threshold 
operation at some value, t, in a 3 x 3 neighborhood is represented by a chain 
code (8) as shown below, the boundary can be traced as follows: 

670 

5x1 

432 

If the center pixel marked “x” is the current boundary point, and the previous 
boundary point is 7, the next point is found by scanning the neighborhood 
pixels clockwise starting from a pixel location that is 90” to the left of the 
direction from which the current pixel arrived. The starting pixel here is 1. As 
the neighboring pixels are scanned, the first pixel exceeding a threshold value is 
chosen as the next boundary point. An example is shown below for clarity. 
Assuming that a region under test has been thresholded to yield a bimodal 
image shown below, the boundary of the area marked as 1 is traced as follows: 

abcdef 

OOOOOOh 

OlOOOOi 

OllllOj 

OllllOk 

000000 1 

Assuming the current boundary point is at (b,i), and the previous boundary 
point was (b,j), the next point is chosen by scanning the image clockwise from 
the point (a,i). The direction from the previous point to the current is up and the 
point that is 90” to the left of the direction is (a,i). The points (a,$, (a,h), (b,h), 
(c,h), and (c,i) are first tested to see if its value is 1. Since they are not, the next 
point (c,j) is tested in sequence. Since it is 1, the point (c,j) is chosen as the 
next boundary pixel. Now the direction from the old point, (b,i), to the new 
point, (c,j), is -45”. The starting point for the next boundary pixel search is 
again found by locating the point that is 90” to the left of this direction, and it is 
found to be (d,i). By repeating the process, the boundary of a region can be 
successfully traced. The process is terminated if the next boundary point coin- 
cide with the first starting point. 

THE ALGORITHM 

In this section we describe in detail the algorithm used in our studies. A small 
patch of a region is first located and its boundary is determined. The feature 
vector of the area is then computed to classify the region properly. Once it is 
classified, its neighboring pixels are merged by region growing to form one large 
area. To increase certainty and efficiency, the algorithm is split up as a hierar- 
chial two-pass process. 
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Preprocessing. Since the gray levels in the EM images vary from image to 
image, it is necessary that the gray levels be normalized for consistency. Vari- 
ous approaches, such as simple stretching and histogram equalization were 
examined. Simple histogram stretching of the image along with a slight com- 
pression of gray levels at very high and low gray values yielded an acceptable 
result. By compressing the low gray values, the boundaries of cellular pro- 
cesses were accentuated. Compressing the high gray values resulted in better 
overall normalization since the number of pixels at high gray values was small. 
The gray values which were two standard deviations away from the mean value 
were found to be optimal. Therefore, the pixel gray values above and below 
these gray values, were set to 255 (white) and 0 (black), respectively. Let h(i.j) 
represent the image after it has undergone transformation and let g(i,j) be the 
original image. The image h(i,j) is computed as follows: 

h(i,j) = 
if g(i,j) < GEM 
if g(i,j) > GEM 

k(ij) - Gil + GEM 

with 

Go = GEM - 2aEM 

Ghi = GEM + 2aEM 

where (+sM and GEM are the standard deviation and the mean of g(i,j), respec- 
tively. This results in a nonlinear stretching of the image with the lower and 
upper gray levels of the image being slightly compressed. 

First pass: The background segmentation. The main purpose of this step was 
to accurately locate and classify the background areas. This is important for the 
information obtained was used as a reference to check the closure of a region. 

If the image in Fig. I is initially thresholded such that all the pixels exceeding 
a threshold value are mapped into one and the others into zero, a bimodal 
image shown in Fig. 2 is obtained. Since the background areas have high mean 
gray level and low variance, they appear as chunks of closed, smooth white 
region. The cells do not behave as nicely because the gray values inside the 
cells are highly irregular; however, the edge elements are almost always darker 
than the rest of the cells so that the cells also appear as closed areas with 
somewhat irregular shapes. Since each region has different mean gray values, 
even among the same type of areas, a high initial threshold level is chosen such 
that almost all background regions are clearly separated from the cellular re- 
gions as shown in Fig. 2. If the threshold level was too low, then some of the 
cellular and background areas may appear as a single blob as shown in Fig. 3. 
Notice that some cells that appeared as a black patch in Fig. 2 now show up as 
closed regions with white inside. Since the images analyzed are normalized so 
that the gray levels are consistent for all images, an optimal threshold level can 
be found which works for all images. 
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FIG. 2. Image in Fig. 1 thresholded at t = 200. 

Once these areas are located and the boundaries traced using the contour 
tracing algorithm, the statistics of the enclosed areas are computed and the 
areas are classified into one of the two classes: cell and cell processes or 
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FIG. 3. Image in Fig. I thresholded at a too-low value. 

background. This information is then mapped into a look-up matrix of the same 
size as the original image to be used in the second pass of the algorithm. This 
process is explained as follows: 
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(1) Using a window of N x N size, the image is scanned from top to bottom 
with an initial threshold value tk. 

(2) A small patch is located such that 

W = image region in the window 

did > tk W E W 

(3) The area which encloses the patch is traced with the threshold value tk. 

(4) This area is checked for closure. If it is not closed, this patch is rejected 
and the image is scanned for a new patch. If it is closed, the statistics of the 
enclosed area are computed for classification. This information is entered in the 
look-up matrix for later use. 

(5) This sequence is repeated on succeeding patches. 

The window size N can be chosen such that it only locates the white patches 
exceeding a certain minimum area. This helps eliminate very small patches, 
which may be abundant in a noisy image. 

It is not important that the shape of the background areas traced are exact; 
that is only the major portion of the background areas need be identified at this 
stage. Because a high threshold level was chosen, only those cells with high 
inside gray level are located initially. They are only located for program effi- 
ciency so that no time is wasted identifying these cells again, as the rest of the 
cell will be picked up later in the second pass. 

Second pass: Segmentation by region growing. Because of the irregularities 
within the cells, the cellular areas traced in the first pass appear as patches of 
irregular shapes. The boundaries obtained so far only contain portions of the 
inside of the cells. These areas need to be expanded by region growing as 
mentioned earlier, to obtain smooth edge boundaries surrounding the whole 
cell. This process is explained as follows: 

(1) The first three steps in pass one are repeated. 
(2) This area is checked for closure. If it is not closed, this patch is rejected 

and the image is scanned for a new patch. If it is closed, then the threshold level 
tk is lowered and the boundary is traced again with this new threshold value. 
The process is repeated as long as the boundary remains closed. If the thresh- 
old value is lowered too much, the edge boundary breaks up. When this occurs, 
the threshold level is increased back to the previous level and the contour 
retraced. This information is entered in the look-up matrix. 

(3) These steps are repeated until the entire image has been processed. 

After the entire image is processed, only the cells that have patches with 
their gray values higher than the initial threshold level, tk , and areas bigger than 
the scanning window are located and classified. To check the remaining cells, 
the initial threshold level is decremented by a fixed amount, and the image is 
scanned again, to pick up the cells with lower gray values. Experimental results 
indicate that about three iterations are required to identify all the cell processes 
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FIG. 4. Look-up matrix image. 

in these images. Figure 4 shows the look-up matrix for the image after all cell 
processes have been identified. 

At this point the traced cell boundaries only contain the areas within the cell 
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INSIDE OF CELL 

NLLY GROW CUT 

B D 

FIG. 5. (A) A cell with inside patch traced with an initial threshold level ri. (B) t, decremented and 
boundary retraced. (C) fi decremented too much. The edge breaks up and all four directions about a 
pixel being traced is checked for open edge. If  in any direction, a patch marked as background is 
encountered, the edge is open. (D) Final boundary traced. 

and exclude the edge pixels. For a large cell, the gray values for the edge pixels 
fluctuate from one side of the cell to the other, and the fluctuation may be 
severe in some cases. Since a single threshold value is used to contour trace the 
boundary at one time, the inside patch may not be fully grown out to the true 
edge contour in some spots. This problem is overcome by sliding a window of a 
varying size along the already traced boundary contour, and by applying the 
same technique mentioned above within the window. Since it is reasonable to 
assume that the pixel gray levels are highly correlated within a small neighbor- 
hood, a minimum threshold value can be found within the box which will push 
the boundary contour out to the true edge contour. 

To complete the segmentation process, all the information obtained thus far 
is entered in the look-up matrix, and the entire cell bodies are now stored in the 
matrix. The original image is compared against the look-up matrix and the 
TAPM regions are segmented out to produce the final image. These steps are 
illustrated in Figs. 5A through C and the look-up matrix and the final segmented 
image is shown in Figs. 6 and 7, respectively. 

Separation and measurement of TAPM. Collagen fibrils and TAPM are first 
separated from one another. Collagen fibrils have very low gray values and 
occupy O-20 pixel values; they are removed by thresholding the image accord- 
ingly. Background regions now contain only the TAPM itself. The histogram of 
such regions have a pronounced valley. The TAPM is measured by threshold- 
ing the image at a level which is determined by locating the minimum dip of the 
gray level histogram for that region. This technique is used in many applica- 
tions to classify different regions of an image such as blood cells (13). The area 
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FIG. 6. The final look-up matrix 

of the image covered by the background, collagen and TAPM are then com- 
puted and the results reported as percent of total background area covered by 
TAPM or collagen. 
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FIG. 7. The final segmented EM image. 
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17.8% TAPM. 2.3% Collagen 

6.3% TAPM, 3.1% Collagen 

7% TAPM. 2.3% Collagen 

4.4% TAPM, 2.3% Collagen 

FIG. 8. Four electron micrographs analyzed by the algorithm. The amount of tannic acid-precipl- 
table material (TAPM) and collagen is expressed as percentage of extracellular space covered. 

RESULTS 

The algorithm was tested on six EM images. The average time to process 
each digitized image is 10 man min, with an average VAX 1 l/780 CPU time of 
0.6 sec. Four of the images and the amount of TAPM and collagen determined 
to be in each are shown in Fig. 8. We compared the algorithm’s findings with 
hand measurements of the substances of interest. To do this, the background 
areas of the images, the collagen fibrils and TAPM were traced on a bit pad 
linked to a Tektronix 4054 running a simple micrograph measurement program. 
The percentages of extracellular space occupied by TAPM and collagen were 
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then calculated. This manual method was selected as it is the closest equivalent 
to what the algorithm itself does. 

Even when the micrographs were enlarged many times that of the negatives 
digitized for the algorithm, measurement done by hand consistently overesti- 
mated the amount of TAPM by factors ranging from 1 to 3, while giving an 
approximately eight-fold underestimation of collagen. The features were sim- 
ply too small and/or amorphous to be reliably traced by hand. The average time 
to complete manual measurements and calculations was 30 min per photo- 
graph, not including the time required to print the photographs. 

DISCUSSION 

The algorithm provides a simple, rapid, and reliable mean of automatically 
segmenting cellular from extracellular components, and identifying and quanti- 
fying TAPM and collagen in digitized images of electron micrographs. This 
permits large numbers of such micrographs to be analyzed in a timely fashion 
for any given experiment, something that was previously not possible. This 
provides a useful technique for studies which seek to correlate the amount of 
TAPM with morphogenetic change in a particular region, or to judge the local 
effects of experimental manipulations of these molecules. The method is also 
adaptable to the identification and quantification of any components of photo- 
graphic images which can appear as isolated or complex collections of strands 
and particulate components. 
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