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Two very large classes GCAZ and CAZK of Lie algebras are introduced, which 
contain all sums of classical, Albert-Zassenhaus, generalized Witt algebras of 
Kaplansky and associated holomorphs. Their rootsystems R are classitied up to 
isomorphism. The group Aut L of automorphisms of L is shown to contain exten- 
sions of the Weyl group of R and the inner automorphism groups of classical Lie 
algebra complements of the Wilt subalgebra of L. The Weyl group extension in Aut 
L acts transitively by conjugation on the classical complements, under general con- 
ditions. 0 1985 Academic Press. Inc. 

I. INTRODUCTION 

In Block [ 11, the class of (finite dimensional) Lie algebras L = C,, R L, 
over a field k such that 

(1) L=L* and Center L=O; 
(2) dim L,= 1 and a([LU, LP,])#O for PER- (0) 

is determined for characteristic p > 5 as follows. 

1.1. THEOREM (Block Cl]). A Lie algebra L=C,,RLa of characteristic 
p > 5 satisfies conditions ( 1) and (2) if and only if L = L I @ . . . @ L, (direct 
sumofideuls)andR=R,u’..~R,whereL~=C,..,_(,)([L,L._.]+L,) 
and either L, is classical or Li is Albert-Zussenhuus and Ri is a subgroup of 
kui (ui E Ri- (0)) for each 1 < i<n. 

1.2. DEFINITION. Accordingly, we refer to a Lie algebra L = CusRLrr 
satisfying conditions (1) and (2) as a classical Albert-Zassenhaus (CAZ) 
Lie algebra with CAZ Curtun subalgebra L,. And we call a subset R of a 
vector space V over k a CAZ rootsystem if R = R, u ... v R, where 

* The author takes this oppurtunity to thank the University of Chicago for its hospitality 
during his visit there 1982-1983 when this paper was written. 
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1. each Ri is a classical rootsystem (isomorphic to the rootsystem of a 
classical Lie algebra) or an Albert-Zassenhaus rootsystem (additive sub- 
group of ka, for some ai E R) for 1 < i < n; 

2. R,n R,= (0) for i#j; 
3. a,bER-(0) with a N b implies that a, b E Rj for some 1 d i < n, 

where a-b if and only if a+bER or a-bER. 

The purpose of this paper is to study generalized classical 
Albert-Zassenhaus GCAZ Lie algebras and GCAZ rootsystems in the sense 
of Definition 1.3 below. Throughout the paper, k is a field of characteristic 
p> 3. 

Note that the class of GCAZ Lie algebras contains the class of CAZ Lie 
algebras. It also contains the generalized Witt algebras of Kaplansky, as 
well as algebras of derivations of extensions of classical Lie algebras. In the 
definition, Lt is the eigenspace {x E L 1 [h, x] = a(h)x for all h E L,} and a 
root is Witt if a, 2a ,..., (p - 1)a are all roots. 

1.3. DEFINITION. A Lie algebra L = C,, RLu is a GCAZ Lie algebra 
with GCAZ Cartan subalgebra L, if 

1. a(LL, L!,])#O for a6 R- (0); 

2. CL &I =L,+l7 ifa,b,a+bER-{0} whereafbandeitheraor 
b (or both) is Witt. 

A subset R of a vector space V is a GCAZ rootsystem if R = R u . . u R, 
where 

1. each R, is Gj + Si where Si is a classical rootsystem or { 0) and G, 
is a Kaplansky rootsystem (additive subgroup of V) (1 < i < n); 

2. R, n Rj = (0) for i#j; 
3. a-b implies a, b E Ri for some i for all a, b E R - (0). 

We also consider the class of CAZK Lie algebras of Definition 1.4. Note 
that CAZ c CAZK c GCAZ, and that CAZK contains all direct sums of 
classical, Albert-Zassenhaus, Kaplansky algebras by Proposition 2.1. 

1.4. DEFINITION. A Lie algebra L = C,, R L, is a classical Albert- 
Zassenhaus-Kaplansky (CAZK) Lie algebra with CAZK Cartan subalgebra 
L, if 

1. a([LA, L5,])#0 for aER- (0); 

2. CL,, Lb1 = La+h for all a, b E R - (0) with a # f 6. 

A CAZK rootsystem is a union R = R, v . . . u R, (irreducible component 
decomposition) of classical rootsystems and Kaplansky rootsystems Ri. 

For this paper, we need the following results on symmetric Lie algebras, 
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those Lie algebras L = C,, R L, satisfying condition (1) of Definition 1.3; 
and on Lie rootsystems, a class of vector subsets containing the class of 
rootsystems of symmetric Lie algebras. A Lie rootsystem is a finite subset R 
of a vector space V over k such that: 

1. OER= -R; 
2. for a E R - {0}, there exists a0 E Horn, (V, k) such that a”(a) = 2 

and the corresponding reflection r,(c) = c - u”( c)a stabilizes all rootstrings 
R,(u) = {b - ru,..., b+qu}zR (PER, q,r maximal with O<q, &p-l) 
having fewer than p elements; 

3. R=RWuRc where RW=(u~R(u is Witt} and RC={u~R(u is 
classical}; where a root a is classical if R n Zu = ( - a, 0, a}; 

4. IRJu)l =l,p-1, orpforuERW-{O), PER. 

In the following theorems, we assume that L = C,, RLo is a symmetric Lie 
algebra and/or R is a Lie rootsystem over a field k of characteristic p > 3. 
Some of these and later theorems are concerned with sections Ru = R n Zu, 
Rub = R n (Zu + Lb), Rubc = R n (Zu + Zb + Zc), etc., of R and sections 
Lu=C dE RuLd, Lab = Cds RuhLd, Lube = Cde RuhC.Ld, etc., of L. The 
irreducible components of R are the Ri = (R, - {O}) u {O> (1 d i 6 n) where 
the Ri- (0) are the equivalence classes of R - (0) of the equivalence 
relation on R - { 0} generated by the adjacency relation “u-b” defined by 
the condition “u + b E R or u-b E R.” In particular, the irreducible com- 
ponents of a GCAZ rootsystem R = R, u ... u R, with Ri= G, + Si are 
those R, for which G, # {0}, together with the irreducible components of 
those Rj=G, +S,=S, for which Gj= {O}. 

1.5. THEOREM (Winter [S]). R is a classical rootsystem (cf: 
Definition 1.2) if and only {full roots in R are classical. 

1.6. THEOREM (Winter [S]). The Lie rootsystem R is classical if and 
only if the symmetric Lie algebra L = C,, R io) (CL,, L ,] + L,) is 
classical. 

We cull the Z,-dimension of ZR the prime rank of R. 

1.7. THEOREM (Winter [ 51). The sections Ru, Rub are isomorphic to: 

1. A = { - 1, 0, 1 }, W = Z,, (irreducible, prime rank 1); 
2. A v A, A v W, W v W (reducible, prime rank 2); 
3. A,, B,, G,, W@ W= W,, A@ W, S,=(i@jJi+j#O or 

i=j=O}, T2=S2uA={i@jIi@j#0 or i= -j= fl or 0} (irreducible, 
prime rank 2). 

1.8. THEOREM (Winter [S]). Let R be a Lie rootsystem which has no 
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section of type T2. Then RW is a Witt rootsystem (Lie rootsystem whose 
roots are all Witt) and for each b E R” - { 0} : 

1. R has a splitting f at 6, f: R + R such that f(R) EI b and 

(i) f(a)=0 ifand only ifaERW; 

(ii) f’=f; 

(iii) f(a)” (f(c)) = a”(c) for all a 4 RW, c E R; 

2. For any splitting f of R, S=f(R) 1s a classical rootsystem, called a 
classical complement of RW, and R c RW + S; 

3. Any two splittingsf, f' are uniquely isomorphic, that is, there exists 
a unique isomorphism W: f (R) -+ f ‘(R) o c asical rootsystems such that f 1 
W(c)-ceRwfor all c~f(R). 

Although Part 1 of Theorem 1.8 follows from a corresponding extrinsic 
result of Winter [S] stated in terms of a universal closure mapping R + R, 
Parts 2 and 3 are not proved there. Accordingly, Parts 2 and 3 are proved 
in Section 6, which is concerned with the action of Aut R on the set of 
classical complements of RW. 

1.9. THEOREM (Winter [ 51). L, is one dimensional tf a is classical. 

1.10. THEOREM (Winter [4]). Let R be a Witt rootsystem and let 
a, 6, c E R - (0) with a- b-c and a 7L c. Then Rab and Rat are both of 
type W,. Moreover Rabc is either Rb @ (Ra v Rc) of type W@ ( W v W), 
or S,(RauRc) of type S3(Wv W) where S,(RauRc)={rx+sy+ 
tz)(r+s+t#O) or (r+s+t=O andrt=O)} with a=x-y, b=y-z. 

1.11. THEOREM (Winter [4]). The irreducible sections Rabc of a Witt 
rootsystem are of types W, W,, S2, W@ W, = W,, W@ ( W v W), WCB S,, 
S,={r@s@t~k~~r+s+t#Oorr=s=t=O},S~(Wv W)=(rOsOtE 
k31r+s+t#0 or (r+s+t=O and rt=O)}, S3(S2)=rCBsOt~k31r+ 
s+t#Oor(r+s+t=Oand(s+t#Oors=t=O))}. 

In this paper, we generalize Theorems 1.10 and 1.11 as follows, and use 
them to classify the rootsystems of GCAZ Lie algebras and CAZK Lie 
algebras. These results are valid for characteristic p > 3. 

THEOREM 4.6. Let R be a Lie rootsystem having no section of type T, 
andleta,b,cER-(0) with a-b-c and a 7L c. Then b is a Witt root and 
Rabc is either R, @ (Ra v Rc), of type W@ ( W v W) or W@ ( W v A), or 
S,(Za~Z~)=(rx+sy+tzI(r+s+t#O) or (r+s+t=O and rt=O)} 
with a=x-y, b=y -z of type S,(Wv W). 
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THEOREM 4.7. The irreducible sections Rabc of a Lie rootsystem R hav- 
ing no section of type T2 are of types A, W, A,, B,, G,, W,, Sz, A@ W, 
A,, B,, C3, WQA,, WQB,, WQG,, WQ(A VA), WzQA, 
WQ(Wv A), W,, WQ(Wv WI, WQS,, S,, S,(Wv WI, S,(T,). 

THEOREM 3.1. R is the rootsystem of a GCAZ Lie algebra over a field k 
of characteristic p > 3 tf and only tf R is a GCAZ rootsystem over k. 

THEOREM 3.2. R is the rootsystem of a CAZK Lie algebra if and only if 
R is a CAZK rootsystem. 

In Section 6, we then prove the following theorems about Weyl and 
automorphism groups of R and L. 

THEOREM 6.8. Let R be a Lie rootsystem with no section of type T,. Let 
S be a classical complement of RW with base 71, and let W(R), W(S), U(S) 
be the subgroups of Aut R generated by {rbIbERC- {0}}, {r,IbES- {0}, 

1 r,r,,U~bES-{O}, aERW, a+bER}. Then: 

1. W(R) = W(S)U(S) (semidirect product with U(S) normal); 
2. W(S) is isomorphic to the Weyl group of S under restriction to S; 
3. W(R) acts transitively on the set of classical complements S’ of RW 

in R, provided that S have no irreducible component of type A,(p 1 n + 1) and 
either p > 5 or p = 3 and E, is not an irreducible component of R. 

THEOREM 6.9. Let L = C,, R L, be a symmetric Lie algebra with no sec- 
tion of type T2. Then Aut L has a subgroup N= (W,(t)lbERC-{O}, 
t E k - (0) ) and a surjective homomorphism N -+ W(R) given by w 
H(wI~o)*-‘I~(wEN). F or each classical complement S of RW in R, Aut L 
has a closed subgroup exp S such that exp S/ Ls = (Aut L,),, the inner 
automorphism group of L, =Ch~S--(0)([LhL-b] + Lb). Any two exp S, 
exp S’ are conjugate under N (S, S’ classical complements of RW in R), 
provided that S have no irreducible component of type A,, (p 1 n + 1) and 
either p > 5 or p = 3 and E, is not an irreducible component of R. 

2. KAPLANSKY ALGEBRAS LG AND HOLOMORPHS Loos 

Kaplansky [2] introduced the Lie algebra L, with basis 
((i,g)liEAgEG} over k and multiplication 

C(ig), (j,h)l=h,(j,g+h)-g,(i,g+h) 

for any additive group G of functions from a set I to the fiAd k. These 
algebras are the generalized Witt algebras of Kaplansky, which we refer to 
as the Kaplansky algebras. 
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We regard G as any additive subgroup of the vector space k’ of functions 
from Z to k. Letting A, = k[xG] be the group algebra of the multiplication 
group xG isomorphic to G under gt-+x”, we may regard L, as the Lie sub- 
algebra A, T (A,-span of T in Der A, ) of the derivation algebra Der A, of 
A,, where T is the k-span of t, (in I), ti being the derivation t,(x”) = g,xg of 
A, (FEZ). In fact, {xRtj(i~Z,g~G} is a basis for A,T and (i,g)bxgti is 
an isomorphism from L, to ACT: 

[Xgti, xht,] = x”+h(hiti -g,t;). 

A Cartan subalgebra of L, = A, T is kT, and the corresponding 
rootspace decomposition of L, = L is L = CRE G L, where L, = xgT and 
g(t,) = gi (i E Z, g E G). We call this the symmetric Cartan decomposition of 
the Kaplansky algebra L, since L together with this Cartan decomposition 
is a symmetric Lie algebra. 

2.1. PROPOSITION. Let L = C gtC;LR be the symmetric Cartan decom- 
position of a Kaplansky Lie algebra. Then [L,, L,,] = LR+h (g, h E G, g # h). 
In particular, L is a CAZK algebra. 

Proof: Let g # h. Then g,# h, for som i. For such an i, we have 
[Xgti, xhtJ = (hi - gi)Xgth I, with h, -gj #O. It follows that CL,, L,,] con- 
tains xg+ ht. for all i such that gi # hi. Next, suppose that gi = hi and choose 
i such tha; g,#h,. Then gi+g,#h,+hj and [x”(t;+ tj),xh(t,+t,))]= 
(hi+h,j-(gi+gj))Xg+h (t; + t,) with h, + hi- (gi +g,) # 0. It follows that 
[L,, Lh] contains x g+h(t. + ti). Since [L,, Lh] contains ~“+~t, as well, 
[L,, Lh] contains xK + h tj. We conclude that [L,, Lh] = L, + h. 1 

We next construct the holomorph LGos corresponding to a finite sub- 
group G of a vector space V over k and a classical rootsystem S over k. We 
begin with a classical Lie algebra L, = CutSLO with rootsystem S; and 
with a Kaplansky algebra L, = A, T=CdEGxgT with rootsystem G. We 
view L, as an algebra of derivations of the algebra A,= k[x”], and 
LG@ 1 as an algebra of derivations of A,@ L,Y = k[x”] 0 L, = 

c gg,ucG8.Y~g@LU where (d@l)(,f@x)=dCf)@x for dcL, (viewed as 
derivation of AC), f~ A,, XE L,. Finally, we define L = LGoS = L, @ 1 + 
A,@ L, = &ssLgo~, where LOO,, = TO 1 + @LO, LgoO = xgT@ 1 + 

xgo L,, LgOn = xg 0 L, (g E G, a E R - 0). Letting the product [x, y] be 
[x, y] = xy -yx for x, y E L, 0 1 (an algebra of derivations of A, 0 L,), 
[x, y ] = Caibi@ [ui, vi] for x=Cai@ui,y=Cb,@vjEAG@Ls and 
[x,Y]=x(Y)= -[Y,x] for XEL~O~, y~Ac@Ls, L,os=L,Ol+ 
A, @ LS is the desired holomorph of the Lie algebra A, 0 L, with the sub- 
algebra LG@ 1 of the derivation algebra of A, 0 L,. 

Proposition 2.1 leads directly to Proposition 2.2 below. 
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2.2. PROPOSITION. L oOS is a GCAZ Lie algebra with rootsystem G @ S. 

Note that L,o,/Solv LGoO is the Kaplansky algebra L, and 

-bm.sl Solv Lcl@.s is the classical Lie algebra L,, where Solv L denotes the 
solvable radical (maximal solvable ideal) of a Lie algebra L. 

3. R~~TSYSTEMS OF GCAZ AND CAZK LIE ALGEBRAS 

Throughout this section, L = C Ut R L, denotes a GCAZ Lie algebra. We 
show in Theorem 5.2 that a Lie rootsystem R is GCAZ if and only if R has 
no section of type S,, T2, IV@ ( W v W), W@ (W v A). Using this result, 
we now determine the rootsystems of GCAZ Lie algebras as follows. 

3.1. THEOREM. R is the rootsystem of a GCAZ Lie algebra over a field k 
of characteristic p > 3 ij’ and only if R is a GCAZ rootsystem over k. 

Proqf: Suppose first that R is a GCAZ rootsystem over k and 
R=R, v ... vR, (irreducible component decomposition) with 
Ri = Gi + Si where Gj is a subgroup of a vector space V over k and S, is a 
classical rootsystem or {0} (1 <id n). Then R is the rootsystem of the 
GCAZ Lie algebra C @ Lo! + L, where LoI + s, is the holomorph discussed in 
Proposition 2.2. 

Suppose, conversely, that L = C (lE RLo is a GCAZ Lie algebra with root- 
system R. We claim that R is a GCAZ rootsystem. By Theorem 5.2, it suf- 
fices to show that R has no section of type Sz, T, W@ (W v W), 
W@ ( W v A). Suppose first that R has a section Rab of type S, or T2. 
Then Rab contains Witt roots v, w such that 

1. v-w$R and 2(v-w)$R; 
2. 2v-w, 3v-w, 3v-2w~R. 

Define u= w + 2(v - w) and note that u, v, a+ v, u + v - w are all Witt 
roots. Conditions (1) and (2) on v, w together with the hypothesis 

CL Ll = L + d (c,d,c+deR-{0}, c#d, c or d Witt) implies that 
L ti+L1-w = LIL+“> L ,.I = CL, Ll,L -w1 = CCL L-,1> Ll + 
[L,, [L,, L+]] c CL,_.., L,] + [L,, L,- w]. But the extreme right- 
hand term is {0}, because v - w I# R and u - w = 2(v - w) 4 R. It follows 
that (0) = LUfVpM;= L3Vpzw, which is impossible since 3v - 2w E R by 
condition (2). We conclude that R has no section of type S, or T,. 

Next, consider a section Labc = C dc RabrLd corresponding to a section 
Rabc = R n (Za + Zb + Zc). Suppose that Rabc is of type W@ ( W v W) or 
type W@ ( W v A). Then we may assume with no loss of generality that the 
generators a, b, c are chosen such that Rabc is Z,(a + b) + @‘,a v Z,c) or 
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Z,(a+b) + (??,a v {-c, 0, c}). In both cases, we have a, 6, c, a+ b, 
a + b + c E R with a + b # 0, a + c 4 R, b + c $ R. It follows that: 

CCL m Ll= CCL &I, &I + CL CL &II = (0) 

so that [ [~5,, Lb], L,] = 0. It follows that a = + b or c = f (a + b), since 
otherwise the conditions [L,, Lh] = La+b, [Lrrfb, L,] = Lu+b+r imply 
that (0) = CCLJd &I = CL+b, Ll =J%+~+~ and Lathfc= {O>, 
which contradicts a + b + c E R. Note here that the conditions assumed in 
the foregoing argument, namely, a, b, a + b E R - (0) with a # b and a or b 
Wittandu+b,c,u+b+c~R-{O}withu+b#candu+borcWitt,are 
indeed met. 

We conclude that R has no section of type Sz, T,, W@ ( W v W), 
W@ ( W v A), so that R is GCAZ by Theorem 5.2. 1 

3.2. THEOREM. R is the rootsystem of a CAZK Lie algebra ifund only if 
R is a CAZK rootksystem. 

Proof One direction follows from Proposition 2.1. For the other, let 
L=C,.R L, be a CAZK Lie algebra with rootsystem R. By Theorem 3.1, 
the irreducible components of R are Ri = Gi + Sj (1 d id n). It suffices, 
therefore, to show that Gi = { 0} or Sj = { 0} for all i. Suppose, to the con- 
trary, that G,sg # 0, S,~S # 0 for some i. Then Rgs = R n (Zg + Zs) is of 
type W@A: Rgs = (Gi + SJ n (i2g + Zs) = Zg + { -s, 0, s}. Since 
fg =sfg-s, we have L,= [Ls+g, L-,1, Lp,=[L,-,, L-,1 so that 
CL,, &I = CCL,, L-,1, cL+g’ L.-J1 = CL,, L-,1 + C&-g? L-,+,1. 
Taking h, E CL’,, LA] with u(h,) = 2, and noting that [L pa, L,] = kh, for 
a classical (a E R’ - { 0} ), by Theorem 1.9, we have h, E kh, + kh, _. g, since s 
and s-g are classical. But g(h,) = 2; whereas g(h,) = s”(g) = 0, g(h, .g) = 
(s -g)‘(g) = 0, since s, s -g are classical and g Witt in 77, g + { -s, 0, s}. by 
examinination of the strings R,(s) and R,(s -g), stable under r, and rspy, 
respectively. Thus, 2 = 0, a contradiction. It follows that Gi= (0) or 
Sj={O} for 16idn. 1 

4. LIE R~~TSYSTEMS OF PRIME RANK AT MOST 3 

Throughout Section 4, R is a Lie rootsystem having no section of 
type T2. It follows from the the rank 2 classification that 
Rub = Zu v { - 6, 0, 6) or Zu + { - 6, O,b} for any nonzero roots a, b with 
a Witt and b classical. For such a, 6, it follows that b’(u) = 0, since 
R,(b)= {u} or R,(b)= {u-b, a, a + 6) in the above two cases, and 
rb(u) = a in each case. In particular, a + b is classical for any nonzero roots 
a, b with a Witt, b classical, and a + bE R, since Ru(u + b) = Rub = 
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Za + { -(a + b), 0, a + b}. And, consequently, we then also have 
(a + 6)‘(u) = 0 by our remarks above. 

We claim for UE RW - {0}, b~R~-{0} and u+b~R that 
rbra +Jc) = c - b’(c)u for all c E R. To see this, we consider the Z - closure 
map UH 6 of Winter [S, Sect. 41; and we first observe that 6 + 6= 6# 0 
and (a + b)‘(c) = (& + 6)‘(t) = 6”(e) = b’(c), by Theorem 1.8. It follows 
that Rb(c) = C-~‘(C)& Y,+~(c) = c - (a+ b)‘(c) (a + b) = c - b’(c)(u + 6) = 
c-b’(c)&b’(c)u=r,(c)-b’(c)u. But then T~T~+~(c) = T~(Y~(c)- 
b’(c)u)= c-ho(c We now formulate these observations for future 
reference. 

4.1. PROPOSITION. Let a and b be nonzero Witt and classical roots, 
respectively, in a Lie rootsystem R excluding T2. Then: 

1. Rub=Zav {-b,O,b} orZa+{-b,O,b); 
2. b’(a) = 0; 
3. rt,r,,+h(~) = c - b’(c)a for all c E R, provided that a + b E R. 

Let aERw-{0), bER’-(O}, a+bER, ceR with bO(c)#O. Then R 
contains r r b a +Jc) = c - b’(c)a, by Proposition 4.1, so that a-c by the 
rank 2 classification and the observation that b’(c) # 0. We state this for 
future reference. 

4.2. PROPOSITION. aERw-{O}, bERC-{O}, a+bER, CER with 
b’(c) #O. Then a-c. 

We let bzc represent the condition b’(c) # 0. Note that bzc implies 
b-c, by the rank 2 classification, so that z is a strong version of - Then 
Proposition 4.2 above shows that a-b zc implies a-c for a E RW - {0}, 
bERC-{O}, CER-(0). 

Since R has no section of type T,, we know from Theorem 1.7 that 
R c RW + S where S is any classical complement of RW. Moreover, any 
two such S are isomorphic. 

Let a,,..., a,, be a base for a classical rootsystem S over k. 

4.3. DEFINITION. We let det S be the determinant of the Cartan matrix 
(a; (a,)) over k. We say that S is nonsingular if det S # 0. 

The following proposition is evident from examination of the Cartan 
matrices of the irreducible classical rootsystems A,, B,, C,, D,, E,, F,,, 
Gn. 

4.4. PROPOSITION. A classical rootsystem S is nonsingular if and only if 
no irreducible component of S is of type A,, (p I n + 1) and either p > 5 or 
p = 5 and E, is not an irreducible component of S. 
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4.5 PROPOSITION. Let S be a nonsingular classical subsystem of R. Then: 

1. kRW nkS= (0) where kRW, kS are the k-spans of RW, S, respec- 
tively; 

2. Prime Rank R’> Prime Rank RW + Prime Rank S and Rank 
R’ > Rank RW + Rank S where R’ is the subsystem of R generated by RW, 
S. 

Proof: Clearly 1 implies 2. For 1, let a,,...,a, be a base for S and let 
d= C;=, dia, be in kRW. We must show that d= 0. Since R excludes T,, we 
have a,” (RW) = 0, by Proposition 4.1, so that a,” (d) = 0 for 1 < i < n. But 
then x7= I d,aj’ (a,) = 0 for 1 <j < n. Since det S # 0, it follows that di = 0 
for 1 6 iQ n, so that d = 0, as was to be shown. 1 

It is not known whether there exists a Lie rootsystem R with no section 
of type T, having a classical subsystem S with kR n kS # { 0). 

We now can extend the transitivity Theorem 1.10 for Witt rootsystems to 
Lie rootsystems having no section of type T,. 

4.6. THEOREM. Let a, b, c be nonzero elements of R. Assume that a is a 
Witt root and that a-b-c with a-c. Then b is a Witt root and Rabc is 
either Rb@ (Ra v Rc), of type W@ (W v W) or W@ (W v A), or 
S,(Za v Zb)= {ix+jy +kzI(i+j+k#O) or (i+j+k=O and ik=O)} 
with a=x-y, b=y-z, of type S,(Wv W). 

Proof. Suppose first that b is classical. Then b’(c) = 0, by 
Proposition 4.2. Since b is classical and b-c, Rbc is classical or 
Rbc = { -b, 0, b} @ Zd for some de R, by the rank 2 classification. This 
together with the condition on b’(c) imply in all cases that R,(b) = 
{c-b, c, b+c}. We then have a-b-(b+c) with b’(b+c)= 
b’(b)+ bO(c)=2+0#0, so that a-(b+c) by Proposition 4.2. It follows 
that a- (b + c)-c. Since b”(b + c) # 0 implies that b + c is classical, by 
Proposition 4.1, we conclude that (b + c)“(c) = 0; for otherwise 
(b + c)“(c) # 0 implies that a-c, by Proposition 4.2, a contradiction. 
Replacing b by b + c in the foregoing arguments, we may then conclude 
similarly that R,(b+c)={-b,c,b+c}, a-(b+c)-(b+2c) with 
(b + c)‘(b + 2c) = 2 and b + 2c classical. Thereby, we have now generated 
classical roots b - c, b, b + c, b + 2c. Moreover, we may continue to repeat 
the argument: a- (b + 2c), by Proposition 4.2, so that a- (b + 2c) - and 
a ?c c implies that (b + 2c)‘(c) = 0 and R,(b + 2c) = ( -b, - c, c, b + 3c) by 
Proposition 4.2. But this implies that Rb(c) 3 {b -c, b, b + c, b + 2c, 
b + 3~). (In fact, continuing repetition of the argument leads to continuing 
increase in estimated length-which is an observation which enables one to 
draw the conclusion in the next sentence also for generalized Lie root- 
systems corresponding to nonsplit versions of symmetric Lie algebras.) We 
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conclude that c is a Witt root, by inspection of the possibilities for Rbc 
given in the rank 2 classification. (Classical orbits have at most four 
elements.) 

We have RabcxRabuRbc=(Za+{-b,O,b})u({-b,O,b)+Zc)= 
{-b, 0, 6)) + (Z a v Zc), since b is classical and a, CE RW - (0). Note that 
(-b,O,b}+{Z a v Zc) is not a Lie rootsystem: 

1. (a + b)‘(b) = 0 by Proposition 4.2; 
2. 2=(a+b)“(a+b)=(a+b)o(a), by 1; 
3. R,(a+b)= I-b, a, 2a+b}, so that Y o+/,(a)=a, (a+b)O(a)=O, 

in contradiction to 2. 

It follows that R has an element d = ra + sb + tc E Rat with r, s, t # 0, since 
Rat = Ra v Rc c Rab u Rbc. Suppose first that some such d is a Witt root. 
Then Rad is of type S, or W,, by the rank 2 classification, since the other 
possibility W @ A cannot contain two linearly independent Witt roots a, d. 

Since b-c with b classical and c Witt, Rbc = { -b, 0, b} + Zc, so that 
b + (t/s)c is a classical root of R. But this is impossible, since then Rad, 
which is of type S, or W,, contains the classical root 
b+(t/s)c= -(r/s)a+(l/s)(ra+sb+tc). 

Since the assumption that b is classical leads to the contradiction above, 
we conclude that b is a Witt root. Suppose first that c is also a Witt root. 
Then a, b, c are in the Witt subsystem RW = {x E R I,? = 6) and Rabc is a 
Witt rootsystem, by Theorem 1.8. But then the assertion of Theorem 4.6 
follows form Theorem 1.10. 

We may now assume that a, b E RW - {0} and CE R” - {0}, and we take 
R = Rabc. Since a, b E RW, RW has prime rank 3 2. Taking a classical com- 
plement S containing c, by Theorem 1.8, we have R c RW + S with 3 3 
prime rank RW + prime rank S, by Theorem 1.8. We conclude that 
RW = Rab and S= { -c, O,c}. Suppose a’(b) #O. We have b + CE Rbc, 
since b - c implies that Rbd is of type W@A. Since 
a”(b + c) = a’(b) + 0 # 0, we have a-b + cm c. In Rbc, we have 
(b+c)O(c)#O, since Rbc=Zb+{-c,O,c} and R,.(b + c) = 
{ -2b-c, -b, c}. S’ mce b + c is classical, we then have a-c by Proposi- 
tion 4.2, a contradiction. We conclude that a’(b) = 0. Since a-b, it follows 
from the rank 2 classification that RW = Rab = Za + Zb. 

We have R~(Za+Zb)u(Zb+{-c,O,c})= Zb@(%av (-b,O,b}). 
If the conclusion is equality, then R is of type W@ (W v A) and the proof 
is complete. Suppose, to the contrary, there exists a root 
d=ra+sb+tcER with r, t#O. Then s#O, since a 7L c; and we may take 
t = 1, since de RW u { -c, 0, c}. But then we have d classical, since d$ RW, 
and d-c since d-c E Za + Zb. Thus, Red is of type W@ A, so that 
Rcd=Z(ra+sb)+ {-c,O,c} and R,(d)= {-2(ra+sb)-c, -(ra+sb), 
c}. It follows that d’(c) #O and dzc with d classical. Since 
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a”(b) = a’(c) = 0 and a’(d) = ra’(a) + sa’(b) + a’(b) = 2r, we then have 
a-dzc with d classical, so that u-c, a contradiction. Thus c cannot be 
classical, and the proof is complete. fi 

We next extend the classification of Witt rootsystems of prime rank three 
to Lie rootsystems with no section of type T,. 

4.7. THEOREM. Let R be an irreducible Lie rootsystem excluding T, of 
prime rank 3. Then R is isomorphic to exactly one of the following: 

RW of rank 0. A,, B,, C, (classical rootsystems); 
RWofrank 1. W@A,, W@B,, W@G,, W@(A v A); 
RWofrank2. W,@A, W@(Wv A); 
RW of rank 3. W,, W@ (W v W), W@S,, S,, S,( W v W), S,(S,) 

( Witt rootsystems). 

Proof: For R= RW, our assertions follow from Theorem 1.10. For 
R = R”, R is a classical rootsystem, by Theorem 1.5, and our assertions are 
again clear. Thus, we may assume that RW # (0) and RW #R. 

Since R has no section of type T,, we have R c RW v S where S is a 
classical complement, by Theorem 1.8. By Proposition 4.5, we have 3 > 
prime R > prime rank RW + rank S> 1 + 1 = 2. Thus, RW and S are both 
of prime rank 1 or 2. It follows from Theorem 1.7 that RW is one of W, 
W v W, W,, Sz. We now consider each of these cases. 

Suppose first that R = W = Zu. Then rank S = 1 or 2. If rank S = 1 and 
S={-b,O,bj, we have R=Rub=ZuvS or Zu+S, by the rank2 
classification. Let rank S = 2. We claim that R = Za @ S. For this, it suffices 
to show that Rut = Zu + { -c, 0, c} for any c E R - RW. By Theorem 4.6, 
the latter is equivalent to showing that u-c for all c E R - RW. Suppose, to 
the contrary, that c E R - RW and a 7L c. By the irreducibility of R, we can 
find b;ER- (0) (1 <i<n) such that u-b,- ..’ -b,-c. From among all 
possible choices of c E R - RW and consequent b, with a 7( c, take c so that 
n is minimal. By the minimality of n, no bi is in Zu (1 < i < n), for otherwise 
we could use the shorter chain u-h; + , -b,+ 2 - . . -b, - c; and a - bi for 
1 < i < n, for otherwise we would have a 7L 6, for some i, and we could take 
hi = c with shorter chain u-b, - . . -hip, -c. Finally, we now have 
a - 6, -c, that is, n = 1. Writing b = b,, we have a-b-c with 6, c clasical 
and a 7L c. But this is impossible, by Theorem 4.6. We must conclude that 
u-c, as asserted. 

Suppose next that RW = W v W= Zu v Zc. Then 3 2 prime rank 
RW+rankS+2+rank Simplies that rankS=l and S=A={-b,O,b} 
for some b E R. By the irreducibility of R, it follows that u-b-c. Since a is 
Witt and b classical, we then have u-c, by Theorem 4.6, contrary to our 
hypothesis that RW = Rut = Zu v Zc. 
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Suppose next that RW = W, = EA+ Zb for any Z,-independent 
a, b E RW. Since 3 > prime rank RW + rank S = 2 + rank S, we have rank 
S=l and S=A={-c,O,c}. Thus, RcRW+S= W,+A, by 
Theorem 1.8. By the irreducibility of R, we have b-c for some b E RW. 
If a-c for all aERw-{O}, then RW+(-c,O,c}cR since 
Rac=Za+{-c,O,c}foralla~RW-{O}suchthata-c.Inthiscase,we 
then have R = RW + { -c, 0, c} and R is of type W, @ A. Otherwise, there 
exists a E R w - (0) with a- b-c and a & c, b being the element of RW 
chosen above. But then R is of type W@ ( W v A) by Theorem 4.6. 

Finally, suppose that RW = S,. Then 3 3 rank RW + rank S= 
2+rankS,sothatrankS=1andS=A={-c,O,c}forsomecER-RW. 
By irreducibility of R, we have b-c for some b E RW - (0). 

Suppose that there exists a E RW - { 0) such that a ?L c. Then a-b since 
a, bE RW- (0) and RW is of type Sz, so that a-b-c and a 7L c. It again 
follows from Theorem 4.6 that R is of type W@ (W v A). But this is 
impossible, since RW is of type S,. We conclude, therefore, that a-c for all 
a6 RW- {O}. S’ mce Rat = Za + ( -c, 0, c} for all such a, it follows 
that R=RW+{-c,O,c)=S,+A where A={-c,O,c} and S,= 
{ia+,jbIi+,j#O}. S’ mce R has no section of type T,, we have 
Z,S, n Z,A = {0}, by Proposition 4.5. (Note, however, that there is a Lie 
rootsystem { ia +jb I i +j # 0 I+ { -d, 0, d} with d = a - b, namely, the Lie 
rootsystem T,.) Thus, we may take a, b, c to be linearly independent over 
L,, and we write R = S, 0 A to indicate the independence. But then R is 
not a Lie rootsystem. To see this, note that if R is a Lie rootsystem, then b 
is a Witt root and a+c is classical with b+a+cER and -b+a+c$R. 
But this cannot happen in a Lie rootsystem, since the rank two 
classification implies that Rxy=Zx+{-y,O,y} for XER”-{O}, 
y E R” - { 0}, and x + y E R. We therefore have reached a contradiction, so 
that the assumed case RW = Sz never occurs for irreducible Lie rootsystems 
excluding T2 of prime rank 3. 1 

5. CHARACTERIZATION OF GCAZ AND CAZK ROOTSYSTEMS 

The proofs of Theorems 3.1 and 3.2, which classify the rootsystems of 
GCAZ and CAZK Lie algebras, depend on Theorem 5.2 below, which 
characterizes GCAZ rootsystems. We now establish Theorem 5.2. 

We begin by noting that Theorem 4.6 has the following direct con- 
sequence. 

5.1. THEOREM. Let R be a Lie rootsystem having no sections of type S,, 
T,, W@(Wv W), W@(WvA),andleta,b,c~R-(0) witha Wittand 
a-b-c. Then a-c. 
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5.2. THEOREM. A Lie rootsystem R is a GCAZ rootsystem if and only if 
R has no section of type S,, T,, W@( W v W), W@( W v A). 

Proof: One direction is trivial. For the other, assume that R has no sec- 
tion of type S,, T,, W@ (W v W), W@ (W v A). By Theorem 1.8, we 
have R c G + S where G = R” and S is a classical complement of RW. By 
Theorem 5.1, g-h is an equivalence relation for G - (0) with equivalence 
classes G,- {O};.., G,- (0). S’ mce Rgh=Z,g+Z,h for g, hEGi- {0}, 
Gj=Gi-{O}u(O} isagroupfor l<i<m. Let Si={seS-{O}Ig-sfor 
some gEGi-(O}}u{O} (l<i<m). Note that SES~- {0}, tES-{0} 
and s- t implies t E Sj - {0}, by Theorem 5.2. Thus, S, is a union of 
irreducible components of S and Si is a classical rootsystem (1 d i6 m). 
Consequently, S = S, u ... v S, u S,, I u ... v S, where S,, 1 ,..., S, are 
the irreducible components of S not contained in any S, (1 d i < m). Take 
gEG;- {0}, SES~-- (0). Note that g-s, by Theorem 5.2, so that 
Rgs=Zg+(-s,O,s}, by Theorem 1.7. It follows that g+scR for gEGj, 
SESi, that is, R contains G,+Si. But then R=G, +S, u ... u 
G,+S,uS,+,... u S,, which completes the proof. 1 

6. THE WEYL GROUP OF L: 
CONJUGACY OF CLASSICAL COMPLEMENTS UNDER THE WEYL GROUP 

Throughout this section R denotes a Lie rootsystem which has no sec- 
tion of type T2 and L denotes a symmetric Lie algebra with rootsystem R. 

By Theorem 1.8, Part 1, we know that R has a splitting f at any 
b E R” - { 0}, that is, a homomorphism f: R + R such that b l f(R) and: 

(i) f(a) = 0 if and only if a E RW; 
(ii) f” =f; 
(iii) f(a)“(f(c)) = a”(c) for all a$ RW, CE R. 

We now prove Parts 2 and 3 of Theorem 1.8. For this, let S=f(R) and 
consider any f(a),f(c) E S- (0). Then we define rf(,,(f(c)) = 
f(c) - a”(c)f(a) =f(c - a’(c)a) =f(r,(c)). It follows easily that rfcaJ 
stabilizes all rootstrings Rfcc,(f(a)) of fewer then p elements. To show that 
S is a classical rootsystem, it therefore remains only to show that all roots 
in S are classical, by Theorem 1.5. But if f(b) ES is not classical, then 
f(b) E RW implies that 0 =ff(b) =f2(b) =f(b) and f(b) = 0. We claim next 
that Rc RW + S. Take be R - RW and let a=f(b). Then f(a) = 
f2(b) =f(b) # 0, so that a 4 RW and 2 =f(a)‘(f(a)) =f(a)‘(f(b)) = a’(b). It 
follows that b-aE R. But then f(b -a) =f(b)-f(a) =O, so that 
b-a E RW. This implies that b = (b - a) + a E RW +f(R) = RW + S. This 
proves Part 2 of Theorem 1.8. For Part 3, let f: R -+ R and f’: R + R be 
splittings and consider the corresponding classical complements S =f( R) 
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and S’ =f’(R) of RW. Consider the Z-closure mapping A : R -+ R of Win- 
ter [IS]. It is shown there that RW = {u~RIh=a}. Since R*=Hom (R,Z) 
contains So= {a*lu~S- {0}}, th e set of Cartan integer functions a*(h) 
(be S) of the classical rootsystem S, it follows as in the proof of 
Theorem 1.5 that the restriction of A to S is injective. Since RW = 6, it 
follows that S= R and A maps S isomorphically to R, also as in the proof 
of Theorem 1.5. Similarly, A maps s’ isomorphically to R. It follows that 
there is an isomorphism w: S + S’ such that b = w@) for all h E S. But then 
bO(w@)) = &w(b)) = q6’ = 2, so that w(h) - b+z R. It follows that 
w(b) - b E RW, since w( ) - 6= 6. To see that w  is unique, take a base 
s1 ,...,sn for S and let s,! = w(si) (1 d i < n). Let W: S + S’ be an isomorphism 
with iii(b)-bERw (bES) and let s(’ = W(si) (1 d i< n). Then s*i = s*l’ 
implies that s( = s,! (1 6 i< n), so that w  = W. This proves Part 3 of 
Theorem 1.8. 

Our hypothesis that R have no section of type T, implies that for any 
b E R - {0}, a E R with b classical, the Cartan integer b*(a) = q - Y defined 
by the u-orbit R,(u) = {b - ra ,..., b + qu} of b is 0, - 1, - 1, - 1, - 2, - 3, 0, 
0, - 2 in all possible types A v A, A,, B, long, G, long, B, short, B, short, 
w  v A, w  + A mixed, w  + A classical. Here, we take the values b*(u) from 
Fig. 1 of Winter [S]. It follows that R,(u) has fewer them p elements for all 
a E R, so that rb E Aut R with rb uniquely determined by b for b E R - { 0}, 
b classical. This makes possible the following definition. 

6.1. DEFINITION. The Weyl group of R is the group W(R) generated by 
{r,IbER- {0}, b classical}. 

Taking p > 7 so that (p - 1)/2 3 4 > ( R,(u) 1 for all b E R - (0) classical 
and all a E R, and taking XE L,, be R - {0}, b classical, the series 
exp ad x = 1 + ad x + (ad ~)~/2! + . . . terminates at or before the (p - 1)/2 
power. Since ad x is a derivation, it follows that exp ad x E Aut L. We let 
wb(t) = exp ad te, exp - ad t -‘e -,+ exp ad teb where t E k - {0}, eb EL,, 
e -b EL. b, b(Ce,,e _ h] ) = 2. Since dim L - 1 for b E R - { 0}, b classical, -fb- 

by Theorem 1.9, all possible choices for eb, e ~ b are accounted for by 
including the parameter t # 0: Lb = { t eb I t E k}. 

6.2. DEFINITION. The Weyl group of L = I,, R L, is W(L) = N(L,)/ 
N,(L,) where N( Lo) is the group generated by { Wb(t) 1 b E R - { 0}, b 
classical, tEk-(0)) andNo(Lo)={w~N(Lo)lwL,=L,forallu~R}. 

We have generated a group N(L,) of automorphisms of L, and it is 
easily checked that the generators wh(t) satisfy: 

1. wb( t) normalizes Lo; 
2. the adjoint W,(t)* of W,(t)1 L0 is rb, that is, Wb(t)*(u) = 

rb(u) = a - b’(u)b (b E R - {O}, b classical); 
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3. WL,=L,.-l,(w~N(L,))and W,(s)*W,(t)*L,=L,(beR-{0}, 
b classical, a E R). 

Consequently, the mapping WH W* -’ 1 R is a homomorphism from IV(&) 
onto W(R) with kernel N,(L,), that is, W(L) and W(R) are isomorphic. 

6.3. THEOREM. The Weyl group W(L) = N(LO)/NO(LO) of L is isomorphic 
to the Weyl group W(R) of R, where the isomorphism is induced by 
WHW*-lIR (wEN(L,)). 

Since the Weyl group W(R) lifts to the group N(L,) of automorphisms 
of L, by Theorem 6.3, conjugacy of subsets of R under W(R) implies con- 
jugacy of associated subsets of L under Aut L. We now pursue such con- 
jugacy where the subsets of R are the classical compliments S of RW of 
Theorem 1.8 and the associated subsets of L are the classical Lie algebra 
complements L, = CbeSP {,,,, (CL,, L-b] + Lb) of the Witt Lie subalgebra 
LW=C atRWLo, RW being the Witt rootsystem {a E R 1 a is Witt >. 

We now take two classical complements S, S’, of RW in R. Let sr ,..., s, be 
a basis for S (as classical rootsystem). By Part 3 of Theorem 1.8, proved 
earlier in this section, there exists an isomorphism w:S + S’ such that 
w(b) - b E RW for all b E S. Let s: = w(si) (1 d i < n), so that ai =def.~: - si is 
in RW for 1 d i 6 n. It follows that a, + s1 ,..., a, + s, is a basis for S’. Con- 
versely, if a, ,..., a, E RW and s, + a, ,..., s, + a, E R, then it can be shown as 
in Winter [S] that there is a classical complement S” with base 
a, + sI ,..., a, + s, and isomorphism from S to S” mapping s, to ai + si 
(1 d i6 n). Thus, relative to one fixed classical complement S with base 
So,..., s,, the other classical complements S’ are determined by 

1. elements a, ,..., a, E RW such that a, + s, ,..., a, + s, E R; 
2. the corresponding defining condition s’ E S’ if and only if 

s’ =x7= 1 m,(a, + si) where s = XI= r m,s, is in S. 

We now discuss passage from the base x = { s1 ,..., s,,} of S to the base 
71’ = {s; ,..., sh} (s; = a, + s I ,..., s; = a,, + s,) for a given S’ by an element of 
W(R). Our starting point is the pair of equations of Proposition 4.1 for 
Witt roots a E RW and nonzero classical roots b E R” - (0) with a + b E R: 

r,,ra+Jc)=c--‘(c)a (cER) 

b’(c) = 0 (c E RW). 

6.4. DEFINITION. rb, Jc) = c - b’(c)a (a, b, c E R, b # 0). 

A base rc = (s I ,..., s,)’ of a classical complement S of RW is called a base 
complement of RW. Given two base complements n = (s, ,..., sn)‘, 
d = (s; ,..., s;)’ of RW, 7c and rcl are adjacent if 71’ = a + rc for some 
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a = (a, )...) a,)’ with ai E RW for 1 < i< n. For such adjacent base com- 
plements rr, rc’ of RW, we define: 

r 7[n1 = r.,.+, “‘r SI.0,. 

The equations rbra+ Jc) = c - ho( = rb, Jc) lead to the recursive family 
of equations: 

r U,J, “.r u 2,.s ,r,,,,(si) = si - sy (s,)u, - s:(si)u, - . . . - sz (s,)un. 

Replacing si by the column vector rt = (S 1,..., s,,)’ in the last of these 
equations, we have 

where rnnS acts coordinate-wise on the entries si. We rewrite this as 

r,,,(x) = 7c- (s,“(s,))(d - 7c) 

where (s,“(sj)) is the Curtun Matrix of the base 7c for the classical root- 
system S. 

We need the following proposition, which applies to Lie rootsystems R 
having no sections of type T, and nonzero classical roots b of R. 

6.5. PROPOSITION. Let R be a Lie rootsystem, fe Aut R, b E R - (0). 
Suppose that all b-orbits R,(b) (c E R) have fewer than p elements. Then: 

1. f(b)“(f (c)l = b’(c); 
2. frJ’ = rfchj. 

Proof: Rb(c) = {c - rb,..., c + qb} uniquely determines b’(c) as r - q. 
Thus, 1 follows from the equation f(Rb(c)) = Rjcbj(f(c)). And 2 then 
follows from the equations f (rb(c)) =f(c- b’(c)b)=f (c) - b’(c)f (b) = 
f (cl -f(b)‘(f (c)If (b) = rfcbj(f (c)l I 
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6.6. COROLLARY. Let R be Lie rootsystem having no section of type T2. 
Let aE RW, b E R” - (0); and let 7t, 71’ be adjacent base complements of RW. 
Then 

1. fib, .f -’ = If(b),f(a)i and 

2. f rrrx’f -’ = rf(n)/(n’) 

for any f E Aut R. 

We are now ready to prove the main theorem of Section 6, which we 
state using the following definition. 

6.7. DEFINITION. For any XcRC-{O}, r,={r,Ib~X}, W(X) is the 
group < rx > generated by rx and U(X) is the group generated by 
{rb,olbEX, aERw, a+beR}. 

Note that IV(n) = < r, > normalizes U(rc) for any base complement 71 of 
RW, since 

1. rbrb’ orb’ = r,,(&), ~ and rb(b’) ES, where S is the classical com- 
plement of Rw with base rc and b, 6’ E S,; and 

2. the restrictions W(rc) 1 s,, W(S,) 1 s, both coincide with the Weyl 
group of S, (by the “Theorem of Generation of the Weyl Group by Simple 
Reflections” for rootsystems of complex semisimple Lie algebras). 

It follows that W =der W(rc)U(rc) is a subgroup of Aut R where U(n) is a 
normal subgroup of W and W(Z) 1 s, is the Weyl group of the classical root- 
system S,. 

Recall from Proposition 4.4 that a classical rootsystem S is nonsingular if 
and only if no irreducible component of S is of type A, with p 1 n + 1 and 
either p > 5 or p = 3 and E, is not an irreducible component of S. 

6.8. THEOREM. Let R be a Lie rootsystem with no section of type T,. Let 
S be a classical complement of RW with base x. Then: 

1. W(x) = W(S) and restriction W(S) + W(S) I s is an isomorphism 
from W(S) to the Weyl group of the classical rootsystem S; 

2. U(n) = U(S), U(S) is normalized by W(S), W(S) A U(S) = 1, and 
W(R) = W(S) u (S) (semidirect product); 

3. if S is nonsingular, W(R) acts simply transitively on the set of base 
complements I? of RW and, therefore, transitively on the set of all classical 
complements of RW. 

Proof. For 1, it suffices, by the discussion preceding the theorem, to 
show that W(S) -+ W(S) 1 s is injective. Thus, let w  E W(S) with w(s) = s for 
all s E S, since w  E W(S) and W(S) = W(x) is generated by rb (b E X) with 
rb(a) = a for all a E RW. Since R c RW + S, by Theorem 1.8, it follows that 
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w(a + s) = w(a) + w(s) = a + s for all a + s E R. Thus, w  = 1, as asserted. For 
2, observe that U(K) is normalized by W(K) = w(S), by the discussion 
preceding the theorem. Let b E S- {0}, a~ RW with a + b E R. By a 
theorem on rootsystem of complex semisimple rootsystems, there exists 
f~ W(S) = W(n) such that f(b) E rc. But then f(a) = a, by Proposition 4.1, 
and frt,,X' = rf(b),u E W~h by Corollary 6.6. This proves that 
U(X) = U(S). To see that W(R) = W(S) u (S), observe that the generators 
rbs (b’eRC- (0)) for W(R) can be written as rhs =rhcu (b’=u+b with 
UER~, bg R”), by Theorem 1.8, so that rbrb. = rbrh+a =T~,~ E U(S) and 
rbt E W(S) u (S). Thus, W(R) = W(S) u (S). Finally, let w  E W(S) n U(S) 

and let s E S. Then w(s) E S, since w  E W(S), and ~(3) = 5 since w  E U(S). 
Since S + 5 is injective, it follows that w(s) = s for s E S. By Proposition 4.1, 
w(u)=u for all UE RW. Since Rc RW + S, it follows that w  = 1 and 
W(S) A U(S) = 1. For 3, suppose that S is nonsingular, that is, 
det (SJ?(,si)) # 0 (modulo p). We claim firstly that U(S) acts transitively on 
the set of base complements 71’ of RW which are adjacent to rc. Letting 
a = 71’ - 71 = (s; )..., sy - (s, )...) s,)’ = (a ,,...,a,)’ with uj E RW (1 6 i6 n), we 
know from our earlier discussion of r,,, that the base complement TI’ 
adjacent to rc leads to a new base complement r,,,(n) = TC - ($(~~))a. The 
Cartan matrix C= ($(si)) is, by our hypothesis, a nonsingular element of 
the finite group g l,Z,. Letting C(X) = r,,, (rc) = n - cu for x’ = 7~ + a, and 
iterating, we have C’(n’) = rc + ( - l)‘C’u, where C’(rc’) is “Ah iterate” and 
C’u is “matrix product.” Letting m be the order of C in Gt,Z,, we conclude 
that a base complement 71 IfI C’u of RW adjacent to n is reached after 
m - 1 iterations C, C(n),..., C”- ’ (n).Sinceb+u~Rifandonlyifb-PER 
for bERC-(0) and ueRW, by the rank 2 classification Theorem 1.7, it 
follows that 7~” = rc - C’u exists as a base complement of RW adjacent to 
rr, that is, the entry differences all are roots! But then we have: 

r,,.(n)=n-C(-CC-‘a)=7c+u=d. 

Since rnnst E U(n) = U(S), it follows that U(S) acts transitively on the set of 
base complements 71’ adjacent to 7t. To see that W(S) u (S) (hence W(R)) 
acts transitively on all base complements n’ of R, recall from our discussion 
of base complements early in the section that for any classical complement 
S’ of RW with base x’, S has some base ii adjacent to x’. Taking f E W(S) 
such that f(n)=C, and rnn., E U(S) such that r,,,.(5) = n’, we have rnn,, 
f (x)x’ with rna,f E U(S)W(S) = W(R). Finally, we show that W(R) acts 
simply transitively on the set of base complements 71 of RW. For this, let 
f  E W(R) with fx = rr. We must show that f  = 1. Let S be the classical com- 
plement with base X. Write f  as f=fifi in W(R)= W(S)u(S) (fiE W(S), 
f2 E U(S)). Then f  S = S, fi S = S implies that f2S = S. But s, f*(s) E S with 
f2$) = ? implies f*(s) = s. Thus, f2 = 1 and f  = fi E W(S). But then fz = 71 
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implies that f= 1 by the “Theorem on Simple Transitivity of the Weyl 
Group on Simple Systems” for rootsystems of complex semisimple Lie 
algebras. 

We now consider the group Aut L of L = C, t R L,. Since no section of L 

is of type T,, each classical complement S of RW in R determines the group 
of automorphisms exp S of L generated by {exp t ad eb 1 h E R’ - {0), t E k} 
where L, = k eb (cf. the discussion leading to Definition 6.2). By the theory 
of algebraic groups, exp S is a closed connected subgroup of Aut L. By 
Seligman [3], exp SI Ls = (Aut L,),, the connected component of the 
identiy of Aut L,, where L, is the classical Lie algebra 
Cbe sP 1O) ([Lb, _ b] + Lb) (cf. Theorem 1.6). We observed in Theorem 6.3 
that Aut L has a subgroup N= N(L,) and surjective homomorphism 
N+ W(R)given by WH(WIL~)*~~ 1 R. It follows from Theorem 6.8 that N 
acts transitively on the set of classical complements S of RW in R. This 
implies, in turn, that N acts transitively on the subgroups exp S of Aut L (S 
a classical complement of R w  in R). We collect these conclusions in the 
following theorem. 

6.9. THEOREM. Let L = C,, R L, be a symmetric Lie algebra with no sec- 
tion T2. Let N = N(L,) and exp S (SE S, S the set of classical complements 
of RW in R) be as constructed above. Then N maps surjectively to W(R) 
under w-+(w~~)*~~ I R. Any two subgroups exp S, exp S’ (S, S’ E S) are 
conjugate by some element of N, provided that S have no irreducible com- 
ponent of type A,, (p I n + 1) and either p > 5 or p = 3 and E, is not an 
irreducible component of R. 
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