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Two very large classes GCAZ and CAZK of Lie algebras are introduced, which
contain all sums of classical, Albert-Zassenhaus, generalized Witt algebras of
Kaplansky and associated holomorphs. Their rootsystems R are classified up to
isomorphism. The group Aut L of automorphisms of L is shown to contain exten-
sions of the Wey! group of R and the inner automorphism groups of classical Lie
algebra complements of the Witt subalgebra of L. The Weyl group extension in Aut
L acts transitively by conjugation on the classical complements, under general con-
ditions.  © 1985 Academic Press, Inc.

1. INTRODUCTION

In Block [1], the class of (finite dimensional) Lie algebras L=3,. L,
over a field £ such that

(1) L=L?and Center L=0;
(2) dimL,=1and a([L,, L _,])#0 for ae R— {0}

is determined for characteristic p > 5 as follows.

1.1. THEOREM (Block [1]). A Lie algebra L=3,.rL, of characteristic
p > 5 satisfies conditions (1) and 2) if and only if L=L, ® --- @& L,, (direct
sum of ideals) and R=R, v -~ UR, where Li=3% , g 10y ([LaL _,]+L,)
and either L, is classical or L,;is Albert-Zassenhaus and R, is a subgroup of
ka; (a;e R;,— {0}) for each 1 <i<n.

1.2. DeFINITION.  Accordingly, we refer to a Lie algebra L=3,_:L,
satisfying conditions (1) and (2) as a classical Albert-Zassenhaus (CAZ)
Lie algebra with CAZ Cartan subalgebra L,. And we call a subset R of a
vector space V over k a CAZ rootsystem if R=R, v --- U R, where

* The author takes this oppurtunity to thank the University of Chicago for its hospitality
during his visit there 1982-1983 when this paper was written.
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1. each R, is a classical rootsystem (isomorphic to the rootsystem of a
classical Lie algebra) or an Albert—Zassenhaus rootsystem (additive sub-
group of ka; for some a;€ R) for 1 <i<n;

2. R,nR;={0} for i#j;

3. a,be R— {0} with a~b implies that a, be R; for some 1 <i<n,
where a~b if and only if a+beRora—beR.

The purpose of this paper is to study generalized classical
Albert—Zassenhaus GCAZ Lie algebras and GCAZ rootsystems in the sense
of Definition 1.3 below. Throughout the paper, k& is a field of characteristic
p>3.

Note that the class of GCAZ Lie algebras contains the class of CAZ Lie
algebras. It also contains the generalized Witt algebras of Kaplansky, as
well as algebras of derivations of extensions of classical Lic algebras. In the
definition, L! is the eigenspace {xe L|[h, x]=a(h)x for all he L,} and a
root is Witt if a, 2a,..., (p — 1)a are all roots.

1.3. DEFINITION. A Lie algebra L=3,.xL, is a GCAZ Lie algebra
with GCAZ Cartan subalgebra L if

1. a(LLL" ])#0 forae R—{0};

2. [L,L,=L,,,ifa b,a+beR— {0} where a+#b and either a or
b (or both) is Witt.

A subset R of a vector space V is a GCAZ rootsystem if R=Ru - UR,
where

1. each R;is G,+ §; where S, is a classical rootsystem or {0} and G,
is a Kaplansky rootsystem (additive subgroup of V) (1 <i<n);
2. R,nR;={0} for i#j;
3. a~b implies a, be R, for some i for all a, be R— {0}.
We also consider the class of CAZK Lie algebras of Definition 1.4. Note

that CAZ =« CAZK =« GCAZ, and that CAZK contains all direct sums of
classical, Albert—Zassenhaus, Kaplansky algebras by Proposition 2.1.

1.4. DEFINITION. A Lie algebra L=, L, is a classical Albert-
Zassenhaus—Kaplansky (CAZK) Lie algebra with CAZK Cartan subalgebra
L, if

I. a([LL, L', ])#0foraeR—{0};
2. [L,L,)=L,,,foralla,be R— {0} witha# +b.
A CAZK rootsystem is a union R=R, U - - U R, (irreducible component

decomposition) of classical rootsystems and Kaplansky rootsystems R..
For this paper, we need the following results on symmetric Lie algebras,
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those Lie algebras L=73,. zL, satisfying condition (1) of Definition 1.3;
and on Lie rootsystems, a class of vector subsets containing the class of
rootsystems of symmetric Lie algebras. A Lie rootsystem is a finite subset R
of a vector space V over k such that:

1. 0eR= —R;

2. for ae R— {0}, there exists a®e Hom, (V, k) such that a°(a)=2
and the corresponding reflection r (c) = ¢ — a’(c)a stabilizes all rootstrings
Ry(a)={b—ra,...,b+qa} =R (beR, ¢q,r maximal with 0<gq, r<p—1)
having fewer than p elements;

3. R=RYUR° where RV ={aeR|ais Witt} and R°={aeR|a is
classical }; where a root a is classical if RnZa={—a,0,a};

4. |Rya)|=1,p—1, 0rpforacRY —{0}, beR

In the following theorems, we assume that L=3",  x L, is a symmetric Lie
algebra and/or R is a Lie rootsystem over a field £ of characteristic p > 3.
Some of these and later theorems are concerned with sections Ra= Rn Za,
Rab=Rn(Za+ Zb), Rabc=Rn(Za+Zb+ Zc), etc., of R and sections
La=3% . raly, Lab=3 4 ranla, Labc=3 ;c gLy €tc., of L. The
irreducible components of R are the R, = (R,— {0})u {0} (1 <i<n) where
the R,— {0} are the equivalence classes of R— {0} of the equivalence
relation on R— {0} generated by the adjacency relation “a~b" defined by
the condition “a+be R or a—be R In particular, the irreducible com-
ponents of a GCAZ rootsystem R=R,u - UR, with R,=G,+ S, are
those R; for which G,# {0}, together with the irreducible components of
those R,= G, + S,= S, for which G,= {0}.

1.5. THEOREM (Winter [5]). R is a classical rootsystem (cf.
Definition 1.2) if and only if all roots in R are classical.

1.6. THEOREM (Winter [5]). The Lie rootsystem R is classical if and
only if the symmetric Lie algebra L=%,.p (0,([L,, L _,1+L,) is
classical.

We call the Z ,-dimension of ZR the prime rank of R.

1.7. TueoreM (Winter [S]). The sections Ra, Rab are isomorphic to:

. A4={—-1,0,1}, W=2Z, (irreducible, prime rank 1);

2. AvA, Av W, Wv W (reducible, prime rank 2);

3. Ay, By, Gy, WOW=W,, A®W, S,={i®jli+j#0 or
i=j=0}, T,=S,0A={i®j|i®j#0 or i= —j= +1 or 0} (irreducible,
prime rank 2).

1.8. THEOREM (Winter [5]). Let R be a Lie rootsystem which has no
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section of type T,. Then RV is a Witt rootsystem (Lie rootsystem whose
roots are all Witt) and for each be R°— {0}:

1. R has a splitting f at b, f> R— R such that f(R)3 b and
(i) f(a)=0 if and only if ac R¥;

(i) f*=f;

(i) f(a)° (f(c))=a’c) for all a¢ RV, ceR;

2. For any splitting f of R, S=f(R) is a classical rootsystem, called a
classical complement of R¥, and R< RY + S;

3. Any wwo splittings f, f' are uniquely isomorphic, that is, there exists
a unique isomorphism W:.f(R)— f'(R) of clasical rootsystems such that
Wi(c)—ce RY for all cef(R).

Although Part 1 of Theorem 1.8 follows from a corresponding extrinsic
result of Winter [5] stated in terms of a universal closure mapping R — R,
Parts 2 and 3 are not proved there. Accordingly, Parts 2 and 3 are proved
in Section 6, which is concerned with the action of Aut R on the set of
classical complements of RY.

1.9. TueoreM (Winter [5]). L, is one dimensional if a is classical.

1.10. THEOREM (Winter [4]). Let R be a Witt rootsystem and let
a,b,ce R— {0} with a~b~c and a +* c¢. Then Rab and Rac are both of
type W,. Moreover Rabc is either Rb@® (Rau Rc) of type WS (W v W),
or Si3(RavURc) of type S;(Wv W) where Si(RauRc)={rx+sy+
tz|(r+s+t#0)or (r+s+t=0and rt=0)} witha=x—y, b=y —z

1.11. THEOREM (Winter [4]). The irreducible sections Rabc of a Witt
rootsystem are of types W, W,, S,, WO W,=W;, W (W v W), WD S,,
S;={r®s®tek’lr+s+1#0o0rr=5s=1t=0}, S;(Wv W)={r@sDte
Klr+s+t#0 or (r+s+t=0 and rt=0)}, S:i(S,)=r®sDtek’|r+
s+t#0o0r (r+s+t=0and (s+1#0 or s=1=0))}.

In this paper, we generalize Theorems 1.10 and 1.11 as follows, and use
them to classify the rootsystems of GCAZ Lie algebras and CAZK Lie
algebras. These results are valid for characteristic p > 3.

THEOREM 4.6. Let R be a Lie rootsystem having no section of type T,
and let a,b,ce R— {0} with a~b~c and a + c. Then b is a Witt root and
Rabc is either R, @ (Ra v Rc), of type WD (W v W) or WS (W v A), or
Sy(Zav Z,)={rx+sy +iz|(r+s+t#0) or (r+s+t=0 and rt=0)}
witha=x—y, b=y —z of type S;(W v W).
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THEOREM 4.7. The irreducible sections Rabc of a Lie rootsystem R hav-
ing no section of type T, are of types A, W, A,, B,, G,, W,, S,, AW,
A;, Bs, Gy, WA, WDB,, WG, Wd(dvd), W,04,
WRWv A), Wy, WO(WVv W), W®S,, S5, Ss(Wv W), S5(T,).

THEOREM 3.1. R is the rootsystem of a GCAZ Lie algebra over a field k
of characteristic p>3 if and only if R is a GCAZ rootsystem over k.

THEOREM 3.2. R is the rootsystem of a CAZK Lie algebra if and only if
R is a CAZK rootsystem.

In Section 6, we then prove the following theorems about Weyl and
automorphism groups of R and L.

THEOREM 6.8. Let R be a Lie rootsystem with no section of type T,. Let
S be a classical complement of RY with base n, and let W(R), W(S), U(S)
be the subgroups of Aut R generated by {r,|be R°—{0}}, {r,|beS— {0},
{ryry.olbeS—{0}, aeRY, a+beR}. Then:

1. W(R)= W(SYU(S) (semidirect product with U(S) normal);,

2. WI(S) is isomorphic to the Weyl group of S under restriction to S,

3. WI(R) acts transitively on the set of classical complements S’ of RV
in R, provided that S have no irreducible component of type A,(p|n+ 1) and
either p> 5 or p=3 and E is not an irreducible component of R.

THEOREM 6.9. Let L=73,.xL, be a symmetric Lie algebra with no sec-
tion of type T,. Then AutL has a subgroup N={W,(t)|be R°— {0},
tek—{0})> and a surjective homomorphism N — W(R) given by w
= (w] 0)* ") g (we N). For each classical complement S of RV in R, Aut L
has a closed subgroup exp S such that exp S|, .= (Aut L)y, the inner
automorphism group of Ls=3%cs_0y([L,L_,] +L). Any two exp S,
exp S’ are conjugate under N (S, S’ classical complements of RY in R),
provided that S have no irreducible component of type A, (pln+1) and
either p>5 or p=3 and Eg is not an irreducible component of R.

2. KAPLANSKY ALGEBRAS L AND HOLOMORPHS Lgg ¢

Kaplansky [2] introduced the Lie algebra L; with basis
{(7,g)|iel, ge G} over k and multiplication

[G.g) G A I=hij,g+h)—g,li,g+h)

for any additive group G of functions from a set 7 to the fiexd k. These
algebras are the generalized Witt algebras of Kaplansky, which we refer to
as the Kaplansky algebras.
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We regard G as any additive subgroup of the vector space k” of functions
from I to k. Letting Ag =k[x“] be the group algebra of the multiplication
group x€ isomorphic to G under g x2, we may regard L as the Lie sub-
algebra A; T (Ag-span of T in Der 4 ) of the derivation algebra Der A4, of
Ag, where T is the k-span of ¢, (i e I), ¢, being the derivation t,(xf) = g,x? of
Ag (iel). In fact, {x8¢t;liel, ge G} is a basis for A;T and (i, g) x%t, is
an isomorphism from L, to A, T:

[ x%¢;, Xhl;'] =xg+h(hilj_g/'ti)'

A Cartan subalgebra of L;=A;T is kT, and the corresponding
rootspace decomposition of Lo=L is L=3},.; L, where L,=x*T and
g(t)=g; (iel, ge G). We call this the symmetric Cartan decomposition of
the Kaplansky algebra L, since L together with this Cartan decomposition
is a symmetric Lie algebra.

2.1. ProOPOSITION. Let L=3, . ;L, be the symmetric Cartan decom-
position of a Kaplansky Lie algebra. Then [L,, L,1=L,,, (g heG, g#h).
In particular, L is a CAZK algebra.

Proof. Let g#h. Then g,#h, for som i For such an i, we have
[x8t;, x"t,] = (h;— g)x* " "t, with h,— g, #0. It follows that [L,, L,] con-
tains x%* "¢, for all i such that g, # h,. Next, suppose that g;=h; and choose
i such that g,#h, Then g,+g,#h,+h;, and [x*(t;+1,), x"(1;+1,))}=
(hi+h,— (g, + g ))x* (1,4 t,) with h,+h,—(g,+g;)#0. It follows that
[L,, L,] contains x***(1,+1,). Since [L,, L,] contains x**"t, as well,
[L,, L,] contains x**"1,. We conclude that [L,, L,]1=L,.,. |

We next construct the holomorph L s corresponding to a finite sub-
group G of a vector space V over k and a classical rootsystem S over k. We
begin with a classical Lie algebra Lg=>, L, with rootsystem S; and
with a Kaplansky algebra L;=AgT=3 ,.5x*T with rootsystem G. We
view L, as an algebra of derivations of the algebra 4;=k[x“], and
L;®1 as an algebra of derivations of A;®Ly=k[x°]® L=
2eoaccesX* @ L, where (d®1)f®x)=d()®x for de L, (viewed as
derivation of A;), fe A;, x€ L. Finally, we define L=Lggc=Ls®1 +
Ae®Ls=Yoslewa Where Logo=T®1+ ® Ly, L,po=x*T®1+
x¥® Ly, L,p,=x*QL, (g€ G, ae R—0). Letting the product [x, y] be
[x,y]=xy—yxfor x,y e L;®1 (an algebra of derivations of A;® Ly),
[x,y1=2a,b;@[u;,v;] for x=3%a,Qu;,y=3bRv,e A;®Ls and
[x,y]=x(y)= — [y, x] for xeL;®1, yeAs® Ly, Lips=Ls®1+
As® Ly is the desired holomorph of the Lie algebra 4;® L with the sub-
algebra L;® 1 of the derivation algebra of 4,® L.

Proposition 2.1 leads directly to Proposition 2.2 below.
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2.2. PROPOSITION. L g is a GCAZ Lie algebra with rootsystem G@ S.

Note that Lggo/SolvLgg, is the Kaplansky algebra L, and
Log s/ Solv Lyg s is the classical Lie algebra Lg, where Solv L denotes the
solvable radical (maximal solvable ideal) of a Lie algebra L.

3. RootsysTEMs OF GCAZ AnND CAZK LIE ALGEBRAS

Throughout this section, L=3,. L, denotes a GCAZ Lie algebra. We
show in Theorem 5.2 that a Lie rootsystem R is GCAZ if and only if R has
no section of type S,, T,, W® (W v W), W® (W v A). Using this result,
we now determine the rootsystems of GCAZ Lie algebras as follows.

3.1. THEOREM. R is the rootsystem of a GCAZ Lie algebra over a field k
of characteristic p>3 if and only if R is a GCAZ rootsystem over k.

Proof. Suppose first that R is a GCAZ rootsystem over k and
R=R,u -+ UR, (irreducible component decomposition) with
R;=G;+ S, where G, is a subgroup of a vector space ¥ over k and S, is a
classical rootsystem or {0} (1<i<n). Then R is the rootsystem of the
GCAZ Lie algebra 3 ® L, , ,, where L , ¢ is the holomorph discussed in
Proposition 2.2.

Suppose, conversely, that L=3", .z L, is a GCAZ Lie algebra with root-
system R. We claim that R is a GCAZ rootsystem. By Theorem 5.2, it suf-
fices to show that R has no section of type S,, T, W@ (W v W),
W@ (W v A). Suppose first that R has a section Rab of type S, or T,.
Then Rab contains Witt roots v, w such that

. v—wé¢Rand 2(v—w)¢R;
2. 2v—w,3v—w, 3v—2we R

Define u=w+ 2(v—w) and note that u, v, u+v, u+v—w are all Witt
roots. Conditions (1) and (2) on v, w together with the hypothesis
[L..L]=L..; (e,dc+deR—- {0}, c#d, ¢ or d Witt) implies that
L. w=I[LiwLl 1 =1I[L,L]L_.] < [[L.L_,]L] +
[L..[L,.L_,]]<[L,_..LJd+ [L,,L,—w]. But the extreme right-
hand term is {0}, because v—w¢R and u—w=2(v—w)¢ R It follows
that {0}= L,,, ,.=Ls, _,,, which is impossible since 3v —2we R by
condition (2). We conclude that R has no section of type S, or T,.

Next, consider a section Labc= Y,  gu. Ly corresponding to a section
Rabc= R (Za+ Zb + Zc). Suppose that Rabe is of type W@ (W v W) or
type W@ (W v A4). Then we may assume with no loss of generality that the
generators a, b, ¢ are chosen such that Rabc is Z ,(a+b)+(Z,a v Z,c) or
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Z,,(a+b)+(Zpav{—c,O,c}). In both cases, we have a,b,c,a+b,
a+b+ceRwitha+b#0, a+cé¢R, b+ c¢ R It follows that:

[[La’ Lb]’ Lc] < [[La’ Lc]7 Lb] + [Lw [Lb’ Lc]] = {0}

so that [[L,, L,], L.]=0. It follows that a= + b or ¢= + (a+b), since
otherwise the conditions [L,, L,]=L,. s, [Loss, Lel=L,4s,. imply
that {0}:[[LasLb]a Lc]z[La+b’Lc]=La+b+c and La+b+c={0}’
which contradicts a+ b + c€ R. Note here that the conditions assumed in
the foregoing argument, namely, a,b,a+be R— {0} witha#b and a or b
Wittand a+b, c,a+b+ce R— {0} with a+b#c and a+ b or ¢ Witt, are
indeed met.

We conclude that R has no section of type S,, T,, W®(W v W),
W® (W v A), so that R is GCAZ by Theorem 5.2. |

3.2. THEOREM. R is the rootsystem of a CAZK Lie algebra if and only if
R is a CAZK rootksystem.

Proof. One direction follows from Proposition 2.1. For the other, let
L=Y,.xL,be a CAZK Lie algebra with rootsystem R. By Theorem 3.1,
the irreducible components of R are R,=G,;+S; (1 <i<n). It suffices,
therefore, to show that G,= {0} or S,= {0} for all i. Suppose, to the con-
trary, that G,2g #0, S;35s#0 for some i. Then Rgs= Rn(Zg + Zs) is of
type W@A:  Rgs=(G,+S)n(Zg +Zsy=2Zg+ {—s,0,5}.  Since
+g=s+g—s, we have L,=[L,,,,L ], L_,=[L,_,, L_,] so that
(L oLl oL (Lo b 1Ly LoJ+ Lo L i)
Taking h, e [L" ,, L!] with a(h,) =2, and noting that [L _,, L,]=kh, for
a classical (ae R°— {0}), by Theorem 1.9, we have h, e kh, +kh,_, since s
and s — g are classical. But g(h,) =2; whereas g(h,)=5%g)=0, g(h, )=
(s—g)%(g) =0, since s, s — g are classical and g Wittin Z, g + { —s, 0, s}. by
examinination of the strings R (s) and R,(s —g), stable under r, and r,_,,
respectively. Thus, 2=0, a contradiction. It follows that G,={0} or
S;={0} for 1<i<n |

4. LiE ROOTSYSTEMS OF PRIME RANK AT MosT 3

Throughout Section4, R is a Lie rootsystem having no section of
type T,. It follows from the the rank2 classification that
Rab=Zav {—b,0,b} or Za+ {—b,0,b} for any nonzero roots a, b with
a Witt and b classical. For such a, b, it follows that »°(a)=0, since
R, (b)={a} or R(b)={a—b, a, a+b} in the above two cases, and
r,(a)=a in each case. In particular, a + b is classical for any nonzero roots
a, b with a Witt, b classical, and a+beR, since Ra(a+b)=Rab=
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Za+ {—(a+b),0,a+b}. And, consequently, we then also have
(a+ b)°(a) =0 by our remarks above.

We claim for aeRY—{0}, beR°—{0} and a+beR that
Furass(c)=c—b%c)a for all ce R. To see this, we consider the Z — closure
map a+— & of Winter [5, Sect. 4]; and we first observe that 4+56=5#0
and (a+b)°(c)=(a+5)°(¢)=8°)=b"c), by Theorem 1.8. It follows
that R,(c)=c—b%c)b, r,, s(c)y=c—(a+b)°(c) (a+b)=c—b%c)a+b)=
c—b%c)p—b(c)a=ry(c)—b"c)a. But then r,r,,,(c) = ryry(c)—
b°(c)a)=c—b°c)a. We now formulate these observations for future
reference.

4.1. PROPOSITION. Let a and b be nonzero Witt and classical roots,
respectively, in a Lie rootsystem R excluding T,. Then:

1. Rab=Zav {—b,0,b} or Za+ {—5,0,b};
2. b%a)=0;
3. rpra,s(c)=c—b%c)a for all ce R, provided that a+ be R.

Let ae RV — {0}, be R“*— {0}, a+beR, ce R with °c)+#0. Then R
contains r,r,, ,(c)=c—b"%c)a, by Proposition4.1, so that a~c by the
rank 2 classification and the observation that 6°(c) #0. We state this for
future reference.

4.2. PROPOSITION. a€ R™ — {0}, beR°— {0}, a+beR, ceR with
b°(c)#0. Then a~c.

We let b~ c represent the condition #°(c) #0. Note that hxc implies
b~c, by the rank 2 classification, so that ~ is a strong version of ~. Then
Proposition 4.2 above shows that a~b=~c implies a~c for ae RY — {0},
beR°— {0}, ce R—{0}.

Since R has no section of type T,, we know from Theorem 1.7 that
R<RY + S where S is any classical complement of RY. Moreover, any
two such S are isomorphic.

Let a,,..., a, be a base for a classical rootsystem S over k.

4.3. DEFINITION. We let det S be the determinant of the Cartan matrix
(af (a;)) over k. We say that S is nonsingular if det S #0.

The following proposition is evident from examination of the Cartan
matrices of the irreducible classical rootsystems 4, B,, C,, D,, E,, F,,
G,.
4.4. PROPOSITION. A classical rootsystem S is nonsingular if and only if
no irreducible component of S is of type A, (pln+1) and either p>5 or
p=>5 and Ey is not an irreducible component of S.
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4.5 PROPOSITION. Let S be a nonsingular classical subsystem of R. Then:

1. kR nkS={0} where kR¥, kS are the k-spans of R¥, S, respec-
tively;

2. Prime Rank R’'>Prime Rank RY + Prime Rank S and Rank
R’ >Rank RY + Rank S where R’ is the subsystem of R generated by R™,
S.

Proof. Clearly 1 implies 2. For 1, let a,,..,a, be a base for S and let
d=Y"_,da,;bein kRY. We must show that d=0. Since R excludes T,, we
have a? (RY)=0, by Proposition 4.1, so that a? (d)=0 for 1<i<n. But
then }7_, d;a} (a;) =0 for 1<j <n. Since det S#0, it follows that d;=0
for 1 €i<n, so that d=0, as was to be shown. |

It is not known whether there exists a Lie rootsystem R with no section
of type T, having a classical subsystem S with kRNkS # {0}.

We now can extend the transitivity Theorem 1.10 for Witt rootsystems to
Lie rootsystems having no section of type 7T,.

4.6. THEOREM. Let a, b, ¢ be nonzero elements of R. Assume that a is a
Witt root and that a~b~c with a~c. Then b is a Witt root and Rabc is
either Rb@(Rav Rc), of type WO(Wv W) or W®(Wv 4), or
Sy(Zav Zb)={ix+jy +kz|(i+j+k#0) or (i+j+k=0 and ik=0)}
witha=x—y, b=y—z, of type Ss(W v W)

Proof. Suppose first that b is classical. Then b%c)=0, by
Proposition 4.2. Since b is classical and b~c, Rbc is classical or
Rbc={—b,0,b}®Zd for some deR, by the rank 2 classification. This
together with the condition on 5°(¢c) imply in all cases that R.(b)=
{c—b,c,b+c}. We then have a~b~(b+c) with b%b+c)=
bO(b) + b°(c)=2+0+#0, so that a~(b+c) by Proposition 4.2. It follows
that a~(b+c)~c. Since b°(b+c)#0 implies that b+c is classical, by
Proposition 4.1, we conclude that (b+ c)%c)=0; for otherwise
(b+¢)°(c)#0 implies that a~c, by Proposition4.2, a contradiction.
Replacing b by b+ c in the foregoing arguments, we may then conclude
similarly that R.(b+c)={—b,¢,b+c}, a~(b+c)~(b+2c) with
(b+¢)°(b+2c)=2 and b+ 2c classical. Thereby, we have now generated
classical roots b—c, b, b+ ¢, b+ 2¢. Moreover, we may continue to repeat
the argument: a~ (b + 2c), by Proposition 4.2, so that a~(b+2c)~ and
a 4 ¢ implies that (b +2¢)°(c)=0and R.(b+2c)={—b, —c,¢,b+3c} by
Proposition 4.2. But this implies that R,(c)>{b—c, b, b+c, b+2c,
b+ 3c}. (In fact, continuing repetition of the argument leads to continuing
increase in estimated length—which is an observation which enables one to
draw the conclusion in the next sentence also for generalized Lie root-
systems corresponding to nonsplit versions of symmetric Lie algebras.) We
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conclude that ¢ is a Witt root, by inspection of the possibilities for Rbc
given in the rank 2 classification. (Classical orbits have at most four
elements.)

We have Rabc>Rabu Rbe=(Za+ {—b,0,b})0({—5,0,b}+2Zc)=
{—5,0,b)} 4+ (Za v Zc), since b is classical and a, ce RY — {0}. Note that
{—=b,0,b}+ {Za v Zc) is not a Lie rootsystem:

1. (a+5)°(b)=0 by Proposition 4.2;

2. 2=(a+b)°(a+b)=(a+b)’(a), by 1;

3. Rja+b)y={—b,a,2a+b}, so that r,, (a)=a, (a+b)°(a)=0,
in contradiction to 2.

It follows that R has an element d=ra + sb + tc e Rac with r, s, t # 0, since
Rac=Ra v Rcc Rab U Rbe. Suppose first that some such d is a Witt root.
Then Rad is of type S, or W,, by the rank 2 classification, since the other
possibility W @ A cannot contain two linearly independent Witt roots a, d.

Since b~c with b classical and ¢ Witt, Rbc={—5,0, b} + Zc, so that
b+(t/s)c is a classical root of R. But this is impossible, since then Rad,
which is of type S, or W,, contains the classical root
b+{(t/sYe= —(r/s)a+ (1/s) (ra+ sb + tc).

Since the assumption that b is classical leads to the contradiction above,
we conclude that b is a Witt root. Suppose first that ¢ is also a Witt root.
Then a, b, ¢ are in the Witt subsystem R” = {xe R|%=0) and Rabc is a
Witt rootsystem, by Theorem 1.8. But then the assertion of Theorem 4.6
follows form Theorem 1.10.

We may now assume that a, be RY — {0} and ce R°— {0}, and we take
R = Rabc. Since a, be RY, RY has prime rank > 2. Taking a classical com-
plement S containing ¢, by Theorem 1.8, we have R RY + S with 3>
prime rank RY + prime rank S, by Theorem 1.8. We conclude that
RY=Rab and S={—c,0,c}. Suppose a’(h)#0. We have b+ ce Rbe,
since b~c¢ implies that Rbd is of type W@A. Since
ab+c)=a’(b)+0#0, we have a~b+c~c. In Rbc, we have
(b+¢)°(c)#0, since Rbc=Zb+{—c,0,c} and R(b+c)=
{—2b—c, —b, c}. Since b+ ¢ is classical, we then have a~c¢ by Proposi-
tion 4.2, a contradiction. We conclude that a°(h) =0. Since a~ b, it follows
from the rank 2 classification that RY = Rab = Za + Zb.

We have Ro(Za+ Zb)u(Zb+ {—c,0,c})= Zb®(Zav {—b,0,b}).
If the conclusion is equality, then R is of type W@ (W v A) and the proof
is complete. Suppose, to the contrary, there exists a root
d=ra+sb+tce R with r, 1 #0. Then s#0, since a £ ¢; and we may take
t=1, since de RY U { —¢, 0, c}. But then we have d classical, since d¢ R",
and d~c since d—ceZa+Zb. Thus, Red is of type W@ A, so that
Red=Z(ra+sb)+ {—¢,0,c} and R.(d)={—2(ra+sb)—c, —(ra+ sb),
c}. It follows that d°c)#0 and d~c with d classical. Since

481/97/1-13
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a’(b)y=a"%c)=0 and a°d)=ra’(a)+ sa®(b)+a’(b)=2r, we then have
a~d=c with d classical, so that a~c¢, a contradiction. Thus ¢ cannot be
classical, and the proof is complete. |

We next extend the classification of Witt rootsystems of prime rank three
to Lie rootsystems with no section of type 7.

4.7. THEOREM. Let R be an irreducible Lie rootsystem excluding T, of
prime rank 3. Then R is isomorphic to exactly one of the following:

R¥ of rank 0. A,, Bs, C; (classical rootsystems);

RYofrank 1. W®A,, W®B,, WG, W®(A v A);

R¥ofrank2. W,®A4, W (W v A);

RYofrank 3. W,, W® (W v W), W®S,, S;, Ss(W v W), S5(S,)
(Witt rootsystems).

Proof. For R= RY, our assertions follow from Theorem 1.10. For
R =R® R is a classical rootsystem, by Theorem 1.5, and our assertions are
again clear. Thus, we may assume that R%Y # {0} and R™ # R.

Since R has no section of type T,, we have R R U S where S is a
classical complement, by Theorem 1.8. By Proposition 4.5, we have 3>
prime R> prime rank R™ + rank S>1+1=2. Thus, RY and S are both
of prime rank 1 or 2. It follows from Theorem 1.7 that RY is onc of W,
Wy W, W,, S,. We now consider each of these cases.

Suppose first that R = W = Za. Then rank S=1 or 2. If rank S=1 and
S={-b,0,b}, we have R=Rab=Zav S or Za+S, by the rank2
classification. Let rank S =2. We claim that R=Za@®S. For this, it suffices
to show that Rac=Za+ { —¢,0,c} for any ce R— R¥. By Theorem 4.6,
the latter is equivalent to showing that a~ ¢ for all ce R— RY. Suppose, to
the contrary, that ce R— R"Y and a # c. By the irreducibility of R, we can
find b, e R— {0} (1 <i<n)such that a~b,~ -+ ~b,~c. From among all
possible choices of ce R — RY and consequent b, with a £ ¢, take ¢ so that
n is minimal. By the minimality of #, no b, is in Za (1 <i<n), for otherwise
we could use the shorter chain a~b,, ;~b, ,~  ~b,~c; and a~b, for
1 <i<n, for otherwise we would have a £ b, for some i, and we could take
b,=c with shorter chain a~b,~ - ~b,_,~c. Finally, we now have
a~b,~c, that is, n= 1. Writing b=5,,, we have a~b~c with b, ¢ clasical
and a + c¢. But this is impossible, by Theorem 4.6. We must conclude that
a~c, as asserted.

Suppose next that R =W v W=Za v Zc. Then 3> prime rank
RY +rank S+ 2+ rank S implies that rank S=1 and S=A4={-5,0, b}
for some b € R. By the irreducibility of R, it follows that a~ b~ c. Since a is
Witt and b classical, we then have a~ ¢, by Theorem 4.6, contrary to our
hypothesis that RY = Rac=Za v Zc.
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Suppose next that RY=W,=ZA+7Zb for any Z ,-independent
a,be RY. Since 3> prime rank RY +rank S=2 + rank S, we have rank
S=1 and S=A4={-¢0c}. Thus, R<RY+S=W,+4, by
Theorem 1.8. By the irreducibility of R, we have b~c for some be RV,
If a~c for all aeRY—{0}, then RY+{—c0,c}cR since
Rac=Za+ {—c,0,c} for all ae RY — {0} such that a~c. In this case, we
then have R=RY + {—¢, 0, ¢} and R is of type W,@® 4. Otherwise, there
exists ae R — {0} with a~b~c and a £ ¢, b being the element of RV
chosen above. But then R is of type W® (W v 4) by Theorem 4.6.

Finally, suppose that RY=S,. Then 3> rank RW+4rank S=
2+rank S, so that rank S=1and S=4={—¢,0, ¢} for some ce R— R".
By irreducibility of R, we have b~ for some be RY — {0}.

Suppose that there exists ae RY — {0} such that a £ ¢. Then a~b since
a,be RY — {0} and RY is of type S, so that a~b~c and a £ c. It again
follows from Theorem 4.6 that R is of type W® (W v 4). But this is
impossible, since RY is of type S,. We conclude, therefore, that a~ ¢ for all
ae RV —{0}. Since Rac=Za+{—c,0,c} for all such a, it follows
that R=RY+{—¢,0,c}=S,+4 where A={—¢0,c} and §,=
{ia+jbli+j#0}. Since R has no section of type 7,, we have
Z,8,nZ,A={0}, by Proposition 4.5. (Note, however, that there is a Lie
rootsystem {ia+jbli+j#0}+ {—d,0,d} with d=a— b, namely, the Lie
rootsystem 7,.) Thus, we may take a, b, ¢ to be linearly independent over
Z,, and we write R=S,@® A to indicate the independence. But then R is
not a Lie rootsystem. To see this, note that if R is a Lie rootsystem, then b
is a Witt root and a + ¢ is classical with b+a+ceR and ~b+a+cé¢R.
But this cannot happen in a Lie rootsystem, since the rank two
classification implies that Rxy=Zx+ {—»0,y} for xeR" - {0},
yeR°— {0}, and x + ye R. We therefore have reached a contradiction, so
that the assumed case R™ = S, never occurs for irreducible Lie rootsystems
excluding 7, of prime rank 3. |

5. CHARACTERIZATION OF GCAZ AND CAZK ROOTSYSTEMS

The proofs of Theorems 3.1 and 3.2, which classify the rootsystems of
GCAZ and CAZK Lie algebras, depend on Theorem 5.2 below, which
characterizes GCAZ rootsystems. We now establish Theorem 5.2.

We begin by noting that Theorem 4.6 has the following direct con-
sequence.

5.1. THEOREM. Let R be a Lie rootsystem having no sections of type S,,
T, We(Wv W), WO(Wv A), and let a, b, ce R— {0} with a Witt and
a~b~c. Then a~c.
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5.2. THEOREM. A Lie rootsystem R is a GCAZ rootsystem if and only if
R has no section of type S,, T,, W® (W v W), WS(W v A).

Proof. One direction is trivial. For the other, assume that R has no sec-
tion of type S,, T,, W® (W v W), W® (W v A). By Theorem 1.8, we
have Rc G + S where G=RY and S is a classical complement of RY. By
Theorem 5.1, g~h is an equivalence relation for G — {0} with equivalence
classes G, — {0},-, G,,— {0}. Since Rgh=27Z,g+ Z,h for g, he G,— {0},
G,=G,— {0} u {0} is a group for I <i<m. Let §;,={seS—{0}|g~s for
some geG;,—{0}}u {0} (1<i<m). Note that seS,— {0}, reS— {0}
and s~ implies re€S;— {0}, by Theorem 5.2. Thus, S, is a union of
irreducible components of S and S; is a classical rootsystem (1 <i<m).
Consequently, S=S,u .- uUS,,uS,, ;v - US, where S, ;... S, are
the irreducible components of S not contained in any S, (1 <i<m). Take
geG;—{0},5eS;,—{0}. Note that g~s, by Theorem 52, so that
Rgs=7,+ {—s,0,s}, by Theorem 1.7. It follows that g+se R for ge G,
seS;, that is, R contains G;+ S, But then R=G, +S,u- v
G,+S,vS,. .1 uUS,, which completes the proof. |

6. THE WEYL GROUP OF L:
CONJUGACY OF CLASSICAL COMPLEMENTS UNDER THE WEYL GROUP

Throughout this section R denotes a Lie rootsystem which has no sec-
tion of type T, and L denotes a symmetric Lie algebra with rootsystem R.

By Theorem 1.8, Part 1, we know that R has a splirting f at any
be R°— {0}, that is, a homomorphism f: R — R such that b€ f(R) and:

(i) f(a)=0 if and only if ac RY;

(i) f*=f

(iii) f(a)°(f(c))=a’(c) for all a¢ R¥, ce R.
We now prove Parts 2 and 3 of Theorem 1.8. For this, let S=f(R) and
consider any f(a),f(c)eS—{0}. Then we define ry,(f(c))=
fc)—a®(c) fla)=f(c—a’(c)a)=f(r,(c)). Tt follows easily that ry,
stabilizes all rootstrings R, (f(a)) of fewer then p elements. To show that
S is a classical rootsystem, it therefore remains only to show that all roots
in § are classical, by Theorem 1.5. But if f(b)e S is not classical, then
f(b)e RY implies that 0= f f(b)=/>(b)=f(b) and f(b) =0. We claim next
that RcRY+S. Take beR—RY and let a=f(b). Then f(a)=
S2(b)=f(b) #£0, so that a¢ R and 2 = f(a)’(f(a)) =f(a)° (f(b)) = a’(b). It
follows that b—aeR But then f(b—a)=f(b)—f(a)=0, so that
b—ae RY. This implies that b=(b—a)+aeR¥ +f(R)=R" +S. This
proves Part 2 of Theorem 1.8. For Part 3, let ff R— R and f: R— R be
splittings and consider the corresponding classical complements S =f(R)
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and S’ =f"(R) of R¥. Consider the Z-closure mapping A : R — R of Win-
ter [5]. It is shown there that R = {ae R|a=0}. Since R* = Hom (R, Z)
contains S°= {a*|aeS— {0}}, the set of Cartan integer functions a*(b)
(beS) of the classical rootsystem S, it follows as in the proof of
Theorem 1.5 that the restriction of A to S is injective. Since R™ =0, it
follows that =R and ~ maps S isomorphically to R, also as in the proof
of Theorem 1.5. Similarly, ~ maps S’ isomorphically to R. It follows that
there is an 1somorphism w: S — S such that b= wf\) for all »e S. But then
BO(w(B)) = B(w(b))=b6°(5)=2, so that w(b)—beR. It follows that
w(b)—be RV, since w( )—5=0. To see that w is unique, take a base
S1,--5, for S and let s; =w(s;) (1 <t<n) Let w: S — 8’ be an isomorphism
with w(b)—be RV (beS) and let s/ =w(s;) (1<i<n). Then § =45/
implies that s;=s; (1<i<n), so that w=1w. This proves Part3 of
Theorem 1.8.

Our hypothesis that R have no section of type 7, implies that for any
be R— {0}, aeR with b classical, the Cartan integer b*(a) = q — r defined
by the a-orbit R,(a)={b—ra,...b+qa} of bis 0, -1, -1, -2, =3,0,
0, —2in all p0551ble types A v 4, 4,, B, long, G, long, B, short, B, short,
wv A, w+ A mixed, w+ A classical. Here, we take the values b*(a) from
Fig. 1 of Winter [5]. It follows that R,(a) has fewer them p elements for all
ae R, so that r, € Aut R with r, uniquely determined by & for be R— {0},
b classical. This makes possible the following definition.

6.1. DeFiNITION.  The Weyl group of R is the group W(R) generated by
{r,|be R— {0}, b classical }.

Taking p>7 so that (p—1)/2 24> | R,(a)| for all be R— {0} classical
and all aeR, and taking xeL,, be R— {0}, b classical, the series
expad x=1+ad x + (ad x)*/2! + ... terminates at or before the (p—1)/2
power. Since ad x is a derivation, it follows that expad xe Aut L. We let
wy(t)=expad te,exp—ad s 'e_,expadteb where rek— {0}, e, eL,,
e_,eLl_,, b([e,, e_,])=2. Sincedim L, ,=1for be R— {0}, b classical,
by Theorem 1.9, all possible choices for e¢,, e_, are accounted for by
including the parameter t#0: L,={re,|tek}.

6.2. DEFINITION. The Weyl group of L=3 ,. gL, is W(L)=N(Ly)/
No(L,) where N(L,) is the group generated by {W,(¢)|be R— {0}, b
classical, ek — {0} } and Ny(Lo) = {we N(Lo)|wL, =L, for all ae R}.

We have generated a group N(L,) of automorphisms of L, and it is
easily checked that the generators w,(¢) satisfy:

1. W,(t) normalizes L;
2. the adjoint W,(£)* of W,(¢)|,, is r,, that is, W, (t)*(a)=
ry(a)=a—b’a)b (be R— {0}, b classical);
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3. WL,=L,.-,(weN(Ly))and W,(s)*W,(t)*L,=L,(be R~ {0},
b classical, a € R).

Consequently, the mapping Wi W* ~'| z is a homomorphism from N(L,)
onto W(R) with kernel No(L,), that is, W(L) and W(R) are isomorphic.

6.3. THEOREM. The Weyl group W(L)= N(Ly)/Ny(L,) of L is isomorphic
to the Weyl group W(R) of R, where the isomorphism is induced by
wiw* 1| R (we N(Ly)).

Since the Weyl group W(R) lifts to the group N(L,) of automorphisms
of L, by Theorem 6.3, conjugacy of subsets of R under W(R) implies con-
jugacy of associated subsets of L under Aut L. We now pursue such con-
jugacy where the subsets of R are the classical compliments S of RY of
Theorem 1.8 and the associated subsets of L are the classical Lie algebra
complements L .=3% .5 0,([Ly, L_,]1+ L,) of the Witt Lie subalgebra
LY =%, rwLa. RY being the Witt rootsystem {ae R|a is Witt}.

We now take two classical complements S, S’, of RY in R. Let s,,..., 5, be
a basis for S (as classical rootsystem). By Part 3 of Theorem 1.8, proved
earlier in this section, there exists an isomorphism w:S— S’ such that
w(b)—beRY for all be S. Let s, =w(s;) (1<i<n), so that a,=,4,5, — s, 1s
in RY for 1 <i<n. It follows that @, +s,,.., a, + s, is a basis for S’". Con-
versely, if a,,.., a,€ RY and s, +a,,..., s, + a, € R, then it can be shown as
in Winter [5] that there is a classical complement S” with base
a, +S8,.,0a,+s, and isomorphism from S to S” mapping s; to a; +s;
(1<i<n). Thus, relative to one fixed classical complement S with base
S15 Sy, the other classical complements S’ are determined by

1. elements a,,..,a, € RY such that a, +s,,..,a,+5,€R;
2. the corresponding defining condition s'€S’ if and only if
s'=>"7_myfa; +s;) where s=37"_,m;s; is in S.

We now discuss passage from the base n = {s,,..,s,} of S to the base
= {81, 5} (S1=0; + 81,0, S, =a, +s,) for a given S’" by an element of
W(R). Our starting point is the pair of equations of Proposition 4.1 for
Witt roots ae RY and nonzero classical roots be R°— {0} with a+be R:

Fotaip(c)=c—b%c)a (ceR)

po(c) =0 (ce R¥).

6.4. DEFINITION. r, ,(c)=c—b%c)a (a, b, ce R, b#0).

A base = (s;,..., 5,)° of a classical complement S of R¥ is called a base
complement of RY. Given two base complements 7n=/(s,..,s,),
' =(s),.,5,) of RY, n and n' are adjacent if n’'=a+n for some
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a=(a,,..,a,) with aq,e RY for 1<i<n For such adjacent base com-
plements n, n’ of RY, we define:

rmt' = rs,,,u,, e rsl,al .

The equations r,r,, ,(c)=c—b%ca=r, ,[c) lead to the recursive family
of equations:
ral, xl(i) = si_ s(])(si)al
Farsolaps S1(8:) =5, —57(s,)a, — 59 (5,)a,

azsz’ ap?

r ceep

AnySn @,52

ru|31(si) =8 S(l) (s))a; _5(2)(31‘)‘12 — “SS (s9)a,.

Replacing s; by the column vector m=(s;,..,s,) in the last of these
equations, we have

5 Sy 5?(51)5(2)(51)"'32(51) a,

an’

Sp sn s(l)(sn)s2(sn).”sgsn) an

where r . acts coordinate-wise on the entries s;. We rewrite this as
Fap() =1 — (s} (s))(n' — 1)

where (s2(s;)) is the Cartan Matrix of the base = for the classical root-
system S.

We need the following proposition, which applies to Lie rootsystems R
having no sections of type T, and nonzero classical roots b of R.

6.5. PROPOSITION. Let R be a Lie rootsystem, fe Aut R, be R— {0}.
Suppose that all b-orbits R (b) (c € R) have fewer than p elements. Then:

L f(6)°(f(c))=b"(c);
2. frof i= Tripy-

Proof. R,(c)={c—rb,.,c+qb} uniquely determines b°(c) as r—gq.
Thus, 1 follows from the equation f(R,(c))= R,u)(f(c)). And 2 then
follows from the equations f(ry(c))=f(c—b%c)b)=f(c)—b%c)f(b)=
F)=fBY(Sf () f(B)=rspy(f(c))- 1
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6.6. COROLLARY. Let R be Lie rootsystem having no section of type T),.
Letae RY, be R°—{0}; and let n, n’ be adjacent base complements of RY.
Then

L froof ' =10 sy and
—1
20 fran ST = rmyrin)

for any f e Aut R.

We are now ready to prove the main theorem of Section 6, which we
state using the following definition.

6.7. DEFINITION. For any X< R°— {0}, ry={r,|be X}, W(X) is the
group <ry> generated by ry and U(X) is the group generated by
{ro.lbeX, aeRY, a+beR}.

Note that W(n)= <r, > normalizes U(n) for any base complement 7 of
RY, since

L. ryry oty =ru 0 and ry,, €S, where S is the classical com-
plement of R¥ with base n and b, b’ € S, ; and

2. the restrictions W(n)|s , W(S,)|s, both coincide with the Weyl
group of S (by the “Theorem of Generation of the Weyl Group by Simple
Reflections” for rootsystems of complex semisimpie Lie algebras).

It follows that W =, W(n)U(x) is a subgroup of Aut R where U(rn) is a
normal subgroup of W and W(xn)| s, is the Weyl group of the classical root-
system §,.

Recall from Proposition 4.4 that a classical rootsystem S is nonsingular if
and only if no irreducible component of S is of type 4, with p|n+ 1 and
either p> 35 or p=3 and E; is not an irreducible component of S.

6.8. THEOREM. Let R be a Lie rootsystem with no section of type T,. Let
S be a classical complement of RY with base w. Then:

1. W(n)=W(S) and restriction W(S)— W(S)|s is an isomorphism
from W(S) to the Weyl group of the classical rootsystem S;

2. U(n)=U(S), U(S) is normalized by W(S), W(S) A U(S)=1, and
W(R) = W(S)u (S) (semidirect product);

3. if S is nonsingular, W(R) acts simply transitively on the set of base
complements ' of RV and, therefore, transitively on the set of all classical
complements of RV,

Proof. For 1, it suffices, by the discussion preceding the theorem, to
show that W(S)— W(S)| s is injective. Thus, let we W(S) with w(s)=s for
all se S, since we W(S) and W(S)= W(n) is generated by r, (ber) with
ry(a)=a for all ae R¥. Since R< RY + S, by Theorem 1.8, it follows that
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w(a+s)=w(a)+w(s)=a+s for all a+ se R. Thus, w=1, as asserted. For
2, observe that U(n) is normalized by W(n)=w(S), by the discussion
preceding the theorem. Let beS— {0}, ae RY with a+beR By a
theorem on rootsystem of complex semisimple rootsystems, there exists
fe W(S)= W(n) such that f(b)en. But then f(a)=a, by Proposition 4.1,
and  fr, f '=r/s .€U(n), by Corollary66. This proves that
U(n)=U(S). To see that W(R)= W(S)u (S), observe that the generators
ry (b'e R°—{0}) for W(R) can be written as r, =r,,, (b'=a+b with
ae RV, be R°%), by Theorem 1.8, so that r,r, =r,r,, ,=r, , € U(S) and
ry € W(S)uw(S). Thus, W(R)= W(S)u(S). Finally, let we W(S)n U(S)
and let seS. Then w(s)e S, since we W(S), and w(3) =35 since we U(S).
Since S — S is injective, it follows that w(s)=s for s € S. By Proposition 4.1,
w(a)=a for all aeRY. Since RcRY + S, it follows that w=1 and
W(S) A U(S)=1. For 3, suppose that S is nonsingular, that is,
det (S7(s;)) # 0 (modulo p). We claim firstly that U(S) acts transitively on
the set of base complements n' of R™ which are adjacent to n. Letting
a=7'—n="(8,m 8,) — () 5,)' = (ay,...a,)" with a,e RY (1<i<n), we
know from our earlier discussion of r,,, that the base complement =’
adjacent to m leads to a new base complement r,.(n)=m— (s?(s;))a. The
Cartan matrix C = (s{(s;)) is, by our hypothesis, a nonsingular element of
the finite group g1,Z,. Letting C(n)=r,, (n)=n—ca for #'=n+a, and
iterating, we have C'(n')=n+ (—1)'C'a, where C(n’) is “ith iterate” and
C'a is “matrix product.” Letting m be the order of C in G1,Z,, we conclude
that a base complement 7+ C 'a of RY adjacent to = is reached after
m— 1 iterations C, C(xn),.., C"~'(n). Since b+ae R if and only if b—aeR
for be R°— {0} and aeRY, by the rank 2 classification Theorem 1.7, it
follows that n” =7 — C ~'a exists as a base complement of R¥ adjacent to
, that is, the entry differences all are roots! But then we have:

rea(M)=n—C(—C 'a)y=n+a=n"

Since r,,- € U(n) = U(S), it follows that U(S) acts transitively on the set of
base complements n’ adjacent to n. To see that W(S)u (S) (hence W(R))
acts transitively on all base complements 7’ of R, recall from our discussion
of base complements early in the section that for any classical complement
S" of RV with base 7, S has some base 7 adjacent to =n'. Taking fe W(S)
such that f(n)=n=, and r_, € U(S) such that r_.(7)=n', we have r_.,
f(m)n’ with r..f e US)W(S)= W(R). Finally, we show that W(R) acts
simply transitively on the set of base complements n of R¥™. For this, let
fe W(R) with fn=n. We must show that f=1. Let S be the classical com-
plement with base n. Write f as f=1,f, in W(R)=W(S)u (S) (f1€ W(S),
f> e U(S)). Then fS=S, f,S=S implies that /,S=S. But s, f,(s)e S with
£3)=3 implies fo(s)=s. Thus, /,=1 and f=f, € W(S). But then fi=n
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implies that f=1 by the “Theorem on Simple Transitivity of the Weyl
Group on Simple Systems” for rootsystems of complex semisimple Lie
algebras.

We now consider the group Aut L of L=7Y",_.L,. Since no section of L
is of type T,, each classical complement S of R¥ in R determines the group
of automorphisms exp S of L generated by {exprade,|be R°— {0}, tek}
where L, =k e, (cf. the discussion leading to Definition 6.2). By the theory
of algebraic groups, exp S is a closed connected subgroup of Aut L. By
Seligman [3], exp S|, =(Aut Lg),, the connected component of the
identiy of AutLg, where Lg is the classical Lie algebra
2res— o1 ([Ly ]+ Ly) (cf. Theorem 1.6). We observed in Theorem 6.3
that Aut L has a subgroup N=N(L,) and surjective homomorphism
N — W(R) given by w (w|Ly)* ~'| 4. It follows from Theorem 6.8 that N
acts transitively on the set of classical complements S of RY in R. This
implies, in turn, that N acts transitively on the subgroups exp S of Aut L (S
a classical complement of RY in R). We collect these conclusions in the
following theorem.

6.9. THEOREM. Let L=3,_ rL, be a symmetric Lie algebra with no sec-
tion Ty. Let N=N(L,) and exp S (S€S, S the set of classical complements
of RY in R) be as constructed above. Then N maps surjectively to W(R)
under w— (w]| ,_0)*’1 | . Any two subgroups exp S, exp S’ (S, S'€S) are
conjugate by some element of N, provided that S have no irreducible com-
ponent of type A,(p|ln+1) and either p>5 or p=3 and Eg is not an
irreducible component of R.
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