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1. INTRODUCTION 

IN THE present paper we prove existence theorems for nonselfadjoint real boundary value 
problems for semilinear ordinary differential equations 

x@) + pl(t)x(“-‘) + . . . + P”(f)X = f(r) + g (f, x(t)) > 0 < r < a, (1) 
n-1 

,zo U,jX’j’(O) + bhjX(j)(U) = 0, h = 1,. . .y my (2) 

where the coefficients p,(t) are continuous functions on [0, a], pa(t) > 0, and the ah,, b, are 
constants. 

Our results show that, even for nonselfadjoint boundary value problems, a limited quan- 
titative form of the Landesman and Lazer sufficient condition for existence holds. Moreover, 
further extensions are obtained of the recent form proposed by Shaw of the Landesman and 
Laxer theorem. 

The point of departure of the present paper is the theorem of Landesman and Lazer [ll], 
which represents a necessary and sufficient condition in order that a selfadjoint real elliptic 
partial differential equation of order 2, Ex = f(r) + g(x), r E G, with x = 0 on aG, has a weak 
solution x E Wk2(G), where G is a bounded domain in EC!“, g: R + R is continuous with finite 
limits g(-x) f g(+m), andf E L,(G). 

This remarkable theorem was extended by Williams [15] and by De Figueiredo [lo] to 
elliptic problems of order 2n and nonlinearity g depending on derivatives of orders <2n - 1. 
The same theorem was then extended by Shaw [14] to nonselfadjoint boundary value problems 
for partial differential equations with p = q < =, p = dim ker E, q = dim ker E*, where E* 
is the adjoint of E, provided corresponding elements of ker E and ker E*, share the same 
regions of positivity and negativity. In particular, for ordinary differential equations with 
n = 1, p = q = 1, this condition is always satisfied, and the Landesman and Lazer theorem 
holds. For their results, Landesman and Laxer, as well as Williams and Shaw made use of 
ideas from the alternative method (see, e.g. [6]). 
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In the present paper, we first analyze further the alternative method, for the case where 
oc>psq 2 0, and there is an orthonormal basis (wi, . . ., us) of ker E” and orthornormal 
elements @i, . . ., G4 in ker E such that the q x q matrix M = (w,, &), s, i = 1, . . . , q, is not 
singular. Thus, if in particular @i = ui, i = 1, . . ., q, then M is the identity matrix and this 
condition is satisfied. Also, for p = q = 1, if wi and r#~i share the same regions of positivity 
and negativity (Shaw’s condition), then M is a positive scalar. 

Now the decompositions often used in the alternative method with X = Y = LJO, a], 
say, X = ker E + X1, Y = ker E* + Y, are replaced by a further decomposition X = X0, + 
X0, +X1, Y= Y,, + Yi, Y,, = ker* E = sp(w,, . . ., w,), X0, = SP(@~, . . ., q$), ker E = 
X0, + Xo2, X1 = (ker E)‘, Y, = (ker .*)I, with usual projection operator Q: Y --, Y, QY = 
YO=kerE*,P:X+X,PX=XO=XO,+X,-n 

Under these assumptions, the map S: ker E* + ker E with S-‘(O) = {0}, which is variously 
defined in the alternative method, can be so chosen that the map S: ker E* --, X0, is linear, 
1 - 1, and onto, and SQ: Y --, Xol, restricted to &i, is the identity. 

On the basis of this particular map S, we present a new argument in dealing with the 
bifurcation equation QNx = 0. We then obtain a new existence theorem for problem (l), (2). 
with I/& < c, a suitable constant, which allows a remarkable freedom for the continuous 
Lipschitzian function g. 

2. THE LINEAR OPERATOR E IN LJO. a] 

Here J stands for a closed interval [0, a] of the real line. and D(T). R(T), ker T denote the 
domain, the range, and the null space or kernel of a linear operator T. respectively. Also 

sp(q, . * .> o,) stands for the linear space spanned by wl, . . 0. w,. and T/D,, denotes the 
restriction of the operator T on a given set Do C D(T). 

We consider the boundary value problem 

rx sx(n) +p&)x(“-‘) + . . . + Pn (r)x = f(r) + g(r3 x(r)) 3 r E (0, a), (1) 

n-1 

BjX E ,TO Ui,x(“(O) + b,iXcn(U) = 0, i=l;..,m, (2) 

where each coefficient p,(r) is of class C”-’ in [0, uj, f E LJO, a], and g: [O. a] x Iw+ R is a 
continuous function of x for every r, and measurable in r for every x. We shall also assume 
that g(r, x) is bounded in [O. u] X 1w. In (2) we assume that the coefficients a,,. b,, are real 
constants, and that the m forms B, are linearly independent. 

Let S = L2 [0, u] with usual inner product ( , ) and norm /) ]jz. Let SC”) denote the space of 
all functions x(r), 0 6 r s u, which are AC in [0, u] together with x’, 1 . . . xc”-“, and xc”) E 
L,[O, a], and we take in SC”) the norm 

]ix]/P’ = ]iX]lf + l/x’]], + . . . + /lx@-‘)(I, + u-l (/‘(x(“)(r))* dl)li2, x E 9”‘. 
0 

Let E denote the operator defined by Ex = tx with domain D(E) = [x E SC”‘, B,x = 0, i = 
1 ,*..> m] so that E: D(E) C S + S. 

The following statements are well known: 

D(E) is dense in S, 
E is a closed linear operator, 
R(E) is a closed linear subspace of S. 
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We assume x > p > q 2 0 where p = dim ker E and q = dim coker E = dim ker E*. Let 

4b1, * . .7 c#+, be an orthonormal basis for ker E. Now the restriction of E to the space D(E) rl 
(ker E)’ is a 1 - 1 closed linear operator whose closed range is still R(E). Hence, by the 
closed graph theorem, the inverse map H = [EJD(E) n (ker E)‘]-’ is a 1 - 1 continuous 
linear operator with domain R(E) and range D(E) n (ker E). Also, 

EHy=y for all Y E R(E), 

for all x E D(E), 

where (u, u) denote the usual inner product in L,[O, a] and then ]/u((~ = (u, u)“‘. By Fredholm 
alternative theorem we also know that y E R(E) if and only if y 1 ker E*, or ker E* = R(E)l. 

We have just stated that the linear operator H: R(E) -+ D(E) fl (ker E)’ is continuous, 
hence bounded, in the norm L2 in R(E) and the norm ]lx]l$‘) in D(E) n (ker E)-, and the 
statement holds that for any f I ker E* the only solution Hf of (l), (2) which is orthogonal 
to ker E satisfies 

llHfll @) 6 Yllfll* (3) 

where y is a suitable constant independent off. We note that, since ]]x]]$” generates a stronger 
topology on D(E) n (ker E)’ than the norm ]I&, then H can be viewed also as a continuous 
map of R(E) to S with both having the Lz norm. 

We denote by N the Nemitsky operator defined by Nx = f(f) + g(t, x(t)) for x E S, f E Lz, 
so that g(r, x(t)) 1s measurable and bounded, and N : S+ S, D(N) = S 1 SC”) = D(E). Problem 
(l), (2) now takes the form 

Ex = Nx, x E D(E). (4) 

Let P : S ---, S and Q : S + S denote the orthogonal projections of S onto ker E and ker E* 
respectively, namely 

(Px)(t) = [; (x3 @i)&(f) for xES, 

(Qv)(O = s$l (Y, w,)@,(t) for y E S, 

so that 

PP = P. QQ = Q, PS = ker E, QS = ker E* = coker E, 

(I - P)S = (ker E)‘, (I - Q)S = (ker E*), = Z?(E). 

It is well known that equation Ex = 
equations 

Nx splits into the system of auxiliary and bifurcation 

x=Px+H(Z-Q)Nx,QNx=O,XES. (5) 

3. A PARTICULARIZATION IN C[O, a] 

We consider now a particularization of (l), (2), namely we assume that f : [0, a] ---, R and 
g: (0, u] X iw --, R are continuous functions, and that g is bounded in [0, a] x 54. We further 
assume that the coefficients pl, . . . , pn in (1) are continuous functions in [0, a]. 
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Let X and Y be copies of C = C[O, a]. Then the Nemitsky operator Nx = f(r) + g(t, x(t)) 
is defined on all of X with values in Y, or N : X --j Y. We may restrict D(E) to the new set 

D,(E) = [x E SC”), x@) COntinLIOUS,BiX=O,i=l;*~,m], 

so that E : D,(E) C X+ Y, 
Let us prove that 

E: D,,(E) II (ker E)’ --, Z?(E) n C, H : R(E) n C+ D0 (E) II (ker E)’ (6) 

and that R(E) fl C is closed in C. Indeed R(E) is closed in L2, convergence in C implies 
convergence in Lt, and hence R(E) rl C is closed in C. Also, E : D(E) --, R(E) = S n (ker 
E*)l, and by the definition of E, Ex is continuous in [0, a] since x, x’, * . +, xc”), pl, . . a, p,, 
are all continuous, and thus E : D,(E) + S rl C fl (ker E*)- = R(E) n C. Finally, for y E 
R(E) rl C, then x = Hy E D(E) rl (ker E)‘, certainly x, x’ . . ., x@-l) are AC, and x(“) = y - 
p,x - * * . - P~x(~-~), where pl, . . ., pn are continuous; hence xc”) is continuous and x = 
Hy E D,(E). Thereby, (6) is proved. 

As usual we take now X0 = PX, X1 = (I - P)X, Y,, = QY, Y1 = (I - Q)Y, where X = 
Y = S. Since q5,, . . -, Gpp, w,, - . a, oq are continuous functions, we have decompositions 
C = X = X0 + X1, C = Y = Y,, + Y,, and Yi = R(E) n C, X, = C rl (ker E)‘. X0 = ker 
E, Y. = ker E*, and equation Ex = Nx, x E D,(E), still splits into the two equations 

x = Px + H(I - Q)Nx, QNx = 0, x E x. 

Any solution x E X of this system is an element x = x0 + x1, x0 = Px E ker E, x, E Do(E) 
fl (ker E)’ and is a solution of problem (l), (2). The uniform topology in C = X = Y is 
defined by the usual Sup norm in [0, a], or ]I ]Ics, and, in this norm, we cannot expect P and Q 
to have norm one, but necessarily 2 1: 

/lPIi = CI 3 i/I - Pii = ~2, IlQll = ~3, III - Qli = ~4, llH/l = L. (7) 

Actually, we shall denote by these letters constants such that llPxl17 s cII/xII,, /I(1 - P)xllx ss 

44 for all x E X3 llQvllr s c~IIYII~~ IIU - Q>YII m s c411yllm for all Y E Y, and llf~4~ G Lllyll, 
for all y E Y,. 

Now 

XO=kerE=sp(~,,...,~,),Yo=kerE*=sp(w,;..,w,),p~q, 

and we split X0 into a direct sum of a space X0, of dimension q and its complement in X,. 
Actually, by possibly changing bases and their indexing, we can always assume that 

X01 = sP(@* > * . .J 4q’XO2 = sp(@,+,, * . -7 &A x0 = x01 + x02. 

Let M denote the q X q matrix M = [(w,, &), s, i = 1, . . ., q], and we assume that M is 
nonsingular. For instance, if Ui = (pi, i = 1, * . a, q, then M is the identity matrix. 

We shall use the notational convention to denote briefly by u any given vector u = 
col(a,, . * 0, aJ. We now define a linear map S : Y. -+ X0,. Indeed, for every y E Y. we have 

9 4 
y = x dfo, with d,# = (y, w ) s 3 

S=l 
since the w, are orthogonal, and we take Sy = c d,@; with 

r=l 

d = M-l&+. 
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(3.i) S-‘(O) = (0). Indeed, if y E S-‘(O), then Sy = 0, that is. d = 0, hence dilY = 0 since M 
is nonsingular, and y = 0. 

We note now that X0, C X = Y; hence, (2 : Y + Y is defined on X0,. 
(3.ii) SQx = x for all x E X O1. In other words, SQ = I is the identity on X0,. 

4 
Indeed, if x E X0, then x = 2 ciqi, c = (x, r&), and 

i=l 

with c# = MC, and then SQx = i cl Gi with c’ = M-‘(MC) = c. 
r=l 

Now SQ, considered as a linear operator SQ : Y + X0 has a norm (in the uniform topologies 
of Y and X) we shall denote by c5. Actually, we shall denote by c5 a constant such that ilSQyIjI 
G c,ljyljx for all y E Y. 

Let us consider the set 

3. THE EXISTENCE THEOREM 

Q = &I x 51, so = [xi31 E XIII I l/%& c &IT s1 = [x1 E x1 I l/xll/s s 4 (8) 
for given numbers R,,, r > 0. Let xoz E X0, be arbitrary, take x = xol + x02 + xi, xol E So, 
xi E Si, and let us consider the transformation T : xol + xoz + xl + loI + fez + Xl defined by 

T: 
11 = W - Q1f.f(f) + tz(~ x01 + x02 + xl)1 

x0, = X[)l - ksQlf(4 + g(b x01 + x02 + x,>L x,2 = x02. 
(9) 

Since we shall treat x0? as an arbitrary element of Xo2, it is convenient to consider T as a 
transformation x + ? with x’ = (x*. xl). x’ = (a*, 17: ). With this convention. it is immediate 
that T maps R into X0, + X1. 

We assume now that for some constants Ro, r, k, c, C, D, p > 0 and r’ 2 0, we have 

If(t)i<c forfEJ=[O,a], (10) 

Ig(t. z)l 6 C for (t, z) E J x R, Iz/ c R. + r + r’, (11) 

]g(t.y)-g(t,=))~Di??-zj foralltEJ,lyJ,Iy~,JzJ~Ro+r+r’, (12) 

Iz-kg(t,z)(spR, fortEJ,jzlGRo, (13) 

Lc,(c+C)sr, (14) 

kc5(c + D(r + r’)) s (1 - pc5)Ro, r’ = 0 ifp = q. (15) 

We have already assumed before that q x q matrix M = [(co,, &), s, i = 1. * * -, q] is 
nonsingular, thatf : [O. a] --, R and g : [0, u] x 1w -+ iw are continuous, and that the coefficients 

PI7 . * . , pn in (1) are also continuous. 
(4.i) For continuous functions f and g satisfying relations (lo)-(15), problem (l), (2) has at 

least one solution x(t), 0 6 t 5 a, with ((x(1, G R. + r + r’. Actually, for p > q, r’ > 0, at least 
one solution for every element x0? E Xoz, j(xo& s r’. 
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Proof. We understand that if p = q then r’ = 0. For p 2 q and r’ = 0 we take xo2 = 0, xoz 
E X,,2. If r’ > 0 we take any element xo2 E X,u with )1x0& s r’. Thus, x = xol + xo2 + x1, xol 
E &, xo2 E XoZ, xi E X1. Let us show that T maps n into itself. We note that, for (x0,, x1) E 

52, hence ~~~~~~~~ 6 Ro, hII= c r, we certainly have, by (9) and (14), 

(11, I(= = IIH(Z - Q)lf(t> + g(r, x(t>)lils c kdc + Cl 6 r, 

and R1 E Sr. 
For xol E So, that is, (/xolj)~ G Ro, and xi E Si, we have now, by (9), 

joI = [xol(t) - SQxo,(t)l + SQ[xo,<f> - k& XOI @))I 

- ksQf(t) + kSQ[g(& x&) - & xo1cq + X02(4 + XlW)l~ 

where xol E X0, hence SQxol = xol, and the first bracket is zero. Moreover Jxo,(r)J G R, and, 
by (13), /x0,(r) - kg(t, xoi(t)l G pRo We have now, by (15), lfol(t)l s 0 + pcsRo + kc5c + 
kc5D(r + r’) 6 Ro, and X01 E S. To complete the proof of (4.i) we must show that TQ is 
compact in the topology of C[O, a]. Indeed, for (xol, xi) E !2, (Xol, A?,) = T(xo,, x1) E TQ, 
then fi is in X, and by (3) 112; /Ix G #+ g/j, = M1 if n > 1, and 112; 11~ c rllf+ g//z = M1 if 
n = 1. Thus, for n > 1, x1 is continuous, bounded by ]\Pijl, G r, and uniformly Lipschitzian of 
fixed constant M,. For n = 1 then x1 is again continuous and bounded. and equiabsolutely 
continuous, as the following usual argument shows. Indeed, for any finite system of non- 
overlapping intervals in [0, a], say 

((uj,pi),i=l)...) N,with,~~(p,-n,)~b,takeF= fi(a,,@i).measFs6. 
i=l 

and then 

($ Ia, -Z,(CY~)~ sj Ij;(t)l dtc (measF)‘12 (1 I_?;(t)j’ dlj”’ G 6l”M, 
F F 

The elementsR,, of TS2 are elements of X0, which is finite dimensional and they are equibounded 
since l~Z~~(t)l 6 Ro. Thus, TQ is a relatively compact subset of the closed convex set 52 in the 
topology of X = C[O, u]. By Schauder’s fixed point theorem T has at least one fixed point in 
R. Theorem (4.i) is thereby proved. 

5. AN EXAMPLE 

Let us consider the problem 

Ex = x”’ = f(t) + g(c m)? tEJ=[O,a], (16) 

x”(0) = 0, x”(a) = 0, 2x(O) + x(a) = 0. (17) 

The homogeneous problem x”’ = 0 with the same boundary conditions (17) has the nonzero 
solution x(f) = t - u/3,0 G c G a, and ker E = {c(t - u/3)}, p = 1. The homogeneous problem 
is equivalent to the system xi = x2, xi = x3, xi = 0 with conditions x3(O) = 0, x3(u) = 0, k,(O) 
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The dual problem is, therefore, 

0 0 1 

(Yl(O)Y2(O)Y3(0)) = (aI a2 a3) 0 0 0 3 ( ) 2 0 0 

0 0 0 

(Yl(4Y&>Y3(~>) = -(ct a? a3) 0 0 1 
( ) 1 0 0 

with LY,, (Ye, a3 arbitrary, or Y; = 0,~; = -yt,y; = -y2 with conditions Y,(O) + 2yl(a) = 0. 
~~(0) = 0, yl(a) = 0. Then, y’; = -y$ = yt, y;)' = y; = 0, and by writing Y for Y,, we have 
the dual problem of (16, 17): 

E*y = -y”’ = 0. rEJ=[O,u], Y’(0) = 0, Y’(U) = 0, y”(0) + 2Y”(U) = 0. 

This problem has the nonzero solution y(t) = 1, 0 s r s a, and ker E* = {d}, q = 1. 
By normalization we have 

~(t)=3a-3~2(t-~a/3), ClI(r)=u-“2, OSlSU, ker E = {c+}, ker E* = {dw}. p = q = 1. 

Here @ and o do not share regions of positivity and negativity. 
The relation x = HY is now defined by the set of equations 

X !,) _ 
- Y, x”(0) = 0, x”(U) = 0, 2X(O) + X(U) = 0, 

i 

u 

I 

a 
x(t)(t - u/3) dt = 0, y(t) dt = 0. (18) 

0 0 

We could express H by an integral operator and estimate H by estimating the kernel. We 
prefer here to solve problem (18) directly, obtaining the estimates step by step. 

u 
First, x”(r) = J; y(m) d& because of x”(0) = 0, and then X”(a) = 

I 
y(a) da = 0 because of 

last relation (18). Moreover. for 0 G r s u/2, Ix”(t)\ c ]ly]lx u/2, an\ by symmetry the same 
relation holds in [a/2, a]. Thus, ](x”(I,s ]ly]lrn u/2. We have now 
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x(t) = A + B(t - a/3) + 1’ (t - p)x”(p) d/?, A. B constants, 
, a/3 

and the condition 2x(O) + x(a) = 0 yields 

(19) 

0 = 2x(O) + x(a) = 3A + 2 j” ( -P)x”(P) dP + /’ (a - N’(P) dP> 
a/3 0.‘3 

3/A] < (Ix”II, (2 /“’ @d/? + 1’ (a - p) d/3) = (/x”/l, a’/3. 
0 al3 

IAl s (1/9)a21~x”[i,. 

From the relation J$ x(t)(t - a/3) dt = 0 we derive now 

(20) 

A 
I 

’ (t - a/3) dt + B 
I 

a (t - u/3)2 dt + 
0 i 

’ (t - a/3) dt 
I 

’ (t - P>x”(P> dP = 0, 

(1,9)a~,B, =z (1/6)U?JAI : (l,u’,(8.81);1;:.‘,,,, 

IBl G (29/f8.9))+“(),. (21) 

By using estimates (20) and (21), and by separating the cases 0 G t G u/3 and u/3 G r G a, 
we obtain from (19), 

Ix(t)/ G (65/108)u*~/x”~~2 G (65/216)a3/)yll,. 

Thus, in the topology of C we have 

(lH(\ G (65/216)a3. 

To estimate (IQ11 we note that, for y E Y, we have 

Thus, /IQ11 G I and, since Q is a projection, also /IQ/l = 1. 
To estimate S we note that. for y E YO, we have y = d#o = diFa-’ ‘, hence 

Ii.+ = /d*Ja-I’*, Ids 1 = a’!’ jly/jX. 

On the other hand. we have q = 1 and 

and by the definition of S. for x = Sy, we have x = d@ with d = d#/M, or 

/Ix/Ix = llS,vlIz = Ild@(lz = 2 . .“‘llyllx . 113~-~“(t - a/3)(1, = 4(ly(/,, 

and thus ((S(( G 4. We conclude with the list of the constants of interest: 

llQll= ~3 = 1, III- Qll s ~4 = 2, IIH[( c L = (65/216)a3, IPQII c cs = 4. 
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As a numerical example, let g: I%! + R be any function satisfying 

Ig(z)l s 1, (g(2) - g(z’)l s (4/3)\2 - 2’1 for 121, jt’j 4 R. + r, 

\z - g(z)\ s @X0 for /zI 6 Ro. 
(22) 

Thus C = 1, D = 413. We take a = 0.1, k = 1, c = 0.1, so that L = (65/216)a’ = 0.00030092, 
and for r = 0.00067 we also have 

Lc,(c + C) = (0.00030092)(2)(0.1 + 1) = 0.000662024 < 0.00067 = r, 

kc,(c + Dr) = 4(0.1 + (4/3)(0.00067)) = 0.4035733. 

For R. = 1.19, p = 0.165. we have 

(1 - pc,)R, = (1 - 4(0.165))(1.19) = 0.4046 > 0.4035733. 

On the other hand, we require that (z - g(z)1 s pRo for (z( s R. = 1.19. We see that for 
1 s z G 1.19 we have g(z) s 1, and the requirement Iz - g(z)\ s pRo can be satisfied since 
0.19 = 1.19 - 1 < 0.19635 = pRo. 

Thus, problem (16), (17) has at least one solution x(t) with lx(t)\ s R, -t I = 1.19067 for 
a = 0.1, lljll s 0.1, and g satisfying (22) with R,, = 1.19, r = 0.00067, p = 0.165. in other 
words for any g of Lipschitz constant 4/3, whose graph is within the heavy set box in Fig. 1. 

Fig. 1. 

6. ANOTHER EXAMPLE 

Let us consider the problem 

Ex = x”’ + A?x’ =f(t) + g(t, x(t)), tEJ=[O,a], A = 2x/a, (23) 

x(u) + &X’(U) = 0, x”(U) = 0, x’(0) - x’(a) = 0. (24) 

The homogeneous problem x”’ + Azx’ = 0 with the same boundary conditions (24) has the 
nonzero solution x(t) = -~A+sinAt,O~t~u,andkerE={c(-~A+sinht)},p=l. 
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The homogeneous problem is equivalent to the system xi = x2, xi = x3, xi = - A2x2 with 
conditions xl(a) + &x2(a) = 0, ~~(a) = 0, x2(O) - x2(u) = 0, or 

The dual problem is, therefore, 

(Y&)YMY&)) = -(at a;?%) 

with aI, a2, a3 arbitrary, or y ; = 0, y; = -y, + A2yj, y; = -y2 with conditions ~~(0) = 0, 
~~(0) = 0, y2(a) = cyr(a) + ~~(0). Then, yg = -yi = y, - A2y,, y;” = y; - A2y; = - A’y;, 
and by writing y for y,, we have the dual problem of (23), (24): 

E*y= -y"'-- )32y'4 tEJ= [O,u], 

Y(0) = 0, y”(0) = 0, y’(0) - y’(u) = &(Y”(U) + Py(u)). 

This problem has the nonzero solution y(f) = sin At, 0 G t s a, and ker E* = {d sin At}, 
CJ = 1. By normalization we have 

G(t) = 2% -‘~2(1+2A2~2)-1/2(-~A+sinAt), W(t) = 2’12a-‘l’ sin At, O~t~u, 

ker E = {c+(t)}, kerE* = {dw(t)}, p=q=l. 

Here C$ and w do not share regions of positivity and negativity. 
The relation x = Hy is now defined by the set of equations 

X "I + A2X' =y, X(U) + &X'(U) = 0, x"(u) = 0, X'(0) -x'(u) = 0, 

0 
X(t)( - EA + sin At) dt = 0, y(t) sin At dt = 0. 

The differential equation yields 

x(t) = A + B cos At + C sin At + c,(t) + c?(t) cos At + c3 sin At, 
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I 

cl(t) = I 
I 

A-2 y(a) da, C?(t) = - I A-2 y( cr) cos La da, 
(I (1 

I 

f 
cg(t) = - A-* y(a) sin Lcu da. 

L1 

The condition x”(a) = 0 implies B = 0. Since A = 2x/a, sin At and cos At are periodic of period 
a, we have 0 

x’(0) - x’(u) = &(O) = ;i-’ 
I 

y(a) sin ALX da = 0, 
L1 

and the condition x’(0) - x’(a) = 0 is satisfied. The condition x(a) + &x’(a) = 0 yields A + 
EAC = 0; hence A = -&AC, and 

x(r) = (- EA + sin At)C + cl(t) + c2(t) cos At + c3(t) sin At. 

Now the condition j$ x(t) (- EA + sin Lt)dt = 0 yields 

O=CU(~-‘+~~E~)+ 0[-~~+sinAt][cI(t)+c2(t)cos~t+c,(r)sinit]dt 
i 

0 

from which we can derive C. An estimate for C is then 
0 f I 

(cl s 2U-‘(1 + 2A2E2)-‘(1 + Eh) A-’ 

I ll 
dt y(a) da + y(m) cos A(t - (u) da 

~2~-1(1+2i’r’)-‘(1+ri)~-2,jy;.l.dlj12da 

i P 

= 2&‘(1 + 2E2/t2)-’ (1 + &/i)lb/z. ’ ’ 

Finally, 
/X(t)1 = /(-Ek + sin At)C + cl(f) + c2(t) cos At + c3(t) sin At\ 

I 

I 
, 

=s (1 + &h)(CI + h-’ ~(4 da + y(a) cos A(t - cu) da 
(1 0 

Thus, 
c (1 + EA) . 2&-‘(1 + 2&‘A’)-’ (1 + &k)(b(j, + h-‘2U](y((,. 

\\Ml 5 A-%2(2(1 + 2A2E’)-‘(1 + &A)? + 2). 

Since A = 2n/a we also have 

][qj < (27~)-~a~(2 + 231 + 2A’P2)-‘(1 + Ek)Z). 

To estimate \\Q]l we note that, for any y E Y, we have 

lQv<Ot = I((’ 44~(4 da 4) 
0 

) / 

lil 
II 

= 21’2a-1/zy(a) sin ,Ia da 21/2a-1/2 sin At 

0 

=s 2a-‘llyll, 
I 

’ lsin Aa( da = 2~-‘]~\]~ * 4/A = (4/~~)]!y\l~, 
0 
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and hence ljQl/ G 4/rr. To estimate j/.Slj 
dx2’12a-‘/2 sin At, hence 

we note that. for y E YO, we have y = d”w = 

lbjlr = (d#( 21”2,-112, ld++#J = 2-‘&‘/2j~(j,. 

On the other hand, we have q = 1 and 

M=[#wdr=j ’ 2’/2a-‘/2(1 + 2A’E2)-1!2(-EA + sin At) . ~I/?Q-I;? sin At dt 

= (i + 2P&2)_1/2, 
and by the definition of S, for x = Sy we have x = d$ with d = d#/M. or 

lbllz = /SyII, = IJd$//r = ~~2’~*~-‘~~(1 + ~A’E’)-~‘~(-EA + sin Ar) * 2-*~aa*/z 

X IjyliX(l + ~I.‘.E~)~/*))~ =/)EA + sin A& = (1 + AE)J~IJ,, 

and thus IJSJj s 1 + AE. We conclude with the list of the constants of interest: 

l\Qll s c3 = 4/n, ItI - Q/l c 1 + 4/x, JlSQJ/ =S ~5 = (1 + hE)(4/+ 

Ilfl/ C L = (21r)-‘U3(2 + 2-‘(1 + 2A2E2)-‘(1 + EA))?. 

As a numerical example, let g: lR ---, [w be any function satisfying 

/g(z)/ < 1, jg(z) - g(z’)/ s (4/3)/z - z’I for /z/. Iz’J 6 R. + r. 

/z - g(z)/ s pRo for /z/ s Ro. (25) 

Thus, C = 1. D = 413. We take a = 0.4, k = 1, A = 2x/a = 12.566, E = 0.01. AE = 0.12566, 
c4 = 1 + 4/~r = 2.27336, c5 = (1 + AE)(~/JT) = 1.4332, L = 0.0068148, c = 0.1. r = 0.018 we 
have 

Z_,c,(c + C) = (0.0068148)(2.27324)(0.1 + 1) = 0.017049 < 0.018 = r, 

kc,(c + Dr) = (1.4332)(0.1 + (4/3)(0.018)) = 0.17772. 

For R. = 1.5, p = 0.5 we have 

(1 - pc,)Ro = (1 - (0.5)(1.4332))(1.5) = 0.4251 > 0.17772. 

while R. - 1 = 0.5 < 0.75 = (0.5)(1.5) = pRo. 
Thus, problem (23). (24) has at least a solution x(t) with ix(r)1 s R,, + r = 1.518 for a = 

0.5, l/f/ix c 0.1 and any g satisfying (25) with R. = 1.5. r = 0.018, p = 0.5. in other words, 
for g of Lipschitz constant 4/3 whose graph is within the heavy box in Fig. 2. 

I I / -‘I 
Fig. 2. 
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APPENDIX 

The operator bounds used in this paper are obtained by functional analysis considerations. An elementary analysis 
of the same operators is contained in previous papers of the authors [l, 2, 61, and we think it relevant for the reader 
to see briefly the latter in the form which is needed here. 

Let us consider the real linear system 
u’ - A(+ = h(t), 0 c t s u, (26) 

B,u(O) + B,u(a) = 0, (27) 

where u(t) = col(u,, , u,), h(r) = col(h,, , h,), A = [c,,(r)] is an n X n matrix with bounded measurable entries, 
and B,, B2 are m x n matrices, 0 G m c n. The corresponding homogeneous system is then 

u’ - A(t)u = 0, B, u(O) + B,u(a) = 0. (28) 

The adjoint system, in parametric form is therefore (see, e.g. [6, p. 321 also for references). 

dd/dr + GA(f) = 0,6(O) = &B1, c?(a) = -&B2. (29) 

where u(t) = col(u,, ., u,), where (Y = COI(CY,, . ., cm) is an arbitrary constant matrix, and where h? denotes the 
transpose of any matrix M. 

If E denotes the differential operator with boundary conditions defined by relations (27), then ker E is the set of 
all solutions of problem (28). Analogous definitions have E* and ker E* for relations (29). 

For any measurable n-vector z(r) = (zr, ., z,), 0 G t =G a, we denote by ]]zi/, the usual norm j/zI/, = Ess 
Supocrco]z(t)l, where /z] denotes the Euclidean norm of z. If z E (LJO, a])“, Y > 1, let //z//, denote the L.-norm ]]z(/, = 
a-‘@ ]z(r)l” dr)““. 

Let Y denote the L,-space of n-vectors u(l) = (ur, ., u,J with lo(r)1 L.-integrable. and let Y be equipped with 
the norm II /I,,. 

Let X denote the (Sobolev) space of all n-vectors u(t) = (u,, ., u,), 0 s r s a, whose elements are AC in [O. a], 
and whose derivatives u’(t) = (u; , ., u;) are L,-integrable in [0, a], and let X be equipped with the normi]u]]t = 
II4 + llu’llu. 

Let U be the n x p matrix, whose p columns form a basis for the solutions to the given boundary value problem 
(28), 0 < p s n, and let V be a 4 x n matrix whose ~7 rows form a basis for the solutions of the adjoint boundary 
value problem (29), 0 c 9 G n. Let c and d denote the p x p and 4 x q matrices whose entries are numbers defined 
by 

0 _ 
a c= 

I 
Ll(s)U(s) b, d= 

I 
V(s) P(s) ds. 

0 0 

These matrices are nonsingular (cf. [6, p. 351). Let P: X+ X and Q: Y + Y be the projection operators defined 

(Pu)(r) = U(+-f, (y= c-1 I D O(s)u(s) ds, u E x, 
0 

(Qu) (11 = %)B, /3 = d-’ 1’ V(s)u(s) ds, u E Y, 
II 

(for p = 0 take P = 0, for g = 0 take Q = 0). The operators P. Q are projection operators in the Banach spaces X 
and Y respectively in the sense that they are linear are 

PP = P, ll~llt s IlPullt s u4t. u E x, 

QQ=Q. /14/~ =s lIQ4. =s M4l.. ” E Y, 
for suitable constants I,,, A2. 

Let X0 = PX. X, = (I - P)X, Y. = QY. Y, = (I - Q)Y, so that X and Y have the decompositions X = X0 + X,, 
Y = Y0 + Yr, and thus. for instance, Px = 0 if and only if x E Xi, Qu = 0 if and only if v E Y,. Moreover, we have 
here X0 = ker E, Y. = ker E*. 

The following theorem holds. 

THEOREM A.l. If h E Y = (LJO, u])“, Y 2 1, then the boundary value problem (26), (27) has solutions u E X if and 
only if Qh = 0. If Qh = 0. then the boundary value problem (26), (27) has a unique solution Kh with PKh = 0, and 
all other solutions are of the form Kh + Uu, a an arbitrary row p-vector. Furthermore the linear map K: Y, + X, 
is a bounded linear map in the norms of X, and Y,. 

This. which is derived from Fredholm alternative, was proved, for example, in [6] for Y = 1. The proof is analogous 
for any Y 2 1. We refer to (6, pp, 32-391. Thus, for any h E Y = (LJO, a])“, 
solution u(f) = Kh of problem (1) with Pu = 0 satisfies ]]u]]‘~ c 

with Qh = 0 (that is, h E Y,), the only 
dih/l. for some constant y independent of h. 
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As we know, the analogous problem 

x(“) +pi(f)X(“-‘) + +p.(t)x=f(r), Ostsa, (30) 
n-i 
2 (a,,x(‘)(O) + b,,x”‘(a)) = 0, i = 1,. ., m, (31) 

where a,,, b,, are constants, and pi(f), , p,(t) bounded and measurable functions in [0, u], that is, problem Ex = 
$ffti;h the notations of No. 2, is reduced to problem (26), (27) by the transformation u, = x, , u. = x’“-~). 

u; -IA* =o.. .) u;-1 - u, = 0, u:, +p.(t)u, + +pi(t)u, =f(t). 

,~(o..,~u,(o)+b.,,-,u,(o))=O,i= I,.. .,m. 

(32) 

In other words, h(t) = col(0, 0, ,, 0, f(t)), and if Qh = 0, then there is one and only one solution x = Kh of (32) 
with PKh = 0. Any other solution is of the form u = Kh + UC, where c is anyp column vector. Finally. K: Y, -+ X, 
is a bounded linear map in the norms /I 11” of Y1 and II IIlv of X1, so that 

IlKhIlt s M.. 
Thus, for z = Kh, 

llzllt = ll(z,, .> z.)lL + ll(z’~>. ., zh)liv rs yllhllv, 
and for the particular system (32) we derive 

l/~*l/x. llz;ll-~ ‘3 ll~Y-‘~ll~ s riVll.> ll~(1”~ll. =s Ml”. 
The adjoint system is 

v; =pnvn, v; + v, =pn-,v,,. ., 0; + V.-l =p,v. 

which can be reduced to the differential equation 

(33) 

VP’ - (-l)“-‘pnvn - (-1y*(p,_,v.)’ - + (pzv,)‘“-2’ - (pion)'"-]' = 0. 

If y(t) = cohy,, , y.) is any element of ker E*, then y, = o E ker E* of Section 2. and the orthogonality of h(t) 
with y, or J$(h,yl + + h,y,) dt = 0, reduces to 

CR f(f)w(t) dr = 0. 

On the other hand, the orthogonality of Kh = (z,, ., z.) with any element x(t) = col(x,. . . x,) of ker E. or 
J;(z,x, + + ZJ,,) dt = 0, may not be the same as the orthogonality of zr(r) with x,(t) = Q(t) E ker E of 
Section 2. or J; z,(r)@(f) dt = 0. Actually, if @r, ., &, denotes the base of ker Ewe have chosen in Section 2. we 
may well assume pi, _, qbp to be the first row of V, and we have only to determine the solution x(t) = z,(r) + 
#,a1 + + Qpup which satisfies J; x(f)@,(f) dr = 0, i = 1, ., p. We obtain 

I 

LI 
z,(t)~$,(t) dt + a, = 0, i = 1. ,p, 

0 
or 

Hence 
x(r) = z,(r) - (ZlT44@1(4 -. ” - (z1, &MpW = v - Pbl(4. 

x”)(f) = z:” (t) - (zr, @&j”(f) - - (Z,, qgl#$‘(t),j = 0, 1,. ..n, 

Here all functions p,, , 
say 14(‘(r)] s M, and 

p. are bounded, say bz(t)] 6 p, all functions $J’/’ (r),j = 0, 1, , n - 1, are also bounded, 

Thus, 
/Iz(J) (r)ll- s uflfll,, j = 0, 1,. , n - 1. 

I_G(t)/l_ s vilfli, + rllfll. .puM’ = ~llfli.(l +paM’), i = 0, 1.. ., n, 

This proves statement (3) in Section 2 
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