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IN THE present paper we prove existence theorems for nonselfadjoint real boundary value
problems for semilinear ordinary differential equations
x® +p(Ox" Y+ L+ p,(x=f0) +g(t,x(H),0<t<a, 1)
n—1
2 ayxD(0) + byxP(@)=0,h=1,...,m, (2)
J=0

where the coefficients p(t) are continuous functions on [0, a], po(t) > 0, and the a,;, b, are
constants.

Our results show that, even for nonselfadjoint boundary value problems, a limited quan-
titative form of the Landesman and Lazer sufficient condition for existence holds. Moreover,
further extensions are obtained of the recent form proposed by Shaw of the Landesman and
Lazer theorem.

The point of departure of the present paper is the theorem of Landesman and Lazer [11],
which represents a necessary and sufficient condition in order that a selfadjoint real eiliptic
partial differential equation of order 2, Ex = f(t) + g(x), t € G, with x = 0 on 9G, has a weak
solution x € W}2(G), where G is a bounded domain in R, g: R — R is continuous with finite

This remarkable theorem was extended by Williams [15] and by De Figueiredo [10] to
elliptic problems of order 2»n and nonlinearity g depending on derivatives of orders <2n — 1.
The same theorem was then extended by Shaw [14] to nonselfadjoint boundary value problems
for partial differential equations with p = ¢ < <, p = dim ker E, ¢ = dim ker E*, where E*
is the adjoint of E, provided corresponding elemenis of ker £ and ker E*, share the same
regions of positivity and negativity. In particular, for ordinary differential equations with
n=1, p=g =1, this condition is always satisfied, and the Landesman and Lazer theorem
holds. For their results, Landesman and Lazer, as well as Williams and Shaw made use of
ideas from the alternative method (see, e.g. [6]).
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In the present paper, we first analyze further the alternative method, for the case where
® >p = g = 0, and there is an orthonormal basis (w,, . . ., w,) of ker E* and orthornormal
elements ¢, . . ., ¢, in ker E such that the g X g matrix M = (w;, ¢;),s,i=1,.. ., g, is not
singular. Thus, if in particular ¢; = w,;,i = 1, . . ., g, then M is the identity matrix and this
condition is satisfied. Also, for p = ¢ = 1, if w, and ¢, share the same regions of positivity
and negativity (Shaw’s condition), then M is a positive scalar.

Now the decompositions often used in the alternative method with X = Y = L,[0, 4],
say, X = ker E + X,, Y = ker E* + Y, are replaced by a further decomposition X = X, +
Xp+ X, Y=Y+ Y, Yo=ker* E=sp(w;, * - -, &), Xoy =sp(Py, - - -, @), ker E =
Xo + X, X, = (ker E)*, Y, = (ker E*)*, with usual projection operator Q: Y — Y, QY =
Yo=ker E*, P: X — X, PX =X, = X, + Xop.

Under these assumptions, the map S: ker E* — ker E with $71(0) = {0}, which is variously
defined in the alternative method, can be so chosen that the map S: ker E* — X, is linear,
1~ 1, and onto, and SQ: Y — X, restricted to X, is the identity.

On the basis of this particular map S, we present a new argument in dealing with the
bifurcation equation QNx = 0. We then obtain a new existence theorem for problem (1), (2),
with | f[. < c, a suitable constant, which allows a remarkable freedom for the continuous
Lipschitzian function g.

2. THE LINEAR OPERATOR E IN L,[0, 4]

Here J stands for a closed interval [0, a] of the real line. and D(T). R(T), ker T denote the
domain, the range, and the null space or kernel of a linear operator T, respectively. Also
sp(wy, * * -, w,,) stands for the linear space spanned by w,, - - . w,. and T|D denotes the
restriction of the operator T on a given set Dy C D(T).

We consider the boundary value problem

m=x"+p(Ox"V + .-+ p,(Ox=f0) +g(t.x(1)), t€(0,a), (1)
n—1

Bx= 2 axV(0) +bxP(a) =0, i=1- -.m, )
j=0

where each coefficient p(¢) is of class C""*in [0, a], f € L,[0, a], and g: [0. a] x R—> R is a
continuous function of x for every ¢, and measurable in ¢ for every x. We shall also assume
that g(¢, x) is bounded in [0, a] X R. In (2) we assume that the coefficients a;. b; are real
constants, and that the m forms B, are linearly independent. '

Let S = L, [0, a] with usual inner product ( , ) and norm || ;. Let §* denote the space of
all functions x(¢), 0 < ¢ < a, which are AC in [0, a] together with x', - - -, x"~ 1 and x" €
L,[0, a], and we take in S the norm

a 1/2
Illg” = lixlle + lix'lle + - - + X"Vl +a™ (f (x())? dt) . XxESM,

Let E denote the operator defined by Ex = 7x with domain D(E) = [x € S, Bx = 0, i =
1,...,m]sothat E: D(E) C S— S.
The following statements are well known:
D(FE) is dense in S,
E is a closed linear operator,
R(E) is a closed linear subspace of §.
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We assume < > p = g = 0 where p = dim ker E and g = dim coker E = dim ker E*. Let
¢, * * *, ¢, be an orthonormal basis for ker E. Now the restriction of E to the space D(E) N
(ker E)* is a 1 — 1 closed linear operator whose closed range is still R(E). Hence, by the
closed graph theorem, the inverse map H = [E|D(E) N (ker E)*]"'is a1 ~ 1 continuous
linear operator with domain R(E) and range D(E) N (ker E). Also,

EHy =y for all y € R(E),
p

HEx=x- 2 (x,¢,)¢;, forall x€ D(E),
i=1

where (u, v) denote the usual inner product in L,[0, a] and then ||u|, = (u, u)/2. By Fredholm
alternative theorem we also know that y € R(E) if and only if y 1 ker E*, or ker E* = R(E)*.

We have just stated that the linear operator H: R(E) — D(E) N (ker E)~ is continuous,
hence bounded, in the norm L, in R(E) and the norm |x|V in D(E) N (ker E)*, and the
statement holds that for any f 1 ker E* the only solution Hf of (1), (2) which is orthogonal

to ker E satisfies
IHAI™ < ylifll, (3)

where v is a suitable constant independent of f. We note that, since [|x|§’ generates a stronger
topology on D(E) N (ker E)* than the norm ||x|,, then H can be viewed also as a continuous
map of R(E) to S with both having the L, norm.

We denote by N the Nemitsky operator defined by Nx = f(¢) + g(t, x(¢)) forx € S, f € L,,
so that g(t, x(r)) is measurable and bounded, and N : S— S, D(N) = § D $§) = D(E). Problem
(1), (2) now takes the form

Ex = Nx, x € D(E). (4)
Let P: S— Sand Q : § — § denote the orthogonal projections of S onto ker E and ker E*
respectively, namely

p
(PO)() =2 (x, ¢)9.()  for x€ES,

q
@O = X (v, @), ()  for yES,
so that
PP=P, Q0 =0Q,PS=kerE, OS = ker E* = coker E,
(I = P)S=(kerE)*,(I— Q)S = (ker E*)* = R(E).

It is well known that equation Ex = Nx splits into the system of auxiliary and bifurcation
equations

x=Px+ H({I—- Q)Nx,ONx=0,x € S. (5)

3. A PARTICULARIZATION IN ([0, a]

We consider now a particularization of (1), (2), namely we assume that f : [0, ] — R and
g: [0, a] X R — R are continuous functions, and that g is bounded in [0, a] x R. We further
assume that the coefficients p,, - - -, p, in (1) are continuous functions in [0, a].
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Let X and Y be copies of C = C[0, a]. Then the Nemitsky operator Nx = f(t) + g (1, x(1))
is defined on all of X with valuesin Y, or N : X — Y. We may restrict D(E) to the new set

Dy(E) = [x € $™, x™ continuous, Bix =0,i= 1, - -, m],

sothat E: D(E) C X — Y,
Let us prove that

E:Dy(E)N (ker E)* = R(E)NC,  H:R(E)N C— Dy(E) N (ker E)* (6)

and that R(E) N C is closed in C. Indeed R(E) is closed in L,, convergence in C implies
convergence in L,, and hence R(E) N C is closed in C. Also, E : D(E) — R(E) = § N (ker
E*)*, and by the definition of E, Ex is continuous in [0, 4] since x, x', - - -, x", P s P
are all continuous, and thus E : Dy(E) = S N C N (ker E*)* = R(E) N C. Finally, for y €
R(E) N C, then x = Hy € D(E) N (ker E)*, certainly x, x' - - -, x" "V are AC, and x\?) = y ~
pnx — -+ - — px"~D_where p,, - - -, p, are continuous; hence x is continuous and x =
Hy € Dy(E). Thereby, (6) is proved.

As usual we take now X; = PX, X, = (I - P)X, Y, = QY, Y, = (I — Q)Y, where X =
Y = §. Since ¢,, - - -, ¢,, @y, - - *, w, are continuous functions, we have decompositions
C=X=Xy+X,C=Y=Y,+Y,andY, = R(E)N C, X, =Cn (ker E}*, X, = ker
E, Yy = ker E*, and equation Ex = Nx, x € Dy(E), still splits into the two equations

x=Px+HI-Q)Nx, ONx=0, x€X

Any solution x € X of this system is an element x = xy + x|, X = Px € ker E, x; € Dy(E)
N (ker E)* and is a solution of problem (1), (2). The uniform topology in C = X = Y is
defined by the usual Sup norm in [0, a], or || ||, and, in this norm, we cannot expect P and Q
to have norm one, but necessarily = 1:

IPl=ci, |I=Pl=cs lQll=cs5, - Qli=c., |H|=L. 7

Actually, we shall denote by these letters constants such that ||Px||. < c¢)|x|., [|( = P)x|. <
collxl for all x € X, | Ol < c3llylle, I = Q)i < cyllyll= for all y € Y, and || Hyll. < Llly].
forally € Y,

Now

Xy =ker E=sp(¢;, -, ¢,), Yo =ker E* =sp(w;, -, w,),p =4,

and we split X, into a direct sum of a space X;; of dimension g and its complement in X,
Actually, by possibly changing bases and their indexing, we can always assume that

KXoy =sp(@y, -, ¢g), Xgp = SP(Pgs1s " s Pp), Xo = Xo1 + X

Let M denote the g X g matrix M = [(w,, ¢,), s,i =1, - - -, q], and we assume that M is
nonsingular. For instance, if w; = ¢,, i = 1, - - -, g, then M is the identity matrix.

We shall use the notational convention to denote briefly by o any given vector o =
col(oy, - + -, 0;). We now define a linear map S : Yo — Xj,. Indeed, for every y € Y, we have

q q
y= 2 d*w, with d* = (y, w,), since the w, are orthogonal, and we take Sy = >, d,¢; with
i=1

s=1

d=M"1'd"
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(3.1) $~4(0) = {0}. Indeed, if y € $7}(0), then Sy = 0, thatis, d = 0, hence d* = 0 since M
is nonsingular, and y = 0.
We note now that X;; € X = Y, hence, O : Y — Y is defined on Xj.

(3.i) SQx = x for all x € Xy;. In other words, SO = [ is the identity on Xj,.
q

Indeed, if x € X, then x = 2 ci¢i, c = (x, ¢;), and

i=1

O = 2 (x, 0,)w, = i (i i 0,) 0, = > (q (@,.9.c )0, = S o,

i=1 i=1 s=1

q
with ¢* = Mc, and then SQx = 2 ¢/ ¢; with ¢’ = M~Y(Mc) = c.
i=1

Now SQ, considered as a linear operator SQ : Y — X, has a norm (in the uniform topologies
of Y and X) we shall denote by cs. Actually, we shall denote by cs a constant such that |SQy|.
< cslyll forally € Y.

4. THE EXISTENCE THEOREM
Let us consider the set

Q=5,xS5,,5 =[x €Xollxal= <R S =[x, € X\ |lx) )l <7] )]

for given numbers Ry, r > 0. Let xp € X, be arbitrary, take x = xg; + xp0 + X1, xo1 € So,
X, € §4, and let us consider the transformation T : xg; + xg; + x; = %o, + Xy, + X, defined by

- {)El = H(I — Q)[f(r) + g(t, xo + xqp + x1)] ©9)

Xop = xo — kSQ[f(t) + g(t, xo1 + x2 + x1)], X2 = Xp2.

Since we shall treat xo, as an arbitrary element of Xj;, it is convenient to consider T as a
transformation ¥ — X with ¥ = (x*, x,), X = (¥*, #}). With this convention. it is immediate
that T maps Q into X + X,.

We assume now that for some constants Ry, 7, k, ¢, C, D, p > 0 and ' = 0, we have

() <c fort€J=10,ad], (10)

gt.2)l=C for(t.z2) EJXR,|z|<sRy+r+r, (1)

lg(t.v) ~g(t.2)I < Dly — z| forallteJ, |yl |yl |z <Ry +r+1r, (12)

|z — kg(t. z)| < pR, fort€J,|z| =Ry, (13)

Lej(ce+C)y=r, (14)

kes(c + D(r+r))s (1 = pcs)Ry,r' =0 ifp=gq. (15)

We have already assumed before that ¢ X g matrix M = [(w,, ¢), s, i =1,---,g]is

nonsingular, that f: [0. a] — R and g : [0, a] X R— R are continuous, and that the coefficients
P1, * * -, pnin (1) are also continuous.

(4.1) For continuous functions f and g satisfying relations (10)~(15), problem (1), (2) has at
least one solution x(r), 0 < r < a, with |x|l. = Ry + r + . Actually, for p > g, r’ > 0, at least
one solution for every element xg, € Xpa, Xl < 7.
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Proof. We understand that if p = g then 7 = 0. For p = g and r' = 0 we take x, = 0, X2
€ Xp. If r' > 0 we take any element x; € Xg, with ||xgy)l < 7. Thus, x = xo) + xg, + X, X
€ So; X2 € Xqp, X1 € X, Let us show that T maps Q into itself. We note that, for (xq,, x,) €
Q, hence [xq /. < Ry, |x|l« = r, we certainly have, by (9) and (14),

1l = 1H( = Q) + gt x())]ll < Les(c + C) <7,

and ¥; € S,.
For xq; € S, that is, |xq[lx < Ry, and x, € S, we have now, by (9),

£o1(0) = [x01(t) — SOx01 ()] + SQx01 (1) — kg(t, x01(1))]
— kSOf(1) + kSQ[g (4, xo1 (1) — g(#, x01 (8) + x02(2) + x1(1))],

where xq; € X, hence SQxy; = xq;, and the first bracket is zero. Moreover [xy,(r)| < R, and,
by (13), |xo;(r) — kg(t, xo1(1)] < pR,. We have now, by (15), [%p(t)] < 0 + pcsR, + kcsc +
kesD(r + r') < Ry, and X, € S. To complete the proof of (4.i)) we must show that 7Q is
compact in the topology of C[0, a]. Indeed, for (xo;, x;) € Q, (Xo;, ¥1) = T(x01, X;) € TQ,
then %, is in X, and by (3) ||%j). < ylf+gl, =M, ifn>1, and %], s yllf + gl = M, if
n = 1. Thus, for n > 1, x, is continuous, bounded by ||%,|l. < r, and uniformly Lipschitzian of
fixed constant M,. For n = 1 then x, is again continuous and bounded. and equiabsolutely
continuous, as the following usual argument shows. Indeed, for any finite system of non-
overlapping intervals in [0, 4], say

N N

(a;, B, i=1,... N, with 2 (B; — a;) < 6, take F= | (a, B;). meas F < §.
i=1

i=1

and then
“ 12
2“1 D)= E (e = | k@] drs( R |%5(0)]? dr < 8'2M,.
A (B:) — %1(@) Lx ) meas F) (Lx( | >

The elements %, of T€2 are elements of X, which is finite dimensional and they are equibounded
since |y (#)] < R,. Thus, TQ is a relatively compact subset of the closed convex set Q in the
topology of X = ([0, a]. By Schauder’s fixed point theorem 7T has at least one fixed point in
Q. Theorem (4.i) is thereby proved.

5. AN EXAMPLE
Let us consider the problem

Ex=x""=f(t) + g(t, x(r)), teJ=][0,a], (16)
x"(0) =0, x"(a) =0, 2x(0) + x(a) = 0. (17)
The homogeneous problem x'’’ = 0 with the same boundary conditions (17) has the nonzero

solution x(¢) = t — a/3,0 <t < a, and ker E = {c(t — a/3)}, p = 1. The homogeneous problem
is equivalent to the system x| = x,, x5 = x3, x3 = 0 with conditions x;(0) = 0, x3{(a) = 0, 2x,(0)
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+ xy(a) = 0, or

x} 0 1 0\ /x
x3)={0 0 1 (x2 ,
x4 0 0 0/ \xy
0 0 1\ /x(0) 0 0 0\ /x(a)
0 0 0)}x:(0)]+10 0 1}|x:(a))=0.
2 0 0 \x3(0) 1 0 0/ \xs(a
The dual problem is, therefore,
010
(yiy2y3)=—-(1y2y3)|0 0 1)
0 00
0 0 1
(71(0) y2(0) y3(0)) = (y a2 @3) {0 O O,
2 00
0 00
(@) y2(a) y3(a)) = —(a; o, a3)(0 01
1 00

with a,, @5, a; arbitrary, or y; =0,y
y2(0) = 0, ya(a) = 0. Then, y3 = ~y
the dual problem of (16, 17):

E*y=-y" =0, 1€J=[0,a], y(0)=0, y(@=0  y(O)+2y(a)=0.

This problem has the nonzero solution y(f) = 1,0 <t < a, and ker E* = {d}, g = 1.
By normalization we have

p()=3a3"(—a/3), w(@)=a'?, 0st<a, kerE={c¢}, kerE*={dw}. p=q=1.

Here ¢ and w do not share regions of positivity and negativity.
The relation x = Hy is now defined by the set of equations

x"=y,  x"(0)=0, x"(a)=0, 2x(0)+x(a)=0,

fa x()(t — a/3)dt =0, fﬂ y(£) dr = 0. (18)
0

0

—y1, Y5 = —y, with conditions y,(0) + 2y,(a) = 0.
vi,y3’ =y} =0, and by writing y for y;, we have

i

SN SEN

We could express H by an integral operator and estimate H by estimating the kernel. We
prefer here to solve problem (18) directly, obtaining the estimates step by step.

First, x"(¢) = [§ v(a) da because of x"(0) = 0, and then x"(a) = | y(a) da = 0 because of

0
last relation (18). Moreover. for 0 < r < a/2, |[x"(t)] < |ly|l- a/2, and by symmetry the same
relation holds in [a/2, a]. Thus, ||x"].=< |ly|l. a/2. We have now
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x()=A+ B(t—a/3) + f (r = p)x"(B) dB, A, B constants, (19)
a/3
and the condition 2x(0) + x(a) = 0 yields

0 a
0= 2x(0) + x(a) = 34 + 2f (=B)x"(B)df + f (a = B)x"(B) dB,
a/3 a/3

34l <. (2 fo " pag+ | / (e ) dp) =l a2/3

Al =< 1/9)a*|[x"... (20)

From the relation [§ x(¢)(t— a/3) dt = 0 we derive now

Af:(t—a/3)dz+Bf0a(t—a/3)2dt+foa(t—a/3)dtJ” (- P (B)dp =0,

al3

(1/9)a*|B| < (1/6)a*|A| + (17a*/(8.81))]lx"|.
1B] < (29/(8.9))all¥).. @1

By using estimates (20) and (21), and by separating the cases 0 <t <a/3anda/3 <1< a,
we obtain from (19),

lx(n)] < (65/108)a’||x"||.. < (65/216)a’||y]...
Thus, in the topology of C we have
|H| < (65/216)a’.
To estimate ||Q|| we note that, for y € Y, we have
001 = ([ wt@y@da)o)| = ([ s da) a2 <a ol [ da =yl
0 0 0

Thus, ||Q]l =< I and, since Q is a projection, also ||Q]| = 1. ’
To estimate S we note that, for y € Y, we have y = d*w = d*a" ', hence

Wl =1a%la=",  |d%|=a"?]ly]..

On the other hand. we have g = 1 and

M=f ¢;a)dt=f a™V?-3a73(t —af3)dt = 1/2,
0

0
and by the definition of S, for x = Sy, we have x = d¢ with d = d*/M, or

el = ISyl = lld@ll =2 a"?llyll - 13> = a/3)]. = 4]y]-.
and thus ||S]| = 4. We conclude with the list of the constants of interest:

IQl=ci=1, | -Qllsce=2, [HI<L=(65216)a>, [SQ|<cs=4.
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As a numerical example, let g: R — R be any function satisfying
g =1, [g(z) —g(z")=<(4/3)[z~2'| for [z},[2'|<Ry+r,
|z - g(z)| = pR, for |z|<R,.

Thus C=1,D =4/3. Wetakea = 0.1, k =1, ¢ = 0.1, so that L = (65/216)a* = 0.00030092,
and for r = 0.00067 we also have

Leg(c + €) = (0.00030092)(2)(0.1 + 1) = 0.000662024 < 0.00067 = r.
kes(c + Dr) = 4(0.1 + (4/3)(0.00067)) = 0.4035733.

(22)

For Ry = 1.19, p = 0.165, we have
(1 ~ pcs)Ry = (1 — 4(0.165))(1.19) = 0.4046 > 0.4035733.

On the other hand, we require that |z — g(z)| =< pR, for |z| = Ry = 1.19. We see that for
1 = 2 = 1.19 we have g(z) < 1, and the requirement |z — g(z)| = pR, can be satisfied since
0.19 = 1.19 ~ 1 < 0.19635 = pR,.

Thus, problem (16), (17) has at least one solution x(t) with |x(f)] = R, + r = 1.19067 for
a = 0.1, [[fl- =< 0.1, and g satisfying (22) with R, = 1.19, r = 0.00067, p = 0.165. in other
words for any g of Lipschitz constant 4/3, whose graph is within the heavy set box in Fig. 1.

.-Po Pe
Fig. 1.
6. ANOTHER EXAMPLE
Let us consider the problem
Ex=x""+ A" = f(1) + g(t, x(1)), teJ=[0,4], A =2m/a, (23)
x(a) + ex’(a) = 0, x"(a) =0, x'(0) - x'(a) = 0. (24)

rre

The homogeneous problem x'"' + A°x’ = 0 with the same boundary conditions (24) has the
nonzero solution x(f) = ~ €A + sin At, 0 < ¢ < g, and ker E = {c(—~¢&A + sin A)}, p = 1.
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The homogeneous problem is equivalent to the system x| = x,, x} = x3,x} = — A%x, with
conditions x;(a) + &x,(a) = 0, x3(a) = 0, x,(0) — x5(a) = 0, or
X1 0 1 0\/x,
x3|=[0 0 1]lx,
x3 0—2% 0/ \xy

0 0 X1 (0) l € 0 X1 (a)
0 0 0)Jlx2(0))+]0 0 1]{x,(a)]|=0.
01 3(0) 0-1 0/ \xs(a)

The dual problem is, therefore,

0 1
iyiy3)=—(1y2y3)[0 O
O_

0 0

(¥1(0) y2(0) y3(0)) = (ay @2 @3) | O 0>,
0 0
0
1
0

1 ¢
(yi(a) yz(a)y3(a)) =-(ayxa3)|0 0 >
0—-1

with a4, a,, @; arbitrary, or y{ =0,y = —y, + A%y;, y5 = —y, with conditions y;(0) = 0,
y1(0) = 0, yy(a) = eyy(a) + y2(0). Then, y5 = —y; =y, = A%ys, 3"’ =y] — A2y3 = — A%y},
and by writing y for y;, we have the dual problem of (23), (24):

E*y=—y'" —A%'=0, t€J=]0,4],
y0)=0, y(0)=0, y(0)=-y(a)=e("(a)+Ary(a).

This problem has the nonzero solution y(f) = sin Ar, 0 < ¢ < a, and ker E* = {d sin A},
g = 1. By normalization we have

o) =22 V2(14+24%?) V2 (—eA+sinAr), w()=2"2a"Vsinit, O<t<a,
ker E = {c¢p(t)}, kerE*={dw(t)}, p=g=1

Here ¢ and w do not share regions of positivity and negativity.
The relation x = Hy is now defined by the set of equations

X"+ A =y, x(a) + ex'(a) =0, x"(a) =0, x'(0) —x'(a) =0,

f x(t)(— €A +sinAt)dr =0, f y(#) sin Ardt = 0.
0

0

The differential equation yields

x(t) = A + Bceos At + Csin At + ¢ (¢) + ¢,() cos At + c; sin At,
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t 1
c, () = J 272 y(a) da, () =- J A7% y(a@) cos A da,
()= — f A2 y(@) sin A da.

The condition x"(a) = 0 implies B = 0. Since A = 2:t/a, sin At and cos At are periodic of period
a, we have

0
x'(0) — x'(a) = Ac3(0) = A ™! f y(a@) sin Ao da = 0,
and the condition x’(0) — x'(a) = 0 is satisfied. The condition x(a) + ex'(a) = 0 yields A +
eAC = 0; hence A = —¢AC, and
x(1) = (—eA + sin A)C + ¢, (t) + c,(t) cos At + c3(¢) sin Az,
Now the condition {§ x(¢) (—eA + sin Ar)dt = O yields

0= Ca27' + %% + j [—&A + sin Af][c,(2) + c,(F) cos At + c5(r) sin Ar] dt

0

from which we can derive C. An estimate for C is then

IC] = 2a Y1 +2A%e2) 11 + gA) A2 Jm dr ] Jﬁy(a) da + fly(a) cos A(t — a) da
0 a a

<2a 11+ 2A%e) 711 + eA) A2yl J- dtJ' 2da
=2aA72(1 + 2e22) 71 (1 + ). ’

Finally,
Ix(0)] = |(— €A + sin ADC + ¢, (8) + c,2(2) cos At + c5(1) sin Af]
< (1+ ed)|C|+ A2 fry(a/) da + J’I y(a) cos A(t — a) da
< (1+&A)-2arA72(1 + 2e*A2) 71 (1 + Ayl + A~ 2allvl.
Thus,

IH] < A72a(2(1 + 2427 (1 + £A)? + 2).
Since A = 2m/a we also have
IH] < 27)"2a%(2 + 27 (1 + 2A%e2) 1 (1 + £A)?).

To estimate ||Q| we note that, for any y € Y, we have

0301 = | ([ ot@y(@) da) oo

0

= i (j 2123-12y(a) sin Aa da) 212012 gin At
0

<24yl f Isin Al da = 221 ly|l - 4/4 = @/,

0
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and hence Q| < 4/x. To estimate ||S| we note that, for y € Y, we have y = d*w =
d*22q=1/2 sin Ar, hence
bl = 1%12"2a717,  [a*] = 272 .

On the other hand, we have ¢ = 1 and
M= f pwdt = f 2120 712(1 + 2A2€2) V2 (~gA + sin Ar) - 2Y24 Y2 sin Ar dr
0 0
=(1+ 24227172,
and by the definition of S, for x = Sy we have x = d¢ with d = d*/M, or
ol = 1851« = ldll. = |22 V2(1 + 24%6%) 2 (=g + sin ) - 27
X |yll=(1 + 242€%) 2|l =]l €A + sin Adfl. = (1 + 2&)lx
and thus ||S] < 1 + Ae. We conclude with the list of the constants of interest:
IOl <cs=4/a, [I-0Qll<1+4/x, |SQl<cs=(1+Ae)(4/n),
Hl<L=Qn)2a*2 + 2711 + 2A%e2)71(1 + &4))*.
As a numerical example, let g: R — R be any function satisfying
8(2)l <1, lg(z) —g(z) < (4/3)|z —2'| forlz|.|z'|<Ry+r,
|z~ g(z)] < pR, forlz|< Ry, (25)

Thus, C=1,D =4/3. Wetakea= 0.4,k =1, A = 21/a = 12.566, ¢ = 0.01. Ae = 0.12566,
ca=1+4/m=227336,cs = (1 + Ae)(4/x) = 1.4332, L = 0.0068148. ¢ = 0.1. r = 0.018 we

have
Lcy(c + C) = (0.0068148)(2.27324)(0.1 + 1) = 0.017049 < 0.018 = r,

kes(c + Dr) = (1.4332) (0.1 + (4/3)(0.018)) = 0.17772.

For Ry = 1.5, p = 0.5 we have
(1= pes)Ry = (1 = (0.5)(1.4332))(1.5) = 0.4251 > 0.17772,

while Ry ~ 1 = 0.5 < 0.75 = (0.5)(1.5) = pR,.

Thus, problem (23). (24) has at least a solution x(¢) with {x(1)] = R, + r = 1.518 fora =
0.5, |lfl« = 0.1 and any g satisfving (25) with R, = 1.5. r = 0.018, p = 0.5. in other words,
for g of Lipschitz constant 4/3 whose graph is within the heavy box in Fig. 2.
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Fig. 2.
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APPENDIX

The operator bounds used in this paper are obtained by functional analysis considerations. An elementary analysis
of the same operators is contained in previous papers of the authors [1, 2, 6], and we think it relevant for the reader
to see briefly the latter in the form which is needed here.

Let us consider the real linear system

u' —A(Qu=~h{1), O0=sr=a, (26)
B,u(0) + B,u(a) =0, (27
where u(f) = col(uy, . . ., u,), h(t) = col(hy, . . ., h,), A = [c;(f)] is an n X n matrix with bounded measurable entries,
and B,, B, are m X n matrices, 0 < m < n. The corresponding homogeneous system is then
u' — A(u = 0,B,u(0) + Byu(a) = 0. (28)
The adjoint system, in parametric form is therefore (see, e.g. [6, p. 32] also for references).
do/dt + 6A() = 0,6(0) = &@B,, ©(a) = —aB,, (29)
where v(f) = col(vy, . . ., v,), where a = col(a,, . . ., a,) is an arbitrary constant matrix, and where M denotes the

transpose of any matrix M.

If E denotes the differential operator with boundary conditions defined by relations (27), then ker E is the set of
all solutions of problem (28). Analogous definitions have E* and ker E* for relations (29).

For any measurable n-vector z(t) = (zy, . . ., 2,), 0 < t < a, we denote by ||z|. the usual norm {z|. = Ess
Supge,<.|2(2)], where |z| denotes the Euclidean norm of z. If z € (L,[0, a]y*, v = 1, let||z}|, denote the L,-norm ||z||, =
o~ (J3 |z()}* do)"”. o

Let Y denote the L,-space of n-vectors v(t) = (vy, . . ., v,) with |p(1)] L,-integrable, and let Y be equipped with
the norm || ||,.

Let X denote the (Sobolev) space of all n-vectors u(f) = (uy, . ., u,), 0 <t < a, whose elements are AC in [0, a],
and whose derivatives u'(f) = (u;,...,u,) are L, -integrable in [0, a], and let X be equipped with the norm|lu||} =
el + fle”l,

Let U be the n X p matrix, whose p columns form a basis for the solutions to the given boundary value problem
(28), 0 < p < n, and let V be a ¢ X n matrix whose g rows form a basis for the solutions of the adjoint boundary
value problem (29), 0 << g < n. Let ¢ and 4 denote the p X p and g X g matrices whose entries are numbers defined
by

c= f Us)U(s)ds, d= f V(s)V(s) ds.
0 0
These matrices are nonsingular (cf. [6, p. 35]). Let P: X —» X and Q: Y — Y be the projection operators defined

(Pu)(1) = U(d)a, a=c! f Uis)u(s)ds, wue X,
0

(Qv) (1) =V, p=d f V(s)o(s)ds, VEY,
0

(for p = 0 take P = 0, for g = 0 take Q = 0). The operators P,  are projection operators in the Banach spaces X
and Y respectively in the sense that they are linear are

PP =P, lull, < {Pulf, < AsJull,,  ue€X,
0=0. ol <lQul, <o), vey,

for suitable constants A, A,.

LetXg=PX X, =(I - P)X,Y,=QY, Y, = (I - Q)Y, so that X and Y have the decompositions X = X, + X,
Y =Y, + Y, and thus, for instance, Px = 0if and only if x € X, Qv = 0 if and only if v € Y,. Moreover, we have
here X, = ker E, Y, = ker E*.

The following theorem holds.

THEOREM A.1. If h € Y = (L,[0, a])*, v = 1, then the boundary value problem (26), (27) has solutions u € X if and
only if Qh = 0. If Qh = 0, then the boundary value problem (26), (27) has a unique solution Kh with PKh = 0, and
all other solutions are of the form K# + Ua, a an arbitrary row p-vector. Furthermore the linear map K: Y, — X,
is a bounded linear map in the norms of X, and Y.

This, which is derived from Fredholm alternative, was proved, for example, in [6] for » = 1. The proof is analogous
for any v = 1. We refer to [6, pp, 32-39]. Thus, for any h € Y = (L,[0, a])", with Qh = 0 (that is, h € Y,), the only
solution u(r) = Kh of problem (1) with Pu = 0 satisfies ||uf|}, =< y|}Af|, for some constant y independent of h.
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As we know, the analogous problem

W +p x4+ +p.(Ox=f1), Osr=a, (30)

n-1

2 (a,x90) +bx(@) =0, i=1,....m, (31)
where a;;, b; are constants, and p (1), . . ., p,(t) bounded and measurable functions in [0, a], that is, problem Ex =
f(#) with the notations of No. 2, is reduced to problem (26), (27) by the transformation u, = x, . . ., u, = x"~ 1,
namely

up —uy =0, up = u, =0,u, +p(Qu; + ... +pi(Du, = f1),
n (32)
21 (@i;-14(0) + by, (@) =0,i=1,...,m.

I

In other words, () = col(0, 0, . . ., 0, f(t)), and if Qh = 0, then there is one and only one solution x = Kh of (32)

with PKh = 0. Any other solution is of the form u = Kh + Uc, where c is any p column vector. Finally, K: Y, — X,
is a bounded linear map in the norms || ||, of ¥, and || ||* of X, so that

IKAIL, < vilAl., .
Thus, for z = Kh,
”z|[1v = ”(zll BRI} ZH)H" + H(Z’I? BIER Z,’,)“,, = Y“h”w
and for the particular system (32) we derive

Izl llz 3l 200 < AL 2§ < AL

The adjoint system is

DI =Palp, U3 + 01 =Py Uy, Uy + U,y =Ppi0, (33)
which can be reduced to the differential equation
o = (=17 paw, = (<12 (pao1) =+ (pa0) " = (pro) " Y = 0.

If y(¢) = col(y,, . . ., ya) is any element of ker E*, then y, = w € ker E* of Section 2, and the orthogonality of h(r)
with y, or f§(h,y, + ... + h,y,) dt = 0, reduces to

r f(Ow@) de=0.

On the other hand, the orthogonality of Kk = (zy, . . ., z,) with any element x(¢) = col(x,. . . ., x,) of ker E. or

[4(zyx, + ... + z,x,) dr = 0, may not be the same as the orthogonality of z,(r}) with x,(f) = ¢(¢) € ker E of
Section 2, or [§ z;()@(t) dr = 0. Actually, if ¢, . . ., ¢, denotes the base of ker E we have chosen in Section 2, we
may well assume ¢, . . ., ¢, to be the first row of U, and we have only to determine the solution x(f) = z,(1) +

¢, + . . . + ¢,a, which satisfies [§ x()¢(r) dt = 0,i=1,.. ., p. We obtain

fazl(t)dn(t)dwa, =0,i=1....,p,

0

or
(=200~ @ ee) ~ ... — (21, 9,)9,(0) = (I = P)z, ().
Hence 0
X0y =20 () = (21, 009 () — ... = (21, 0,)9P (). =0,1,.. ..n,
Here all functions p,, . . ., p, are bounded, say |p,(¢)| < g, all functions ¢* (r),j =0, 1,...,n — 1, are also bounded,

say |@Y{r)] < M, and
1z Oll- < Alfl,, 7=0,1,....n-1

k2] < Afl, + AL - paM? = VI + paM?), j=0.1...,n,
This proves statement (3) in Section 2.

Thus,
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