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The motion of a charged particle in a randomly varying uniform magnetic field is investigated. 

Stability of the mean position and mean square displacement are determined rigorously in the case 

of random binary variations (telegraph signal). It is found that the mean position can be stable if 

the fluctuating part of the magnetic field is large enough compared to the uniform background. The 

stability regions are obtained in the parameter plane. It is also found that the mean square 

displacement can be unstable even in the region where the mean is stable. After an initial diffusive 

motion (with a calculable diffusion coefficient), the charged particle either acquires wild oscillations 

in its trajectory (stable mean, unstable mean square) or quickly leaves the region where it started 

(unstable mean). 

1. Introduction 

The motion of charged particles in deterministically time-dependent uniform 

magnetic fields was studied by Chandrasekhar’) in the late fifties in order to 

discuss the validity of the adiabatic invariants of charged particles in time- 

varying magnetic fields. He constructed an approximate series solution of the 

nonrelativistic equation of motion of a particle with mass m and charge q: 

m doldt = q[E + (1lc)u x B] (1) 

in which the magnetic field was assumed to be uniform in space but a function 

of time as 

B(t) = eP(t), (2) 

where e, is the constant unit vector in the direction of B, taken to be the z-axis. 

037%4363/85/$03.30 @ Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 



486 AZ. AKCASU AND B. HAMMOUDA 

In the absence of net space charges, the electric field E in (1) satisfies 

V-E=O, V x E = - (l/c)alP/at . (3) 

The cylindrically symmetric solution of eq. (3) is 

E(r, t) = (1/2c)r x e&t), (4) 

where B(t) denotes the time derivative. Substitution of (4) into (1) yields 

d = w(t)v x f?, + (1/2)&(t), x f?,) (3 

where w(t) = qB(t)/ mc is the instantaneous Larmor frequency. Since the 

motion of the particle along the field lines is of no particular interest, we set 

e, . u = 0, and investigate the motion of the particle on the x-y plane, i.e. 

perpendicular to the field lines by our choice. By introducing the complex 

variables z = x + iy and i = v, + it+, the vector equation (5) can be trans- 

formed into a complex differential equation 

d*z/dt* + iw(t)i + (i/2)&(t)z = 0 . (6) 

Using this form of the equation of motion, Chandrasekhar’) calculated exactly 

the change in the magnetic moment of a charged particle following a step 

change in the strength of the magnetic field. 

In this paper, we extend Chandrasekhar’s work, and investigate the motion 

of a charged particle using eq. (6) when the magnetic field B(t) is subject to 

random fluctuations. In this case o(t) in eq. (6) is assumed to be a particular 

realization of a known stationary random process, and the mean and mean 

square values of the solution z(t) of the resulting stochastic differential equa- 

tion are sought. We calculate in particular the mean square displacement of the 

particle as function of time, and show that the particle executes a diffusion 

motion in the vicinity of the origin which is chosen to be the center of 

symmetry assumed in solving Maxwell’s equations (3) to obtain the induced 

electric field. We determine the diffusion coefficient in terms of the power 

spectrum of the magnetic field fluctuations. Away from the origin, the induced 

electric field becomes dominant, and the mean square distance increases 

exponentially in time in contrast to the linear increase near the origin. 

Since the stochastic differential equation (6) is linear, the subtle difficulties 

inherent in most nonlinear stochastic equations elucidated by Van Kampen2.3) 

do not arise in our discussions. 
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2. Behavior near the origin 

We first consider the motion of the particle near the center of symmetry 

where the effect of the induced electric field represented by the last term in eq. 

(6) is expected to be small. We let 

w(t) = w()[l + n(t)], (7) 

where n(t) is the fluctuating part of the Larmor frequency with zero mean. We 

set o,t + t, i.e. the unit of time as the Larmor period. The stochastic differential 

equation (6) then becomes 

d*z/dt* + i[ 1 + n(t)] i = 0, 

which can easily be solved as 

z(t) = 20 + i, 
du e-iu e-‘8(“), 

where z0 and i, are the initial position and velocity of the charged particle in 

complex notation, and 

O(t) = j- du n(u). 

0 

The mean position, mean square displacement, 

function of the particle are obtained from (8) as: 

(z(t)) = z. + i, 1 du e-iu(e-ie’“‘) , 

0 

(]Az(t)]‘) = 2]io12 1 du (t - u) Re[(e-‘” e-ie(U))] , 

0 

(9) 

and velocity autocorrelation 

(10) 

(11) 

and 

4(t) = lio12 Re[(e-” e-ie(r))] . (12) 
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In reducing the double integration to a single integration in the derivation of 

(11) we assumed the stationarity of n(t) which implies that (exp[iO(u) - i@(u)]) 

is a function of (u - v) only. It is observed that the calculation of the mean, 

mean square displacement, and velocity autocorrelation function involve the 

characteristic function (exp[iO(t)]) of the random variable O(t). Both eqs. (11) 

and (12) can be used to calculate the diffusion coefficient from 

lim (]Az(t)]“) = 4Dt, 
,+a 

i.e. 

D = (l/2) 
I 

du 4(u), (13a) 

or assuming that the initial velocity distribution is (]i,]‘) = 2k,T/m: 

r 

D = (k,Tlm) Re [C du e-‘“(e ~iN~)j] . (13b) 
J 

In order to illustrate the application of these results, we consider two examples 

in which n(r) represents a Gaussian process and a binary telegraph signal. 

Gaussian process 

When n(t) is taken to be a Gaussian process with zero mean and a 

correlation function Q(T) = (n(O)n(r)), the characteristic function of 0(t) is 

obtained as 

(exp[-S(t)]) = exp [ - 1 ds (t - s)@(s)] . (14) 

Once G(t) is specified, the above statistical quantities can be calculated 

numerically. To obtain some physical insight into the motion of the particle 

analytically, we consider a white Gaussian process such that CD(T) = G,@(T) 

where G, is the constant value of the power spectral density of the white noise 

process: 

(z(t)) = z,+ i,[l - e-(‘tGo’2)r]/[i + Go/21 (15) 
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and 

D = (k,Vm)(G,/2)/(1+ G34). (16) 

Eq. (15) indicates that the mean position of the particle after long times is 
shifted to 

(z(m)) = z0 + i,/(i + G,/2) . (17) 

As an example, we assume that the particle is initially located at the origin and 
has a velocity t),, along the y-axis, i.e. z0 = 0 and i, = iv,. The coordinates of the 
final position follow from (17) as 

(+‘)> = &,/(I + (334)) (y@)) = u,(G,/2)/(1+ G34). 

In the absence of fluctuations, viz. G, = 0, (z(t)) displays the usual gyration of 
the charged particle in a constant uniform magnetic field. The asymptotic mean 
position coincides with the initial position of the particle when its initial 
velocity distribution is isotropic. 

The fluctuations in the magnetic field produce a diffusional motion exactly 
the same way as collisions would. The diffusion coefficient has a maximum 
when G, = 2 or in real time G,, = 2~0,. The physical interpretation of this 
condition is not clear to us. 

Binary telegraph signal 
In this case, n(t) is assumed to be a random process whose member functions 

are defined as follows: Each function n(t) takes only two values +q or -7 and 
makes independent random jumps between these two values. The probability 
of having m sign reversals in a time interval T is given by a Poisson 
distribution: 

P(m, T) = e-AT(hT)m/m ! , (18) 

where A is the mean reversal rate. In order to calculate the characteristic 
function (exp[-S(t)]), we express the probability density P(O, t) as 

P(8, t) = C P(4 4 t) , 
n 

(19) 

where P(8, n, t) is the joint probability density for the joint process {o(t), n(t)}, 
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and summation over n implies IZ = +v and y1 = -r]. The reason for introducing 

P(0, n, t) is that the joint process {e(t), n(t)} is a Markov process and thus its 

joint probability density satisfies a Chapman-Kolmogorov relation: 

P(O, n, t + At) = 
I 

d0’ 2 P(0, n, t + At/ 8’, n’, t)P(W, n’, t) . 
n’ 

(20) 

The transition probability can be written explicitly in this problem as 

P(O, n, t + AtI O’, n’, t) = (1 - A At)S[B - B’- 68(n, #)]S(n - n’) 

+ A Al S(0 - /3’)8(n + n’) + 0(At’). (21) 

The first term represents a transition in Ar in which no sign reversal occurs, and 

hence II = n’. The probability of this transition mode is (1 -A At). The Dirac 

delta function is the conditional probability that the variable O(t) will change 

from 0’ to 8 = 8’+ 68(n, 8’) during this transition. The second term in eq. (21) 

represents a transition with probability A At in which a sign reversal occurs so 

that n = -n’. Since this term is already proportional to At, the change in e(t) 

during At leads to terms of higher order in At and thus can be ignored. 

Transitions involving more than one sign reversal are also of higher order in At, 

and hence ignored. 

Substituting eq. (21) into (20), expanding the delta function in the first term 

of eq. (21) as 

tip3 - 8’- 6qn, 0)~ = qe - e’) - 6e(n, e)(as(e - eyae) 

and defining 

me, d = p(e, +rl, t) , 

p,@, 4 = p(e, -71, t) , 

we obtain 

aP,iar = -(aiae)[P,se+(e)iAt] + A (P2 - P,) , (224 

aP,lat = -(a/ae)[p,se-(c)/At] + A(P, - P*). (22b) 

The increment &3*(e) in /3(t) during At is to be calculated from the differential 

equations governing the time evolution of e(t), in general. In the present 

application, it is given by 
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Se’(e) = +v At 

so that eqs. (22) become 

aP,iat = -~aP,iao + h(P,- P,), (234 

aP21at = ~aP2/ae + .h(P, - PJ . WI 

The desired probability density P(f9, t) is given by P(8, t) = P,(t9, t) + P2(0, t) 

according to eq. (19). Its time evolution is obtained from eqs. (23) as 

a2Plat2+ 2haPlat = T2a2Pjae2. (24) 

Since we are mainly interested in the characteristic function C(k, t) = 

(exp[-M(t)]) with k = 1, we Fourier transform eq. (24) to obtain our equation 
for C(k, t) directly: 

a2Clat2+ 2haCJat = -k2v2C. (25) 

The initial conditions for C(k, t) are C(k, 0) = 1 and 6(k, 0) = 0. They follow 
from P,(8,0) = 6(8)/2 and P,(& 0) = S(8)/2, where we assume that n(0) = 57 
with equal probability. These imply P(8,O) = S(e) and P,(B, 0) - P2(8, 0) = 0. 

The former leads to C(k, 0) = 1. The latter leads, with p(e, t) = 

-7 a(P, - P,)/M or c(k, t) = -ink[F,(k, t)- F2(k, t)], to c(k, 0) = 0. Hence the 
solution of eq. (25) with these initial conditions yields 

(e-ie”‘) = e-“‘[(hlfi) sin(0t) + cos(L!t)] , (26) 

where R = (v2- A2)“*. The mean position (z(t)), mean square displacement 
(]Az(t)]‘), and velocity auto-correlation function d(t) are obtained by substitut- 
ing eq. (26) into eqs. (lo), (11) and (12) respectively. The result in eq. (26) is 
valid for both n > A and n < A. In the latter case, 0 is replaced by id with 
d = (A2- ~~)l’~. Since -A + (A’- q2)ln < 0, (exp[ie(t)]) is a decaying function of 
time in both cases. We present the velocity auto-correlation function explicitly 
when 11 >A: 

d(t) = 4(O) cos(t) e-*‘[(A/L!) sin@%) + cos(nt)] , (274 

and when n <A: 

d(t) = 4(O) cos(t) e-*‘[(A/&!) sinh(L?t) + cash(U)] , (27b) 
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where 0 = In*- A2]1’2 in both cases. The diffusion coefficient is obtained using 

eq. (13a) as 

D = (kBml)(r12/2A)/[1 + ((v2- 1)/2A)21 (28) 

in either case. 

The auto-correlation function and power spectral density of a random binary 

signal process as defined above are, respectively, n2 exp(-2h]r]) and (v2/A)/[ 1 + 

(n2/2A)2]. In the limit of A -+c-c with n2/A = G, where G, is constant, this 

process approaches to a white noise process with a power spectral density G,, 

and eq. (28) reproduces the diffusion coefficient in eq. (16) calculated with the 

Gaussian white noise process with the same G,. The diffusion coefficient 

vanishes in the limit of A -+ 0 as expected because this limit corresponds to a 

single step change in the magnetic field rather than a sequence of step changes. 

An interesting special case is n = 1 which corresponds to binary changes in the 

magnetic field strength between zero and 2B,. In this case, the diffusion 

coefficient is proportional to l/A and increases when the mean reversal rate is 

decreased. This may be expected because the particle moves on a straight line 

during those time intervals where B = 0. 

3. Complete solution of eq. (6) 

The stochastic equation (6) governing the random motion of the charged 

particle in both B and E fields can be treated exactly when w(t) is a binary 

signal process. Following Chandrasekhar’s treatment, we substitute in eq. (6): 

z(t) = Z(t) exp [- (i/2) j dt’ o(P)] 

to transform it into 

d2Z/dr2 + (w2(t)/4)Z = 0 . (30) 

This equation which describes a harmonic oscillator with a random frequency 

has been investigated by many authors previouslyk7). In this paper, we follow 

the approach used by McKenna and Morisson6) with slight modifications when 

w(t) is the random telegraph binary process. 

Eq. (30) has two linearly independent real solutions X1(t) and X2(t) satisfying 

the following initial conditions: 

X,(O)= 1, X1(0)=0, X,(O) = 0 , r;;(O) = 1 . (31) 
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Its general solution can be written as 

493 

Z(t) = ZcXI(Q + &X*(f) 1 (32) 

where the constants of integration Z, and Z, are related to the initial position 
and velocity of the charged particle as Z, = z0 and Z, = i, + io(O)z,/2. 

As before, we assume that o(t) = o,,[l + n(t)] where n(t) is a binary random 
process assuming two values 271 randomly. To compress equations, we choose 
the unit of time such that the dimensionless time is t = ~&.~,/2. Note that the 
normalization of time contains the factor l/2 in this section. Then eq. (29) 

becomes 

z(t) = [ZJI(t) + Z&(t)] e-ie”’ e-” , 

where 

fW> = j- du r](u), 
0 

(34) 

and XI(t) and X2(t) now satisfy the dimensionless form of 
oscillator equation 

the harmonic 

d2Xi,2/dt2+ [l + n(t)]‘X,,, = 0, (35) 

with the initial conditions given in eq. (31). We note that XI(t), X2(t) and 0(t) 

(33) 

are three correlated random processes. The calculation of the mean position 
(z(t)) of the charged particle requires the following cross-correlations of these 
processes: 

g(t) = (XI(t) emi@)), (36a) 

h(t) = (X*(t) e-ie(‘)) . WI 

Higher moments of z(t) involve averages like (X:(t)), (Xi(t)) and (XI(t)X2(t)), 
etc. To calculate such averages, one needs the joint probability distribution 
P(X,, X,, 0, II, t). However, the set of variables {X,, X,, 0, n} does not form a 
Markov process because XI(t) and X*(t) satisfy a second order differential 
equation, eq. (35). We augment this set by including X,(t) and X2(r) to obtain a 
vector Markov process with components {& 8, n} where 

5(t) = col[ x,, XI, x2, X2] . (37) 
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The time evolution of t(t) follows from eq. (35) as 

where 

i -,lk]’ i 
0 0 

M[nl= 0 0 0 0 0 1 

0 0 -[1+n]’ 0 

) . 

(38a) 

(38b) 

In order to obtain the master equation for the joint distribution P(& 0, II, t), we 

again introduce P,(& 13, t) = P(& 8, +n, t) and P2(& 0, t) = P(& 0, -7, t). Fol- 

lowing the procedure described in the previous section in vectorial form we 

obtain 

ap,/at = -(a/ag)*[P,M+*&]- (alae)[~P,]+ h[P,-P,]) Wa) 

ap,/at = -(alag)~[zJ,M- *(I+ (a/ae)[7jP2] + h[P, - P,] ) (39b) 

where M* = M(+v). We present a derivation of these equations in a more 

general context in the appendix. A more explicit form of eqs. (39) is 

aP,lat = -[rir,aP,/ax, + X2aPllax2] + p+[x,aP,iali; + x2aP,iak2] 

-~aP,iae+A(P,-P,), (404 

aP,tae = -[k,aP2/axl + X2aP2iax2] + p-[x,aP,lar;l, + x2aP2jari2] 

+~aP,lae+A(P,-P,), W’b) 

where p* = (1 + T)~. Eqs. (40) will serve as the starting equations in calculating 

the mean and variance of the position z(t) of the particle. The desired 

probability density P(&, 8, t) is the sum of P,(& 0, t) and P2(& 0, t). 

The conditional probability densities p,( 5, 0, t I so, e,, no9 0) and 

P#, 0, t Igo, e,, no, 0) also satisfy these equations with the usual initial con- 
ditions. 

~~(5, 0, 4 to7 coy no, 0) = w - 50)w - eo)ko, -rl . @lb) 
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We need this somewhat obvious remark later in the calculation 
position and mean square displacement. 

4. Time evolution of the mean position 

The mean position of the particle follows from eq. (33) as 

(z(t)> = {z,g(t) + [i, + i(1 + n,)z,]h(t)} e-” , 

495 

of mean 

(42) 

where g(t) and h(t) are already defined in eq. (36). We interpret these 
ensemble averages as conditional averages for a fixed set of initial values z,,, i, 
and n,, so that we can perform the averages with respect to the distribution 
P(&, 8,, no, r = 0) at the end. 

We first consider g(t) = (X, exp(-if?)). The time evolution of g(r) can be 
obtained by solving the set of four coupled equations for gl(t) = (X, exp(-ie)),, 
g*(t) = (X, exp(-ie)),, g3(f) = (X1 exp(-ie)), and g&f) = (X1 exp(-ie)),. Intro- 
ducing a column vector g(t) = col[g,, g,, g,, g4], and taking appropriate moments 
of eqs. (40) we obtain 

g=N.g, 

where 

(43a) 

N= * 

( 

-(A+iv) A 
-(A-i7) : 

0 
1 

-p+ 0 -(A+iv) A ’ W) 

0 -p- A -(A - iq) ) 

The initial conditions are obtained by using X,(O) = 1, X1(O) = 0, e(O) = 0, and 

eqs. (41) as g(0) = col[SnO,+?, S”O,_‘l, O,O]. Since the coefficient of g(r) in eq. (42) 
does not contain n,, we are allowed to average g(0) with respect to the initial 
value no at this stage. Since ~~ = ?r) with equal probability, we find g(0) = 
(l/2) col[l, l,O, 01. Solving eqs. (43) with this initial condition using the Laplace 
transform and noting g(t) = gl(r) + g2(t) we find 

g(s) = Ag(s)/A(r), 

where 

(44) 

Ag(s) = s[l + (s + 2A)‘j + 2rl*[s + A] + iT[s(s + 2A)+ ~(7 - 2)], (454 
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A(s) = [(s + 2h)‘+ l][.s* + l] - 4~*[1+ i(s + A)]*. Wb) 

The correlation function h(t) is obtained in a similar way by solving the 

coupled set of equations for h,(t) = (X2 exp(-id)),, h*(t) = (X, exp(-i8)),, 

h3(t) = (Xz exp(-i8)), and h4(t) = (X2 exp(-ie)),. The vector h(r) = 

col[h,, h,, h,, h4] statisfies the same equation (43) with the following initial 

conditions: h (0) = col[O, 0, S,“, +4, S,,_,]. The latter follows from X,(O) = 0, 

J&(O) = 1, 0(O) = 0 and eqs. (41). However, the coefficient of h(t) in eq. (42) 

contains the initial value n, this time. Since the averages of aOsno, +‘I and n,6,0, _‘I 

over the initial distribution, i.e. n, = kn with equal probability, are +~/2 and 

-n/2, respectively, we must solve eqs. (43) once with the initial vector h”‘(O) = 

(l/2) col[O, 0, 1, 11 and once with h”‘(0) = (l/2) col[O, 0, 1, -11. The results for 

h(t) = h,(t)+ h2(f) in the Laplace domain in these two cases are 

/?“(s) = Ah”‘(s)/A(s) (46a) 

and 

h”‘(s) = AhC2’(s)/A@), (46b) 

where 

Ah”‘(s) = (s + 2A)‘+ 1 , (46~) 

Ah’*‘(s) = -2n[l+ i(s + A)] . (464 

Substitution of eqs. (45) and (46) into eq. (42) yields the Laplace transform of 

the mean position of the particle as 

(z(s)) = z,[Ag(s + i) + i Ah”‘(s -i- i) + ir] Ah”‘(s + i)]/A(s + i) 

+ i, Ah”‘(s + i)/A(s + i) . (47) 

If this result is averaged over an isotropic initial velocity distribution, the 

second term vanishes. In this case, the mean position of the particle always 

remains at the origin if it is located there initially. 

The stability of the mean position is determined by the characteristic 

equation A(s) = 0 where A(s) is given in eq. (45b). We investigated the stability 

using the Nyquist criterion’) and found that the mean is stable when 

A* 6 Af(v2) = {4~*(5 + 2n2) - 1 - (1 + S~j*)~‘*}/{4[1- 2~* + (1 + 85~*)~‘*]} (48) 
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holds and also when v2 > 3. The region of stability is depicted in fig. 1. The 
boundary curve A2 = ht(v2) corresponds to the upper limit of eq. (48). It is 
observed that the mean position returns to the origin for values of A2 and v2 in 
the stable region which starts at v2 = 1. The emergence of a stability region 
when 77 > 1 is due to the fact that the magnetic field starts reversing its 
direction part of the time when n > 1, and consequently the particle tends to 
reverse its direction of motion. When v % 1, the magnetic field becomes 
increasingly more symmetric about B = 0, and the motion in the reversed 
direction cancels the motion in the positive direction on the average. 

We have investigated the time-dependence of the mean position assuming 
that the particle is initially located at the origin, i.e. z0 = 0. Then eq. (47) 
reduces to 

(z(s)) = i, Ah’*‘(s + i)/A(s + i) 

or in the time domain 

(z(r)) = i&“‘(t) e+’ 

where h”‘(t) can be obtained directly by solving the matrix equation h’ = N - h 

with the initial condition h(0) = (l/2) col[O, 0, 1, l] and using h”‘(t) = 
h,(t) + h*(f), as explained earlier. Fig. 2 shows the magnitude of the mean 
position, /(z(t))], which is the distance of the mean position from the origin, as 

50 

40 

30 

> 

20 

10 

i 

I I , I , 1 , 1 , 

STABLE 
MEAN 

Fig. 1. Regions of stability for the mean as given by eq. (48). 
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-2 - 

0 1000 2000 3300 4000 5000 

Fig. 2. Behavior of the magnitude of the mean distance 1(2(r))’ as a function of the resealed time 

war/2 on a logarithmic scale for different sets of parameters: (1) n = 0.1, A = 10, (2) n = 0.1, A = 271. 

(3) n = 0.1, h = 3, and (4) t) = V/5, A = 300. Cases 1-3 correspond to unstable means whereas case 

4 depicts a stable one. 

Fig. 3. Case of a stable mean particle trajectory (represented by e”(z(t)) for convenience) with _ 
n = V/3, and A = 300. Starting at the origin (point A corresponding to z0 = 0, i0 = 1) the particle 

returns to it (point B corresponding to wof/2 = 5000). The trajectory seems jogged because of the 

long time steps chosen in order to see the return to the origin. 



PARTICLE IN A RANDOMLY VARYING MAGNETIC FIELD 499 

-5-q I 1111111111111111~IIII 

-1.5 -1 -.5 0 .5 1 

ReCeit<zw>l 

Fig. 4. Same as fig. 3 for an unstable mean particle trajectory with 17 = 0.1 and A = 10. 

function of the normalized time w&2 for I&( = 1 and for different choices of 
parameters. When TJ = 0.1 the mean is unstable, and the distance of the mean 
position to the origin increases exponentially in time. The case 11 = A6 
corresponds to a stable mean, for which the particle, starting from the origin at 
t = 0, returns exponentially to it on the average. 

Figs. 3 and 4 show the mean position of the particle initially located at the 
origin with a unit velocity in the x-direction, i.e. z0 = 0 and i, = 1, for two sets 
of parameters corresponding to stable and unstable means. For clarity of the 
figure e”(z(t)), rather than (z(t)) itself, is plotted on the complex plane. 

5. Variance and standard deviation 

This section is concerned 
define as 

do = (lzW12) - l(4d>12 . 

with the calculation of the variance which we 

(49) 

Since the mean position was the object of our concern in the last section, we 
concentrate here on the mean square distance (lz(t)12) which is identical to 
(lZ(t)l*) according to eq. (29). Using eq. (32) we then find 

(Iz WI*> = I-Gl*WfW) + W,WX2W) Re(Z$,) + l&l’<X~<t>> . (50) 
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For simplicity, here also we assume that the particle is located at the origin 

initially, so that Z, = 0 and Z, = i,,. Then 

(14G12> = l-mx:w) . 

To obtain the time evolution of (Xi(t)) we define a column vector 

f(f) = col[(X$,, (Xi),, (X2X,),, (X2X2),, (Xi),, (Xi)] where the ensemble 

averages (. . .)1 and (. . .)* are over the distributions Pi and P2, respectively, 

as before. Using the master equations for P, and P2 in eqs. (40) we find the 

time evolution of r(t) as 

P(f) = s * f(t) ) 

where 

s= 

-A A 2 0 0 0 

-;+ -A 0 -A 0 A 2 0 1 0 0 . 0 -p- A -A 1 0 

0 0 -2p’ 0 -A A 

0 0 0 -2/?- A -A 

(52a) 

(52b) 

The initial conditions follow from X,(O) = 0 and X2(O) = 1 and eqs. (41) as 

r(O) = (1/2)col[O, O,O, 0, 1, 11. The function (X:(t)) is determined from the 

solution of eqs. (52) as (X:(t)) = (Xi(t)), + (X:(t)),. 

We have solved eq. (52) numerically by seeking the eigenvalues s, of the 

matrix S. The solution is presented as 

where Q is the eigenvector matrix, and d, is a diagonal matrix with all zero 

diagonal elements except for the jth one. Considering the same sets of 

parameters that were used to plot the mean distance in fig. 2, we find that the 

mean square distance always has an eigenvalue with a positive real part which 

drives it unstable, therefore making the variance a’(t) itself unstable. As shown 

in fig. 5, this holds even in the case with 7 = d/3 and A = 300 for which the 

mean distance 1(2(t))] is stable. In fig. 6, we plot the mean position /(z(t))l and the 

standard deviation g(t) together to demonstrate “the mean square instability” 
(case n = fi) in which the mean is stable (curve 2) but the mean square grows 

exponentially with time (curve 2’). The second case (7 = 0.1) shown in this 
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30 

0 

0 1000 2000 3000 4000 5000 

Fig. 5. Behavior of the variance u*(t) vs. war/2 on a logarithmic scale for the same sets of 

parameters as in fig. 2, i.e. (1) 9 = 0.1, A = 10, (2) TJ = 0.1, A = ~ST, (3) 7 = 0.1, A = 3 and (4) 

Q = V/3, A = 300. 

I I I I I I , I / I 
0 1000 2000 3000 4000 5000 

q-t 

Fig. 6. Variation of the mean dista!ce /(r(f))/ and standard deviation a(t) vs. w&2 for: (1) and (1’) 
v = 0.1, A = 10, (2) and (2’) 7 = d/3, A = 300. 
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6 

6 

2 

0 

Fig. 7. Variation of the variance a*(l) vs. w&2 with (curve 1) and without (curve 2) the induced 

electric field for q = 0.1 and A = 30. 

figure corresponds to the “mean instability” in which the mean (curve 1) itself 

is unstable. It is noted that although the mean square distance (lz(t)1*) (not 

plotted here) displays an oscillatory increase, the variance g*(t) which is the 

mean square deviation from the mean distance increases smoothly and shows 

no oscillations. Fig. 7 shows the initial linear increase of u*(t) corresponding to 

the diffusion region (B field only) and then gradually the exponential behavior 

takes over when the induced E field term in eq. (1) becomes dominant. Since 

we know that for this case (7 = 0.1) the mean is unstable, we can conclude that 

the particle is quickly lost from the central region where it started. Note that in 

the stable mean case (7 = -\/3) the particle has wild variations in its trajectory, 

but it still remains in the central region on the average. 

6. Summary 

The motion of a charged particle in a randomly varying uniform magnetic 

field has been investigated. A stability analysis showed that the mean position 

is unstable unless magnetic field fluctuations are large enough compared to the 

uniform background. When the mean position is unstable, the particle quickly 

leaves the central region where it starts. When the mean is stable, even though 

the particle, on the average, remains in the central region, it can acquire wild 
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oscillations in its trajectory (unstable mean square). Since a real system of 
charged particles such as a plasma has a large number of charged particles, it 
would be interesting to see how collisions would affect our present conclusion. 
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Appendix 

We consider the following stochastic differential equation: 

*W= g(X, ~(t))+h(X, EON-~(~), (A.11 

where {f(t)} is a Gaussian process with a zero mean and a correlation function 

(f(t)f=(t’)) = 2BS(t - t’) . (A.2) 

The process {c(t)} is assumed to be a Markov process characterized by a 
transition probability per unit time W(E’/ E, t) at time t, from E to E’. The total 
transition probability is r(c, t) = Jds’ W(E’\E, t). We want to obtain the 
Fokker-Planck equation for the probability P(X, E, t) of finding X(t) and I 
at X and E at time t. The important observation that enables the solution of 
this problem is that the joint process {X(t), e(t)} is a Markov process, because 
the knowledge of X(f,) and e(tO) completely determines the future values of 
X(t) and s(t) for t 5 r,. 

We start from the Chapman-Kolmogorov equation 

P(X,c,t+At)=ldX’d &P(X, E, t + At IX’, E’, t)P(X’, E’, t). (-4.3) 

The crucial step is 

P(X,c,t+At]X’,&, t)= S(E-&‘)[I-At@, t)]PZ(X,t+At(X’,t) 

+ At W(E 1 E’, t)ti(X - X’), 64.4) 

where the first term on the right-hand side represents the case in which there is 
no transition during At from E’ to E, and X(t) changes from X’ to X according 
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to eq. (A.l) with a given E. The second term accounts for transitions from E’ to 

E in At in which X(t) does not change appreciably by diffusional processes. 

Here lies an important physical restriction on the nature of the {c(t)} process: it 

is implied that I evolves in time by making sudden jumps and is constant 

between the jumps. On the other hand, X(t) evolves more slowly in time by 

diffusion, according to eq. (A.l). 

The function P,(X, t + At/X’, t) is the probability of finding X(t + At) at X 

knowing that X(t) = X’ for a fixed value of e(t) = E. It can be expanded as 

P,(X,t+AtlX’,t)=6(X-X’)+AtaP,(X,t’(X’,t)lat’),.,,, (A.9 

where we have used 

lim P,(X, t’)IX, t) = S(X - X’) (‘4.6) 
f’-rl 

The conditional distribution function P,(X, t’[X’, t) satisfies the following 

Fokker-Planck equation: 

ap,w, t’lx’, tyat = - (a/axj)[q (X, &)P,] 

+ (1/2)(a2/axj axk)[(T,k(X F)pf] . 64.7) 

The expressions of nj and vjk will be given below. The substitution of eqs. 

(A.4)-(A.7) in (A.3) yields 

+ (1/2)(a2/axj axk)[ujk(X F)p(xT F, t)] 

+ 
I 

de’ [ W(E ) E’, t)P(X, E’, t) - W(E’/ E, t)P(X, E, t)] , 

64.8) 

where 

Vj(X, E) = f,rnO (AXj((t)lAt) 

and 

@,k(X E) = lim (AXj(t) AX,(t)/Ah) 

and can be calculated from the basic equation governing diffusion. When the 
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latter has the form given in (eq. A.l) we find 

Vj(X &I= gj + (ahjllaXm)hmnB,n 

and 

ajk(X, E) = 2hj,B,, . 

(A.9) 

(A.10) 

Eqs. (A.8), (A.9) and (A.lO) constitute the basic equations to study the jump 
and diffusion processes. 
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