
Parallel Computing 2 (1985) 109-118 109
North.Holland

Task granularity studies on a many-
processor CRAY X-MP

D.A. CALAHAN
Department o/ Electrical Engineering and Compuler Science, Uni~rsily of Michigan, Ann Arbor, 311 4809, USA

Received April 1985

Abstract. A hybrid granularity model is proposed for general concurrent solution. It is applied to the triangular
factorization of a dense matrix ranging in size from 4 to 1024. Concurrency is achieved at two levels: (!) with
small (micro) task granularity and (2) with large (blocked) task granularity. Rdevano~ to a many-proccssax
CRAY X-MP is demonstrated by simulation.

Keywords. Parallel algorithms, task granularity, microtasking, CRAY X-MP, triangular factorization

1. Introduction

1.1. Parallel architecture classifications

Parallel (concurrent) scientific architectures proposed to achieve GIGAFLOP performance
tend to have one of two attributes.

1) Low Parallelism (.q< 64 processors). In this evolutionary architecture, individual pipelined
vector processors with peak performance in the range of 100-500 MFLOPS are intexconnected
principally through a main memory. The CRAY X-MP is currendy a 2oprocessor example [8].
These will be termed vector multiprocessors (VMPs).

2) Massive parallelism. A number of revolutionary architectures with individual processors in
the range of 5-10 MFLOPS and s p e d a l i z e d interprocessor connections have been proposed in
recent years [9,10].

The same multiprocessor architecture and algorithmic attributes that have been researched
for massively parallel machines--i.e., interprocessor signallintg and data communication, task
processing, and algorithmic partitioning--can be studied for VMP's. An advantage of such a
study is that results can be compared with actual machine performance on the CRAY X - ~ for
p ffi 2; extrapolations to a many-processor configuration have potential near-term value for
extensions of the CRAY family.

In this paper, the former class is studied by instruction level simulation of a many-processor
extension of the CRAY X-MP. The intent is to give detailed insight into the algorithmlc and
interprocessor communication issues peculiar to VMP's.

1.2. Hybrid 8rwmlarity model

At its higher level, the concurrent algorithm organization for a VMP in,~ves the
concept,

0167,BI91./BS.~3.30 ~ 19B.~. Elsevier Science Publishers ILV. (North-HolhaKl)

110

Small groin tasks;
processors tightly coupled

Large grain tasks;
independent processing

Small grain tasks;
processors tightly coupled

D.A. Calahan / Task granularity studies

kth step

Fig. 1. Hybrid granularity computational model.

Define a task as a set of instructions which communicate with other tasks only at task
initialization and termination. Task granularity (size) is the single most critical issue in
classifying concurrent architectures and algorithms. Anarchi tecture and associated system
software that can effectively support a variety of small tasks can certainly process large tasks
effectively. Conversely, algorithms involving large independent tasks that have low inter-
processor signalling or data flow per operation are the most likely to be usuable on a spectrum
of concurrent architectures.

Although certain codes naturally decompose into large-grain independent tasks, most at best
involve a combination of large-grain and small-grain tasking. One model natural to some
physical problems is shown in Fig. 1. Here, a large-grain decoupling task To ~') is performed by
all processors cooperating at the small-grain level, on the kth step of a process; this could be a
field-related calculation in a physics problem [4], or, as in this paper, a block LU factorization
in solution of a set of equations. This step enables p simultaneous large-grain tasks T1 (k) Tp (k~
to be performed. A large-grain coupling task T. (k) again composed of small-grain tasks, may be p+l ,
present, as in divide-and-conquer algorithms; alternatively, T. ~k) may be viewed as To ¢k+1~ of p+l
the next iteration. This will be termed the hybrid granularity model. Although the concurrent

I COMMON OR ROTATING SEMAPHORES
& REGISTERS Fig. 2. CRAY X-MP extension to p

processors.

D.A. Calahan / Task granularity studies 111

tasks Tl(k)... Tp (k) usually together involve the majority of the computational workload, the
time to perform To (k) and/or T(k) may dominate the time of the concurrent tasks. The " p + l

importance of efficient implementation of the small-grain steps--and of the tasking hardware
they require--is open to question. In this paper, this issue is investigated for a 16-processor
CRAY X-MP extension solving a common linear algebra problem [1,7].

2. Tasked equation solution

2.1. Introduction

The problem chosen for stud3~ in this paper is the triangular factorization of a matrix. Among
other attributes, factorization (a) has a sequential nature so that successive interdependent tasks
must be defined, and (b) permits the task size to be varied by algorithmic means so that the size
can be forced to be sufficiently small to stress the tasking capability of the architecture being
studied [6].

Consider the solution of the matrix equation

A X = B

for X, where A is an n × n full matrix, and X and B are vectors. A study of the solution is to be
made on a p-processor X-MP, where each processor communicates with other processors
through semaphores, shared registers, and main memory (Fig. 2). No privoting is involved in
this model.

Two classes of tasking are to be studied.
a) Large-grain tasked solution. Here the matrix is blocked and block-level operations are

controlled as tasks. This blocking has been shown very important to efficient solution on the
CRAY-1 [2,3] since it (1) migrates loop control overhead to the outer loops, and (2) reduces
traffic between main memory and the vector register cache. Tasking overhead also decreases as
the block size increases.

b) Small-grain tasked solution (microtasking [1]). Although the CRAY X-MP permits high
speed semaphore and limited scalar communication between processors, vectors must be passed
through main memory. There is a question of whether this combination is adequate to support
that is shared and synchronized at a low level, i.e., with tight processor coupling. The above
blocked solution synchronization is therefore moved down two levels by reverting to column-
by-column triangular "factorization. Tasking control and other overhead is now of major
concern.

These solution will eventually be combined in a two-level factorization algorithm for large
matrices.

2.2. Blocked factorization

2.2.1. Introduction. Let the block-partitioned LU factorization of a matrix be represented in the
form

JAil A12 Alq 1 rLl10 i]I!l ii] :!A22 LL l L22 o . • . , • . . •

i ... Aq, d i ..? L " ' "

(1)

where Art, Lr~, and U~r are n~ × n~ matrices, and Lrr and Urr are lower and upper triangular
matrices, respectively.

112 D.A. Calahan / Task granularity studies

We represent the triangular LU factorization of A by a series of blocked eliminated steps
proceeding from A n to hqq, and using, at the rth step in a Crout-like reduction, the outer
product of the rth row and column of blocks to partially reduce the remaining southeast corner
of the matrix.

This step is notationally simplified at the rth step by collecting the partially-reduced
block-row to the right of the diagonal into AI~) and the partially-reduced block-column below
the diagonal into a(r). the partially-reduced diagonal block is denoted AI~) and the remaining ~a21

southeast corner collection of blocks is A~). The simplified partially-reduced matrix is

All)

Ai? All) (2)
where A~) and A(2'~) are n r × n r and n, × rn, matrices, respectively. The reduction of the next n~
rows and columns is completed as follows.

Step (1). Factor A~) into lower and upper triangular form

Ai?, - L. r. (3)
Step .(2). Substitute into A~) and A(2~).

r - l~(r) (4) A~)'-" - - ' . ~ 1 2 ,

A(r),._ ~ (r) . -~ (5)
21 "~t21 Vrr

which completes the formation of a block-row of U and a block-column of L. Eq. (5) requires
more computation than Eq. (4) if Ur, has non-unitary diagonals.

Step (3). Accumulate the outer product into A(2~).

A(r) ~_ ~(r) _ ~(r)~(,) (6) 22 ~ 2 2 ~a21"'12 "
This blocked solution is strictly conservative of operation count vis-a-vis Gauss elimination [5].

2.2.2. Blocked parallelization. The accumulation step of Eq. (6) usually involves the larger
number of floating point operations and so is of first concern. With p processors, Step (3) can
be partitioned into

"~22,I~22,2.'- 22,pl*-t~22.1~22.2 ' ' - 2,pJ ~21 t"12.1 12,2... 12.9] (7)

where ,~(r) is a mr~p-column partition of A~). This partition preserves the average vector "~ij, k
length 1= m,, the number of rows of ~2~a(r)', the vector loop is executed n r times, the row
dimension of A~!k. A full concurrency of p is achieved provided m J p is an integer. Note that
this partitioning across the processors is unrelated to original blocking, except for the dimension
n r •

The substitutions of Eqs. (4) and (5) are similarly partitioned into

[Aii!1 A(,) 1 rA(., ~(r, 1 12 ,p /2J ~" L~r 1 t 12.1 1 2 . p / 2 J , (8)

Air) [Air)]
21,1 [21,1 J
• ~ " U ~ ' (9)

/d(r) IA(r) / L "~'21.P/2 L 21.p/2.J

where it is assumed that p /2 processors are assigned to each substitution.
Eqs. (8) and (9) can be implemented in two ways. Simultaneous substitution into all rows of

A(:~).i and into all the columns of A~!; yields 1= 2m,/p; conventional substitution results in
} = n J2 . The latter will be used in this experimental study, since] is independent of p.

D.A. Calahan /Task granularity studies 113

2.3. Microtasking

2.3.1. Factoring the diagonal blocks. A virtue of the blocked algorithm is that, once the diagonal
block factorization of Step (1) is completed, the multiplication and substitution steps are readily
partitioned as above, and involve large, concurrent similarly-sized tasks with] = n, or] = nr/2.
Any inefficiency due to interprocessor communication will therefore occur in Step (1).

The following study concerns the application of p tightly coupled processors to this block
factorization; it is a special case of the overall factorization problem when n , ~ 64, the
maximum length of a vector on the CRAY X-MP.

2.3.2. Algorithm. let Vy: ,.i represent a partial ith column of the matrix, beginning at row j and
ending at row k, and let sij be and (i, j) scalar element of the matrix. Then Steps (1)-(2) are
replaced by the following to completely reduce the r th column.

Step (1). Reciprocate pivot.

s , , , - 1 / s , , . (lO)
Step (2). Substitute into the r th column in Vt:

V r + l : <-- S r rVr+ l : n . r" (1 1)

Step (3). Accumulate into V2:.. ,. For i = 1,2 n - 1,

V / + t : ~ - V/+ 1 : ~.1,, - - Si.rV/q-1 :n.i, (12)

Si+l,r "6"- V/+I : i + l . r (13)

The vector inner loop requires only one load and no store per add multiply in (12). However,
Eq. (13) requires a wait in the inner loop until Eq. (12) is completed; this slows the inner loop
performance below that of a matrix multiply [2,3].

It is proposed that a multiprocessor version involve the simultaneous accumulation of
columns rp - p + 1. . . rp at the r th step. The ith processor is responsible for the reduction of
the r p - p + i column by the accumulation of previous columns. The critical phase of this
process occurs in the accumulation step of (13) when a processor requires columns V/+l:,,p,- A
potential wait could occur when, for p r - p + 1 <~pr- 1, V/+l:,.i is an operand in Eq. (12). At
most, p - 1 potential waits occur at each step, so that proportionately the greatest potential
disruption occurs when r is small.

In summary, interprocessor communication occurs at the level above the vector inner loop,
the lowest level consistent with vector processing and two levels below the previous blocked
solution.

3. Implement ion and performance evaluat ion

3. I. The CRA Y X-MP simulator

A simulator that performs instruction-level timings and numerical calculation from assembly.
language codes has been developed for a many-processor CRAY X-MP. The simulator
incorporates the semaphore, shared' register, and bank conflict protocol of the 2-processor
X-MP (X-MP-2), extended up to 16 processors and 256 memory banks. General instruction
timing accuracy vis-a-vis the X-MP-2 is within 0.2% using a library code in one processor and
an idle second processor.

i Since the first published use of 'microtasking' in [7], Cray Research has adapted this term to describe a library routine
for small-grain tasking [13].

114 D.A. Calahan / Task gramdarity studies

Rather than parameterize the results as a function of the number of memory banks, conflict
checking was disabled during the simulation to be reported. Extensive simulation studies [11]
have shown that, if the ratio

of memory banks
RhP = # o f processors

is maintained at 16, the delay in execution timing is in the range 3-5% for a variety of codes. It
has been found that this percentage affects the absolute timings uniformly, and relative timings
are unaffected by ignoring conflicts. Also, the cost of simulation increases by a factor between
5 : 1 and 8 : 1 by including conflict checking.

3.2. Microtasked solutions results

3.2.1. Implementation. To illustrate the effect of coding on MP performance, two implementa-
tions of the microtasked factorization will be compared.

(1) Code #1 . "Standard" assembly language (CAL) coding from [2] was used, closely
following the previous description. Every fetch was preceded by an address test through the
rotating shared registers to determine whether the operand vector had been calculated.

(2) Code #2 . The inner accumulation loop can be written so that pairs of rows are reduced
by a single vector operand fetch; this reduces memory traffic, address testing, and permits
better floating point pipeline utilization [3] for short vectors. For example, Table 1 shows that a
speedup of up to 1.47 is achieved simply by this coding improvement on a uniprocessor.

Table 1
Comparison of microtasked solution methods; timings are simulated

Matrix Code # 1
size Clocks
(n,)

Code #2

MFLOPS Clocks "1/ MFLOPS

1 processor
4 621 1.0 6.45 593 1.0 6.75
8 1789 1.0 18.6 1441 1.0 23.1

16 6749 1.0 40.8 4618 1.0 59.6
32 30774 1.0 73.1 20097 1.0 112.
64 1 64214 1.0 111.0 118689 1.0 153.

2 processors
4 524 0.592 7.64 562 0.527 7.12
8 1150 0.779 28.9 1161 0.621 28.6

16 3730 0.904 73.8 2932 0.787 93.8
32 16011 0.961 140.0 11081 0.907 203.
64 83588 0.981 218.0 61610 0.963 295.

4 processors
8 1027 0.435 32.4 I 119 0.322 29.7
16 2514 0.671 109.0 2530 0.456 109.
32 8838 0.870 254.0 7522 0.668 299.
64 43414 0.943 419.0 34464 0.861 527.

8 processors
16 2151 0.392 128.0 2323 0.248 118.
32 5660 0.679 398.0 6577 0.382 342.
64 23946 0.855 760.0 23612 0.502 770.

16 processors
32 4993 0.385 451.0 5929 0.212 379.
64 15339 0.667 1186.0 20350 0.364 893.

D.A. Calahan / Task granularity studies 115

3.2.2. Evaluation. Define an efficiency as

uniprocessor time

= (multiprocessor time) * p

To achieve ~ = 1, it is necessary (a) for the computation to be evenly divided among processors,
(b) for the task control (signalling) time to be zero and (c) for the operand wait time to be zero.
Here, (a) and (c) are largely algorithm dependent, while (b) depends more on the coding.

Table 1 shows, for p = 2, an efficiency of 0.98 is achieved for matrices of the largest size
considered (n r = 64). This near-optimal performance implies that (a) operand wait time (noted
above) is minimal, and (b) the address test associated with every accumulation is overlapped by
other computation; indeed, simulation shows that long-vector operations intrinsic to the
accumulation process completely overlap (and thus mask) task control operation. This possibility
is peculiar to vector processors. As p increases, the likelihood of operand-waits increases, and
decreases to 0.667 for p = 16.

The uniprocessor speed advantage of code # 2 is observed to vanish as p increases (Table 1).
Each processor now handles the reduction of two adjacent rows, a larger task than in code # 1.
By so dividing the sequential solution process into fewer but larger tasks, the likelihood of
operand waits increases, an observation verified by detailed simulation. Also, in code # 2 the
workload is more unbalanced. (Consider, for example, the factorization of a 4 x 4 matrix with 2
processors: code # 1 , with Pi reducing rows i and i + 2, involves a 6 :10 processor ratio of
floating-point vector operations; code #2 , with p; reducing rows 2 i - 1 and 2i, produces a
4 : 12 ratio).

It should be noted from Table 1 that efficiency (- s p e e d u p) is higher for code # 1 but
execution rate is lower. It would seem that execution rate is the more significant measure.

3.3. Blocked solution results

3.3.1. Timing model. The three components of the blocked factorization of a large matrix on a
VMP will now be assembled into a timing model in order to study tradeoffs in implementation
of the hybrid model of Fig. 1. The following study is limited to matrix sizes that are multiples of
64, consistent with the microtasked solution; then Table I gives the time of Eq. (3) as a function
of p, using code # 1. Table 2 presents the simulated timings for block-level substitutions and
multiplications for 64 x 64 blocks.

If 64/p is an integer, the substitutions and multiplications divide evenly among the
processors. The time to reduce a 64 × 64 block row and column in Eq. (2) is then

2b, T b: r
, s + P ,, (14)

where b, is the number of off-diagonal blocks, Tss and T M are defined in Table 2, and Tr(p) is
the time for microtasked factorization from Table 1. The two substitution steps are carried out
concurrently, so the longer A2~Uu I substitution timing Tss is used in (14). Tasking between
block-level operat ions--on order of 500-100 clocks from CAL-- i s ignored in this model.

Table 2
CRAY X-MP simulated timings on 64× 64 blocks (conflict-free)

Operation Clocks MFLOPS

A21 ~ A21U ~ I TBs = 192328 146

At2 ~ L~IIAI2 TFs = 172020 158

A22 ~- A22 - A21A12 T M = 302037 183

116 D.A. Calahan / Task granularity studies

Table 3
Effects on global execution rate of mierotasked versus uniprocessor factorization of diagonal blocks; timings are
simulated

Matrix Microtasked MP Uniprocessor
size MFLOPS MFLOPS

1 processor
64 1.0 111. 1.0 111.

128 1.0 147. 1.0 147.
256 1.0 166. 1.0 166.
512 1.0 175. 1.0 175.

1024 1.0 179. 1.0 179.

2 processor
64 0.971 218. 0.500 111.

128 0.976 287. 0.741 218.
256 0.981 326. 0.900 299.
512 0.988 346. 0.965 338.

1024 0.994 356. 0.989 354.

4 processors
64 0.943 419. 0.250 111.

128 0.962 566. 0.498 293.
256 0.977 649. 0.771 512.
512 0.987 691. 0.921 645.

1024 0.993 711. 0.975 698.

8 processors
64 0.855 760. 0.125 111.

128 0.930 1024. 0.300 353.
256 0.968 1286. 0.549 796.
512 0.984 1378. 0.845 1184.

1024 0.993 1422. 0.952 1364.

16 processo~
64 0.667 1186. 0.063 111.

128 0.845 1988. 0.167 394.
256 0.940 2498. 0.414 1102.
512 0.976 2735. 0.725 2032.

1024 0.990 2837. 0.909 2604.

3.3.2. Projected performance. The first two result columns of Table 3 depict the execution rates
and efficiencies of factoring large matrices using Eq. (14) for every 64 rows and columns. For
n = 64, the ratios of Table 1 apply. As n increases for a fixed p, the b 2 term in Eq. (14)
predominates and the execution rate per processor approaches that of the blocked multiply, or
183 MFLOPS. Between these extremes, Table 3 shows a high efficiency, e.g.,

>~ 0.968 (15)

for p = 8, n -- 256.
An alternative solution would be to ignore the coding complexity of the microtasked

diagonal block factodzation and perform instead a uniprocessor diagonal block factorization,
while idling the remaining p - 1 processors. The substitution and multiplication would remain
distributed among p processors. When n = 256 and p = 8, the last column of Table 3 shows
that under these conditions the above efficiency of 0.968 decreases to 0.549; an efficiency of
0.97 now requires n > 1024. As n ~ oo, however, this solution again approaches 183 MFLOPS
per processor.

D.A. Calahan / Task granularity studies 117

1.00
.90
.80

i .70
.60,
.5o

.40

• 96! .971 .962 .984 .990

.;/,y7,,,;¢
I f 1.-' - / / /

.435 i£392 i(,385

.30
Ld S m a l l - g r a i n Hybrid

. 2 0 on ly granular i ty
.| 0 (microtosked) (blocked)

I I I I I I [I
4 8 t 6 5 2 6 4 t 2 8 2 5 6 512 1024

MATRIX SIZE (log scole)

Fig. 3. Performance of hybrid code.

Figure 3 combines the performance of code # 1 of Table 1 for n ~< 64 with the performance
of the blocked solution of Table 3 for n >/64. A smooth transition is shown between a small
grain solution for small problems to a hybrid solution for n >I 64. Thus, the tasking model of
Fig. 1 is dynamic as a function of n, with the large grain tasks T~tk)... Tp ok) missing for n ~< 64.
This adaptibility allows exploitation of the best features of small-grain and large-grain models.

3.4. Comparisons with other parallel factorization algorithms
In [12] a factorization algorithm based on matrix-vector multiplication is given. This has the

appeal of being highly modular in the Fortran level, calling on general tasking routines and
efficiently-coded matrix and pivoting subroutines. A price is extracted for small problems,
however. For example, in [12] a speedup of approximately 1.5 over a uniprocessor Fortran code
is achieved when n = 64; Figure 3 indicates a speedup of 1.94 over a uniprocessor CAL code for
n = 64 and p = 2. Although experimental comparative timing does not exist at this writing, an
overall speedup of between 2.5 : 1 and 3 : 1 can be estimated for matrices of this size without
pivoting. Asymptotically in n, overhead vanishes and both implementations would approach
full machine performance. The Fortran-based code would then be desirable.

4. Conclusions

From a general algorithmic viewpoint, blocked elimination is representative of a class of MP
algorithms which seek to solve tightly-coupled problems by first performing a decoupling step
(diagonal block factorization) which then permits concurrent independent solution. In this case,
the concurrent tasks are identical, large, and highly vectorizable--ideal for VMP architectures.
If the decoupling step is a small fraction of overall computation, it is worth considering, as
depicted in Table 3 for large n, assigning it to a uniprocessor, idling the other processors, and
accepting a small loss in overall efficiency.

Among other conclusions specific to the CRAY are the following.
1) A central main memory, together with rotating shared registers to pass addresses and

counters, will support 8-16 tightly-coupled processors in small linear algebra applications.

118 D.A. Calahan / Task granularity studies

2) Vector ins t ruct ion execution can mask in terprocessor task control communica t ion , remov-
ing signall ing as a source of overhead. This p robab ly requires use of a low-level (assembly)
language to achieve concurrency of the control and numer ica l functions.

3) Per formance of t ight ly-coded uniprocessor codes may suffer d ramat ica l ly from ope rand
waits not an t ic ipa ted in the uniprocessor version. Codes involving s impler task phas ing may be
be t te r (such as Code :#: 1 of Table 1).

4) As Table 1 shows, speedups can be mis leading representa t ion of performance. Abso lu t e
pe r fo rmance is a bet ter measure.

Acknowledgement

The au thor is indeb ted to Paul Summers and Ken Ell iot t for deve lopment of the C R A Y
X - M P simulator . The a lgor i thm research was suppor t ed by the Ai r Force Office of Scientif ic
Research under Gran t s 80--158 and 84-0096, the Na t iona l Aeronau t ics Space Admin i s t r a t i on
(Ames Research Center) under G r a n t NCC2-201, and Los Alamos Na t iona l Labora to ry .

References

[1] D.A. Calahan, Influence of task granularity on vector multiprocessor performance, 1984 Intl. Conf. on Par. Proc.,
Bellaire, MI, August, 1984, pp. 278-284.

[2] T. Jordan, and K. Fong, Some linear algebraic algorithms and their performance on the CRAY-1, Report CA-6774,
Los Alamos National Laboratory, June, 1977.

[3] D.A. Calahan, High performance banded and profile equation solvers for the CRAY-1; I. The unsymmetric case,
report # 160, Systems Engineering Laboratory, University of Michigan, February, 1982.

[4] I.Y. Bucher, B.L. Buzbee, and P.O. Frederickson, Experiments in parallel processing a large scientific code, Proc.
1981 Intl. Conf. on Parallel Processing, pp. 166-167, August, 1981.

15] Alan George, Computer Solution of Large Sparse Pos#ive Definite Systems, (Prentice Hall, 1981).
[6] R.E. Lord, Solving linear algebraic equations on a MIMD computer, International Conf. on Parallel Processing,

Bellaire, MI, 1980.
[7] D.A. Calahan, Tasking studies solving a linear algebra problem on a CRAY-class multiprocessor, Report SARL

#2, Department of Electrical and Computer Engineering, University of Michigan, December, 1983.
[8] Cray XMP Series Mainframe Reference Manual, Cray Research, Inc., November 1982.
[91 Final Report, NASF Feasibility Study, NASA Report NAS2-9897, Ames Research Center, Moffett Field, CA.

[10] D. Gajski, D. Kuck, D. Laurie, and A. Sameh, Construction of a large scale multiprocessor, Report IUCDCS-R-
83-1123, Computer Science Dept., University of Illinois, February, 1983.

[11] D.A. Calahan and K.E. Elliott, Memory conflict simulation of a many-processor CRAY architecture, Part I: A
CKAY X-MP study, Report SARL #6, Department of Electrical Engineering and Computer Science, University
of Michigan, March, 1985.

[12] S.C. Chert, J.J. Dongarra, and C. Hsuing, Multiprocessing linear algebra algorithms on the CRAY X-MP-2;
Experiences with small granularity, Report ANL/MCS-TM-24, Mathematics and Computer Science Division,
Argonne National Laboratory, February, 1984.

[13] BENCHLIB (preliminary documentation), Cray Research, Inc., 1984.

