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1. Introduction 

If A = W 'I'A, where ( A i } are arbitrary events then by the principle of inclusion-exclusion 

P ( A ) = S , - S 2 + S  3 . . . .  + ( -  1)" 'S. 

where S k = EP(A,A ,2  .. • Ai,) and the sum is taken over all distinct subscripts 1 ~< i t < i 2 < . . .  < i k ~< n. 
For each m the sum of the first m odd (even) terms provide upper (lower) Bonferroni bounds 

P(A)<~S , ,  P ( A ) > ~ S , - S 2 ,  P ( A ) < ~ S t - S 2 + S  , . . . . .  

The usual proof (as presented in Feller (1968)) uses a combinatorial identity and gives little insight into the 
essential simplicity of these inequalities. 

We present an elementary proof which has two appealing properties. First, each bound is obtained from 
its predecessor and ultimately, therefore, it is the first (also called Boole's) inequality 

P(A)<~ ~2P(A~) (1) 

which underlies all the bounds. Secondly, if an upper bound improving on (1) is available then by the same 
method tighter successive lower and upper bounds may be obtained. This technique is illustrated by 
parlaying an upper bound of Worsley (1982) into a lower bound. This lower bound is then calculated for a 
runs problem in Schwager (1984) in which the usual lower Bonferroni bounds fail to perform adequately. 

2. Methodology 

We begin with the equation 

P(  A)  = P(  A1) + P ( A 2 ~  ) + - . -  + P(  A . A t A 2  " " " A , _ , ) .  

By expanding the general term and using (1) we get 

P(  Ai. ~ . . . . ~ _ , ) = P ( A i ) - P ( A i A a  U AiAz  U . . .  LJAiAi_t) 

e(A,)-[e(A,A,)+ ... +P(A,A,_,)] 
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and then collecting terms we are led to 

P(A) >~ ~P(Ai)- E P(A,A,), (3) 
. /<i  

the second Bonferroni inequality. For the next one we again expand the general term as above but this time 
we use (3), which we have just proven, to derive the second line of (2). This gives 

P(A,~. . .A,  1)<~P(A,)-[i~<iP(A,Aj)- ~"~k</<iP(A~A~Ak)] 

which results in 

P ( A ) ~ C P ( A , ) - Z P ( A , A , ) +  E P(A,AiAt). 
. l<i  k < j < i  

In this fashion each bound is obtained from the preceding one. 

3. An improved lower bound 

Worsley (1982) presents the following sharpening of (1). Represent the events { A, } as vertices (v~ } of a 

graph G where v i and v~ are connected with an edge eij if and only if A,Aj ~ O. Let H be a subgraph of G. 
Then 

P(A)<~P(A,)- E P(A,A/) (4) 
{ e, i6~ H }  

if and only if H is a tree. If G is a tree and H = G then there is equality in (4). 
From (4) Worsley obtains bounds derived by Kounias (1968) and Kwerel (1975) as well as the 

interesting corollary 

n n - I  

P(A)  E E e(A,A,+I). (5) 
i - 1  i ~ l  

We now present an improved lower bound based on (5). 

Theorem 

i -2 

i=l m<i i=3 m~l 
(6) 

Proof. Consider what happens if (5) is used in place of (1) in the argument of Section 2. We get 

P( A,A,~... A, , ) = P ( A , ) - [ P ( A , A ~ U . - .  UA,A,_,) ]  

i - i  i-2 
>IP(Ai)- E P(AiA,,,) + E P(A.,A.,+1Ai) 

rn~l rn~l 
which results in (6). 

It is possible to obtain lower bounds based on (4) and on the upper bounds of Kounias and Kwerel but 
we have chosen to focus on (5) for simplicity of expression. 
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4. N u m e r i c a l  e x a m p l e  

S c h w a g e r  ( 1984 )  c o n s i d e r s  a s e q u e n c e  ( X  t, X 2 . . . . .  X,,} o f  i n d e p e n d e n t  a n d  i d e n t i c a l l y  d i s t r i b u t e d  

B e r n o u l l i  r a n d o m  v a r i a b l e s  w h e r e  p - - - P [ X  t = l ]  a n d  1 - p = P [ X  t = 0 ] .  G i v e n  k le t  N = n - k + l ,  

A i = { Xi = X,+ t . . . . .  X , + k -  t = 1 } a n d  A = t,3 ~= t Ai ,  t h e  e v e n t  t h a t  t h e  s e q u e n c e  c o n t a i n s  a s t r i n g  o f  a t  

l e a s t  k s u c c e s s i v e  l ' s .  S c h w a g e r  c o m p u t e s  t h e  f i r s t  t w o  u p p e r  b o u n d s  S t, S 3, t h e  f i r s t  W o r s l e y  b o u n d  S~' 

( t h e  r i g h t - h a n d  s i d e  o f  (5)) ,  t h e  f i r s t  t w o  l o w e r  b o u n d s  S 2, S 4 a n d  c o m p a r e s  t h e m  w i t h  t h e  e x a c t  v a l u e s  o f  

P(A) fo r  p = 0.5,  0.6,  k = 10, 15, 20 a n d  n = 100, 300,  500,  1000 ,  1500.  H e  s h o w s  t h a t  S~" a p p r o x i m a t e s  

P(A) v e r y  wel l  in m o s t  o f  t h e s e  c a s e s  a n d  is a l w a y s  m u c h  b e t t e r  t h a n  S 1 o r  S 3. T h e  b o u n d s  S 2 a n d  S 4, 

h o w e v e r ,  a r e  all  p o o r  a n d  in  m a n y  c a s e s  n e g a t i v e .  

W e  h a v e  c a l c u l a t e d  t h e  r i g h t - h a n d  s i d e  o f  (6),  d e n o t e d  b y  S~', a n d  in al l  t h e  a b o v e  c a s e s  S~' o f f e r s  

i m p r o v e m e n t  o v e r  t h e  l o w e r  b o u n d s  s i m i l a r  t o  w h a t  S~' d o e s  fo r  t h e  u p p e r  b o u n d s  ( a s  we l l  a s  p r o v i d i n g  t h e  

Table 1 

n S z S~' Exact S~' 

p = 0 . 5 ,  k = 1 0  
1 0 0  - 0.00106 0.04338 0.04414 0.04492 
300 -0.03530 0.12382 0.13351 0.14258 
500 - 0.10768 0.18519 0.21452 0.24023 

1000 - 0.45553 0.25517 0.38545 0.48437 
1500 - 1.04181 0.20593 0.51918 0.72852 

p = 0.5, k = 1 5  
100 0.00006 0.00133 0.00133 0.00133 
300 0.00003 0100437 0.00437 0.00438 
500 - 0.00004 0.00738 0.00741 0.00743 

1000 - 0.00038 0.01484 0.01495 0.01506 
1500 - 0.00094 0.02219 0.02244 0.02269 

p = 0 . 5 ,  k = 2 0  
100 0.000002 0.00004 0.00004 0.00004 
300 0.000002 0.00013 0.00013 0.00013 
500 0.000002 0.00023 0.00023 0.00023 

1000 0.000001 0.00047 0.00047 0.00047 
1500 0.000001 0.00071 0.00071 0.00071 

p = 0 . 6 ,  k = 1 0  
100 -0.36660 0.17634 0.20491 0.22372 
300 - 2.28017 - 0.13211 0.51606 0.70745 
500 - 5.65620 - 0.49709 0.70545 1.19118 

1000 - 20.49455 - 4.62941 0.91487 2.40051 
1500 - 44.47330 - 12.41790 0.97540 3.60983 

p = 0 . 6 ,  k = 1 5  
1 0 0  - 0.01898 0.01624 0.01637 0.01646 
300 - 0.07347 0.05084 0.05278 0.05407 
500 - 0.13681 0.08190 0.08785 0.09169 

1000 -0.33383 0.14408 0.16994 0.18572 
1500 - 0.58612 0.18415 0.24465 0.27976 

p = 0.6, k = 2 0  
1 0 0  - 0.00135 0.00120 0.00121 0.00121 
300 - 0.00504 0.00412 0.00412 0.00413 
500 - 0.00880 0.00700 0.00703 0.00706 

1000 -0.01841 0.01412 0.01427 0.01437 
1500 - 0.02836 0.02111 0.02145 0.02168 
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same degree of accuracy). The computations are presented in Table 1 which repeats the relevant parts of 
Table 1 of Schwager (1984) as well as the values of S~'. 

S~' is computed as follows. S~' = S 2 + A 2 where 

N i - 2  

a~= E E e(A,,,A,,,+,A,). 
i ~ 3  m = l  

If m + k < i then P(A,,A,,,+IAj)=p 2k+1 while if m + k > i then P(A,,,A,,,+~Ai)=pa+' "'. Thus 

k + l  i - 2  N i - k - 1  N i - 2  

A= y" ~_. p(A,,,A,,,+IAi)+ y" y" p(A,,,A,,,+,Ai)+ ~_~ ~_~ p(A,,,A,,,+,Ai) 
i = 3  ' k . ~ l  i = k + 2  m = l  i = k + 2  m = i - k  

k + l  i - 2  N i - k  1 N i - 2  

= E E pi+k .... + E E p2k+l+  E E pa-+, ' " = a + b + c  
i = 3  m = l  i = k + 2  m = l  i ~ k + 2 m = i - - k  

where 

a=pk[(k - 1 ) p 2 - ( p  3 - p ~ + z ) / ( 1 - p ) ] / ( 1 - p ) ,  b = p 2 k + ' ( N - k  - 1 ) ( N - k ) ~ 2  

and 

c =  ( p , + 2 _ p 2 , + , ) (  N _  k -  1)/ (1  - p ) .  

These complicated expressions fail to expose what S~' really is. Observe that 

N i - -2  N i - 1  

a2= E E P(<,,A,,,+,A,)=p E E p(A,,,+~a,) 
i = 3  m = l  i - -3  m = l  

N - - I  i - - I  

=P E ~, P(A,,,A~) (by stationarity) 
i = 2  m ~ l  

N i--1 

-=p ~ ~ P(A,,,A,) (approximately) 
i = 2  m = l  

= p ( s , -  s,_). 

Thus S* = S z +p(S 1 - S2)=pS~ + (1 - p ) S  2, a linear combination of $1 and S 2. 
It is possible to derive a second upper bound by the method of Section 3 namely 

P( A) <~ S'3 = S3-  A~ 

where 

N r - l  i 2 

a.,= E E E e(A,,,A,,,+,A,A,). 
r = 4  i = 3  m = l  

As in the previous paragraph we can show that 

A 3 ~ P ( S  3 - $ 2 )  

and S'3 ~ PS2 + (1 - p)&.. Unfortunately this bound does not improve on S~'. 
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