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1. Introduction

If A= U/[A, where { A} are arbitrary events then by the principle of inclusion—exclusion
P(A)=8-8+8— - +(-1)""'S,

where S, =YX P(A, A, --- A, ) and the sum is taken over all distinct subscripts 1 <i; <i; <... <iy<n.
For each m the sum of the first m odd (even) terms provide upper (lower) Bonferroni bounds

P(A)<S,, P(A)=S8-S,, P(A)<S —5+S,,

The usual proof (as presented in Feller (1968)) uses a combinatorial identity and gives little insight into the
essential simplicity of these inequalities.

We present an elementary proof which has two appealing properties. First, each bound is obtained from
its predecessor and ultimately, therefore, it is the first (also called Boole’s) inequality

P(A)<XIP(4,) (1)

which underlies all the bounds. Secondly, if an upper bound improving on (1) is available then by the same
method tighter successive lower and upper bounds may be obtained. This technique is illustrated by
parlaying an upper bound of Worsley (1982) into a lower bound. This lower bound is then calculated for a
runs problem in Schwager (1984) in which the usual lower Bonferroni bounds fail to perform adequately.

2. Methodology

We begin with the equation
P(A)=P(A1)+P(A2A_1)+ o +P(An1:1—1;{2 T A_n——l)'
By expanding the general term and using (1) we get
P(A,A, - A,_)=P(A,)—P(A,A) UA,A, U --- UAA,_,)
>P(A)-[P(4,4)+ - +P(4,4,))] (2)
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and then collecting terms we are led to

P(A)>XP(4,)- Y P(4,4,), (3)

J<i

the second Bonferroni inequality. For the next one we again expand the general term as above but this time
we use (3), which we have just proven, to derive the second line of (2). This gives

P(AA - A_)<P(A)—-| XL P(4,4,)- ¥ P(A4,4,4;)
J<i k<j<i
which results in

P(A)<XP(A,)_ZP(A,A,/)+ Y P(4,4,4,).

i<i k<j<i

In this fashion each bound is obtained from the preceding one.

3. An improved lower bound

Worsley (1982) presents the following sharpening of (1). Represent the events { 4,} as vertices {v;} of a
graph G where v, and v, are connected with an edge e, if and only if 4,4, # Q. Let H be a subgraph of G.
Then

P(A)<ZIP(4,)- ). P(4,4) (4)
{e,,EH}

if and only if H is a tree. If G is a tree and H = G then there is equality in (4).
From (4) Worsley obtains bounds derived by Kounias (1968) and Kwerel (1975) as well as the
interesting corollary

n n—1

P(A)< X P(A4,)~ X P(4,4,,,). (5)
i=1 i=1 ’

We now present an improved lower bound based on (5).
Theorem

n n i—-2

P(A)Z Z P(An)_ Z P(AlAm)+ 2 Z P(AmAm+1Ai)‘ (6)
i=1 m<i i=3m=1

Proof. Consider what happens if (5) is used in place of (1) in the argument of Section 2. We get

P(AiA_lA_Z“'A—ifl)=P(Ai)—[P(AiA1 U UAiAi—l)]
i—1 i-2
>P(AI)_ Z P(AlAm)+ Z P(AmAnH-lAi)

m=1 m=1

which results in (6).

It is possible to obtain lower bounds based on (4) and on the upper bounds of Kounias and Kwerel but
we have chosen to focus on (5) for simplicity of expression.
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4. Numerical example

Schwager (1984) considers a sequence { X|, X,,..., X} of independent and identically distributed
Bernoulli random variables where p=P[X,=1] and 1—p=P[X,=0]. Given k let N=n—-k+1,
A,={X,=X., = - =X,,_,=1}and 4 = U A, the event that the sequence contains a string of at
least k successive 1’s. Schwager computes the first two upper bounds S, S;, the first Worsley bound S}
(the right-hand side of (5)), the first two lower bounds S,, S, and compares them with the exact values of
P(A) for p=0.5, 0.6, k=10, 15, 20 and n =100, 300, 500, 1000, 1500. He shows that S} approximates
P(A) very well in most of these cases and is always much better than S, or S;. The bounds S, and S,
however, are all poor and in many cases negative.

We have calculated the right-hand side of (6), denoted by S¥, and in all the above cases S} offers
improvement over the lower bounds similar to what S} does for the upper bounds (as well as providing the

Table 1
n S, Sy Exact st
p=05 k=10

100 —0.00106 0.04338 0.04414 0.04492

300 —0.03530 0.12382 0.13351 0.14258

500 -0.10768 0.18519 0.21452 0.24023
1000 —0.45553 0.25517 0.38545 0.48437
1500 —1.04181 0.20593 0.51918 0.72852
p=05 k=15

100 0.00006 0.00133 0.00133 0.00133

300 0.00003 0.00437 0.00437 0.00438

500 - 0.00004 0.00738 0.00741 0.00743
1000 -0.00038 0.01484 0.01495 0.01506
1500 —0.00094 0.02219 0.02244 0.02269
p=05 k=20

100 0.000002 0.00004 0.00004 0.00004

300 0.000002 0.00013 0.00013 0.00013

500 0.000002 0.00023 0.00023 0.00023
1000 0.000001 0.00047 0.00047 0.00047
1500 0.000001 0.00071 0.00071 0.00071
p=06, k=10

100 -0.36660 0.17634 0.20491 0.22372

300 —2.28017 —0.13211 0.51606 0.70745

500 —5.65620 —0.49709 0.70545 1.19118
1000 —20.49455 —4.62941 0.91487 2.40051
1500 —44.47330 —12.41790 0.97540 3.60983
p=06, k=15

100 —0.01898 0.01624 0.01637 0.01646

300 -0.07347 0.05084 0.05278 0.05407

500 —0.13681 0.08190 0.08785 0.09169
1000 —0.33383 0.14408 0.16994 0.18572
1500 ~0.58612 0.18415 0.24465 0.27976
p=06, k=20

100 —0.00135 0.00120 0.00121 0.00121

300 —0.00504 0.00412 0.00412 0.00413

500 —0.00880 0.00700 0.00703 0.00706
1000 —-0.01841 0.01412 0.01427 0.01437
1500 —0.02836 0.02111 0.02145 0.02168
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same degree of accuracy). The computations are presented in Table 1 which repeats the relevant parts of
Table 1 of Schwager (1984) as well as the values of S¥.
S¥ is computed as follows. $Ff =S, + A, where

i~

N
AZ = Z P(AmAnH-lA:)'
i=3

2
i=3 m=1

If m+k<ithen P(A,A4,,,4,)=p** " whileif m+ k=i then P(A4,4,,,,4,)=p"*" " Thus

k+1 i-2 N i—k—1 N i—2
A = Z Z P(AmAnH»]A:) + Z P(AltlA»17+lA:)+ Z Z P(AmAnH-lA:)
i=3 'm=1 i=k+2 m=1 i=k+2 m=i—k
k+1 i=2 N i—k—1 N i-2
= Z pi+l\-m+ Z Z p2k+l 4 Z 2 pl\'+i7m=a+b+c
i=3 m=1 i=k+2 m=1 i=k+2m=i—k
where
a=p{(k=1)p*=(p*~p**2) /(0 =p)| /(1= p). b=p* "(N—k—-1)(N-k)/2
and

c=(p P =p? NN -k-1)/(1-p).

These complicated expressions fail to expose what S¥ really is. Observe that

N -2 N -1
A2= Z P(A;:1A0p1+lAl)=pZ Z P(Am+1Ai)
i=3m=1 i=3 m=1
N—-1i-1
=p Y. P(A4,,4,) (by stationarity)
i=2 m=1
N i—1
=pY X P(4,4,) (approximately)
=2 m=1
=p($,-S,).

Thus $F = S, + p(S, — S,)=pS, + (1 — p)S,, a linear combination of S; and .
It is possible to derive a second upper bound by the method of Section 3 namely

P(4)< St =5,-4,

where

r—

N 1 i-2
A3= Z Z P(AmAm+1AiAr)'
r=4 I m=1

As in the previous paragraph we can show that
A,=p(S,-S,)
and S¥ =pS, + (1 — p)S;. Unfortunately this bound does not improve on S}.
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