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1. Introduction and preliminaries 

Equationally specified reduction systems [4,7,10] 
are a model of computat ion that is rather attrac- 
tive for certain applications, e.g., for defining 
primitive functions for new types in applicative 
programming. At least two distinct classes of such 
systems have appeared in the literature. Huet  and 
Levy [4], O'Donnell  [7] and Rosen [9] deal with 
what we call class C I systems (Ci-systems, for 
short), while the programming language HOPE [1], 
and the work in [6,10] exemplifies class C n sys- 
tems (Cn-systems , for short). C I is designed to be 
as inclusive as possible while ensuring that its 
members satisfy the Church-Rosse r  property [9]. 
The notion of constructors, on which C n is based, 
is akin to a similar notion in algebraic specifica- 
tions [2]. On the face of it, class C I seems to be 
strictly larger than class C n, and in a sense it is. 
However, it turns out that there is a natural corre- 
spondence between the two classes which permits 
any C i-system to be embedded without change of 
behavior into a C n-System, as shown in this article. 
We believe that difficult problems such as sequen- 
tial evaluation strategies and construction of 
semantic models can be solved more  easily for C n, 
but the solutions are applicable to C x via the 
transformation. 

A reduction system is based on a non-empty 
ranked alphabet ~ =2g0U . - .  UY.,, which con- 

tains all function symbols in the system. T x de- 
notes the set of all (ground) terms formed with 
symbols in Z. In addition, terms may include 
nullary variables. Given a term f(tl, . . . ,  tk), the 
occurrences of function symbols in ta . . . .  , t k are 
said to be inner occurrences in relation to this 
term. A term is said to be linear iff no variable 
occurs more than once in it. A reduction system R 
is simply a set {E x . . . . .  E m } of equations, where 
each E i is an ordered pair (f i ,  ri) of terms. A path  
p in a term t is a possibly empty  string of integers. 
We say that p reaches subterm t / p  in t. The empty  
string A reaches the term itself, the string " k "  
reaches the kth argument,  " k m "  reaches the mth 
argument  of the kth argument  etc. Finally, t[p = w] 
denotes the term obtained by replacing t / p  at p by 
w. The first-order unification algorithm [9] is de- 
noted by UNIFY. The reduction relation ---, and 
its reflexive transitive closure ~ * have their usual 
significance in the context of term-rewriting sys- 
tems. Our main result is concerned with the not ion 
of the 'meaning'  of functions in ~, as determined 
by R. The following definition expresses the most 
comprehensive operational meaning of a function 
in a reduction system. Let ~ (S )  denote the 
powerset of S. For  a reduction system R operating 
in Tx, the meaning function ~R maps each symbol 
f ~ Y'k to a function ~tR(f):(Tx) k ~ ( T x ) ,  such 
that  

~tR (f)(t  1 . . . .  , tk)  = {y [ f ( t l , . . . ,  tk) ---) * y in R }. 
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2. Main definitions and results 

The two classes of reduct ion systems of interest 
to us are def ined  by distinct sets of restrictions. 
Actually, three of the four restr ict ions are c o m m o n  
to both,  and  only the four th  restrict ion dis- 
t inguishes them.  The  three c o m m o n  restrictions 
are the following. 

K1. Each fi, 1 ~< i < m, mus t  be linear. 

K2. Each variable that  occurs in r i must  also 
occur  in d i , l ~ < i ~ < m .  

K3. Given any i , j  such that  l ~ < i , j ~ < m ,  if 
UNIFY(ffi, Ej) succeeds yielding o~, then  ri(x = rj(x. 

The  four th  and  last restr ict ion for a Ci-sys tem 
is the following. 

I(4. If u is a sub te rm of d i, u #: d i, and  u is not  a 
variable, then  UNIFY(U, 6) fails for 1 ~<j ~< m. 
Note: i = j  is possible. 

In these and  all future  uses of  UNIFY we assume 
that  the variables used in the two terms are dis- 
joint .  This  may  be accompl ished  by renaming  
wi thout  loss of  generality. 

In order  to def ine C n we need  a prel iminary 
definit ion. In our  system R, let d i = f i ( t i l  . . . .  , tin~), 
1 ~< i ~< m. Let  F = {fi I1 ~ i ~ m ) .  The  last restric- 
t ion for a C n-System is the following. 

K5. No  symbol  in F occurs in any t ij, 1 ~< j ~< n i, 
l~< i~<m.  

The  symbols  in Y. - F, i.e., those  not  def ined by 
equations,  are called constructor symbols .  The  strict 
division be tween cons t ruc tor  and  noncons t ruc to r  
symbols in Cn-sys tems  resembles the strict divi- 
sion between predicate  and func t ion  symbols  in 
logic p r o g r a m m i n g  [5]. 

It is easy to show that  K5 implies  K4, i.e., that  
C n is a subset  of C I. We wish to show that,  for 
every system R in C I, there is a cor responding  
system R** in C n such that  the  behavior  of R** 
parallels that  of R within the d o m a i n  of  discourse 
for R. 

To  show this, suppose  R belongs to C r With  
each f ~ F associate a new (constructor)  symbol cf. 
Let Y.# = E t3 (cf If ~ F}. Let t' denote  the term t 
with every inner occurrence of f ~ F replaced by cf 
and  t" the term with all occurrences so replaced. 
R # is the smallest system which satisfies the fol- 
lowing two assertions: 

(1) If (d ,  r) ~ R, then (d ' ,  r) ~ R #. 
(2) Whenever  u =  f(t I . . . . .  tk), f ~  F, is a 

proper subterm of a lef t -hand side in R, (u' ,  u" )  

R # 

Example  (Equat ions  are writ ten as d =  r for read- 
ability). Let R be: 

(1) f(g(con(nil), x ) )=  r l ,  
(2) f(g(con(f(nil)), x ) )=  r2, 
(3) g(nil, x ) =  r3. 

Then  R # is: 

(1) f(cg(con(nil), x ) )=  r l ,  
(2) f(cg(con(cf(nil)), x ) )=  r2, 
(3) g(nil, x ) =  r3, 
(4) g(con(nil), x ) =  cg(con(nil), x), 
(5) g(con(c r (nil)), x) = cg(con(c r (nil)), x), 
(6) f (n i l )=  cf(nil). 

R* clearly satisfies K5 since every lef t -hand side 
in it is of the form t'. Moreover ,  it belongs to C II 
since KI  and  I(2 are unaffected,  and K3 is satisfied 
since none  of the new lef t -hand sides required by 
assertion (2) can be unif ied with those required by 
assertion (1) since R satisfies K4. 

It remains to demons t ra te  the equivalence of  
behavior  between R and R*. R # is expected to 
deal with terms in Tx ,  which contains  T x as a 
subset. The  map  h : Tx ,  --, T x is defined as h(e) = d 
where d is obta ined f rom e by replacing every 
occurrence of cf in e by f, for every f ~ F. Clearly, 
h(t ')  = h( t" ) - -  t. 

Lemma 1. Given t I and t 2 in Tx, ,  t 1 ~ t 2 in R # 
only i f  h(t I ) --** h(t2) in R. 

Proof (sketch). If t 1 ---, t 2 by an equat ion of the 
fo rm (u' ,  u" ) ,  then h(tx) = h(t2). If the equat ion is 
of  the form (d ' ,  r), then h ( t l ) ~  h(t2) by (d ,  r) in 
R. [] 
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Lemma 2. Given t 1 and t 2 E T:~, t~ ---) t 2 in R only i f  
t I --)*t 2 in R #. 

Proof (sketch). Suppose the equat ion E = (d,  r) is 
used in R to derive t 1 ---) t 2. There is a p such that 
t 2 = tl[ p = ra], and t l / p  = v = dot. If / contains 
any proper  subterms that satisfy assertion (2) 
above, then the corresponding subterms of v can 
be reduced using the equations in t roduced by that 
assertion in an innermost  first fashion until the 
reduced version of v becomes an instance of / ' .  
The equation (d ' ,  r)  can then be used to obtain t 2. 
[] 

Recall that R # operates in T:~,, in the context  of  
the definition of meaning functions. In the Theo- 
rem below, h has been extended pointwise to act 
on sets of terms. 

Theorem. For all f ~ Zk, 0 ~< k ~ n, p.R(f) c:: h × 
~R,,(f) in the sense that, for each (t 1 . . . . .  t k ) ~  
(T~) k, 

t tR(f)( t l  . . . . .  tk)---- h(~ta, , ( f)( t l ,  . . . ,  t k ) ) .  

Proof. We have 

~tR(f)(t 1 . . . . .  tk)  _C h(~tR~ (f)( t  1 . . . . .  tk)  ) 

by Lemma 2, 

~tR(f)(tl,  . . . ,  tk)  _~ h(l~R,,(f)(tl,  . . . ,  tk ) )  

by Lemma 1. [] 

3. Conclusions 

We have demonst ra ted  the possibility of simu- 
lating any Cx-system with a Cu-system,  The con- 
struction is useful in many  practical situations 
where only a small number  of  lef t-hand sides 
violate I(,5, and hence the size of R # increases only 
modest ly  over that  of  R. In the worst  case, if all 
the original lef t -hand sides are m a d e  up almost 
entirely from symbols in F, the size of R # could be 
quadrat ical ly larger than that of  R. However,  R # 
is not  always the smallest Cn-s imulat ion of R. For  
instance, in the Example illustrating the construc- 
tion of  R #, equations (4) and (5) could be replaced 

with the single equation 

g(con(x) ,  y) - cg (con(x) ,  y) ,  

considerably reducing the size. 
The equations of the form (u' ,  u " )  are obvi- 

ously responsible for the expansion of the size of 
R # over R. The terms u' are pat terns  for what 
Hof fmann  and O'Donnel l  call ' root-stable '  terms 
[3]. Root-stabili ty of a term t means  t cannot  
become a redex. This situation is easy to detect in 
sequential evaluation, hence in the sequential case 
the equations (u' ,  u" )  can be dispensed with. The 
question of optimal simulation of Ci-systems in 
the nonsequential  case is still open. 

Acknowledgment 

I would like to thank Michael  O'Donnel l  and 
Fritz Ruehr  whose comments  on previous draft  of 
the paper  led to a considerable improvement  of 
the presentation.  

References 

[1] R.M. Burstall, D.B. MacQueen and D.T. Sanella, HOPE: 
An experimental applicative language, in: LISP-80 Con- 
ference, Stanford, CA, 1980. 

[2] J.A. Goguen, J.W. Thatcher, E.G. Wagner and J.B. Wrigh t ,  

Abstract data types as initial algebras, and correctness of 
data representations, in: Proc. Conf. on Computer Graph- 
ics, Pattern Recognition, and Data Structures, 1975. 

[3] C.M. Hoffmann and M.J. O'Donnell, Implementation of 
an interpreter for abstract equations, in: Proc. 11th POPL, 
Salt Lake City, 1984. 

[4] G. Huet and J.-J. Levy, Computations in nonambiguous 
linear term rewriting systems, Tech. Rept. 359, INRIA, 
France, 1979. 

[5] R. Kowalski, Logic for Problem Solving, Artificial Intelli- 
gence Series (North-Holland, Amsterdam, 1979). 

[6] C.F. Nourani, Abstract implementations and their cor- 
rectness proofs, J. ACM 30 (1983) 343. 

[7] M.J. O'Donnell, Computing in Systems Described by 
Equations, Lecture Notes in Computer Science 58 
(Springer, Berlin, 1977). 

[8] J.A. Robison, A machine-oriented logic based on the 
resolution principle, J. ACM 12 (1965) 23-41. 

[9] B.K. Rosen, Tree-manipulating systems and Church- 
Rosser theorems, J. ACM 20 (1) (1973). 

[10] S.R. Thatte, Algebraic types in lazily evaluated applicative 
languages, Ph.D. Dissertation, University of Pittsburgh, 
1982. 

85 


