
Stepwise Refinement Revisited

Vaclav Rajlich
University of Michigan

In this paper, rigorous application of stepwise refinement
is explored. The steps of definition, decomposition, and
completion are described, where completion is a newly
introduced step. This combination of steps extends the
use of stepwise refinement to larger systems. The notions
of range, active objects, and backlog interface are intro-
duced. Verification of incomplete programs via interactive
testing is described. The paradigm is demonstrated in an
example. The relationship between the paradigm and the
current programming languages is considered. It is argued
that the WHILE-DO loop is a harmful construct from this
point of view.

1. INTRODUCTION

Stepwise refinement is one of the oldest and most
widely used methods of program design [3,4,10,11].
Recently, a new interest in stepwise refinement has ap-
peared in connection with software environments,
where stepwise refinement is the methodology sup-
ported by specialized tools of the environments [1,2,5-

91.
The quality of a software design methodology can be

characterized by the following interrelated criteria:

1. The generality of the methodology, i.e., the size of
the domain of application.

2. The ease of use of the methodology.
3. The consistency of the methodology.

The meanings of the first two criteria are obvious.
To explain the third criterion, we assume that a pro-
gram design is a sequence of decisions that lead to a
finished program. The role of the methodology is to
guide the designer and give advice as to what decision
should be made at any particular moment, and on what
particular information to base that decision. A meth-
odology is consistent if it gives appropriate guidance in

Address correspondence to Vaclav Rajlich. Department of
Computer and Communication Science, University of Michigan.
Ann Arbor, MI 48109.

The Journal of Systems and Software 5.81-88 (1985)

0 Elsevier Science Publishing Co., Inc., 1985

all decisions to be made during a program design. Con-
versely, if it gives poor advice or no advice for some de-
cisions, it is inconsistent.

The current stepwise refinement methodology is well
suited to the design of small programs; the methodology
has found its way into introductory programming texts
[3,111. However, problems arise when larger programs
are to be designed by stepwise refinement. Then the
methodology becomes difficult to use, and in fact, it be-
comes inconsistent. The reason is that it is geared solely
toward the decomposition of objects (procedures and
data). There is at present no organized way to deter-
mine the full set of objects to be decomposed. It is as-
sumed that this set is somehow known in advance. This
is particularly burdensome in the case of variables,
where the programmer is required to determine and de-
clare all of the variables of the program before starting
the decomposition process [3,10]. This is only realistic
for toy programs. For larger programs, we need a tech-
nique different from decomposition, which will help us
to determine the set of all objects, and to do this in
small increments. In this paper, the technique is called
completion.

Another problem which has to be addressed is the
validation of partial programs. When designing me-
dium-sized systems, the validation cannot be postponed
until the system is finished, and hence, it has to be done
on partial systems. Various methods have been pro-
posed for such validation [9,131. However, at present,
the most realistic method of validation is by means of
testing. A method commonly used is to replace the un-
defined objects with stubs which approximate the func-
tion of those objects. We are suggesting a method called
interactive testing, where undefined parts of a program
are hand-simulated by the programmer, using stubs to
support the simulation. The advantage is that this is a
universal method which can be applied in all cases; it
makes the methodology explained here consistent.

This paper is divided into four sections. Section 2
contains the basic ideas, Section 3 provides an example,
and Section 4 contains a discussion of some language

81
0164-1212/85/$3.30

V. Rajlich

constructs from the point of view of stepwise
refinement.

Although the paper is self-contained, familiarity
with stepwise refinement as presented in [3,10,11]
should be helpful.

2. DEFINITIONS

Programs and software systems consist of objects (pro-
cedures, functions, variables, etc.), and their relations
(procedure calls, function calls, access to variables,
etc.). Complicated programs consist of many objects
and many relations among them. Even a purely me-
chanical process such as typing of all of the objects in
the whole program cannot be done in one stretch; it has
to be divided into smaller and more managable steps.
The creative process of programming is of course much
slower. We must carefully untangle the web of relations
among the objects of the target program, and introduce
objects and their relations one after the other. During
program design, the program consists of two parts: the
existing part, which is the actual program so far stored
in the computer, and the intended part, which is every-
thing not yet written. At the beginning, the existing
part is empty and the whole program is intended. At
the end, the intended part is empty and the whole pro-
gram is existing. Program design is a sequence of incre-
mental steps, each adding something to the existing
part and deleting something from the intended part.
Throughout the process it is assumed that although the
intended part has not yet been written, the designer has
a good grasp of its function and its inherent structure.

For the sake of simplicity of explanation, we shall
assume that the system consists only of variables, pro-
cedures, and functions (they will be called by the ge-
neric name “objects”). Also, we will assume that there
are only two kinds of relations among the objects. The
relation “read” means that the value of a particular
variable is being read in a procedure. The relation
“write” is the complementary relation.

The range of a variable A is the variable A plus all
procedures or functions which either read or write the
variable A. The range of a procedure P is just the pro-
cedure P, and similarly for functions.

In a typical situation, the existing part contains
names of as yet undefined variables, procedures, or
functions. For example, the existing part may contain a
reference to a procedure “read-data,” but the body of
the procedure has not yet been defined. We will call ob-
jects of this kind active objects, and the set of all active
objects at a particular time is called the backlog inter-
face. The backlog interface is in fact the interface be-
tween the existing and the intended parts of the system.

The backlog interfaces are the documentation on
which the design decisions of stepwise refinement are
based. Although the backlog interface is not a part of
the code itself, we recommend that the programmer
keep an updated backlog interface at all times, making
it a part of the program documentation. In this paper,
we assume that the backlog interface is kept in a graph-
ical form, where the active variables are denoted by
ovals, active procedures and functions are denoted by
rectangles, and the relations “read” and “write” are de-
noted by arrows, as in Figure 1.

The basic steps of stepwise refinement are dejinition
and decomposition [lo]. Dejinition is a step in which
we define an active object in terms of the programming
language. If the object is a procedure, we will define its
body; if it is a variable, we will give its type. An impor-
tant property of definition is that the smallest unit of
definition is a range. Every definition step means that
one or several ranges are defined at once. (Another rule
governing definition appears in Section 3, step 4.) De-
composition is a different step, in which an active object
is defined in terms of new active objects. Decomposition
and definition are the only steps in stepwise refinement
as presented by [lo].

There is an alternative way to introduce new active
objects during program design. We will call this alter-
native step ‘2ompletion.” In a completion step, we will
examine all active objects and try to determine whether
they can function correctly, or whether they need to
refer to some other objects in order to be able to func-
tion. There are two situations which call for the intro-
duction of new objects: first, two procedures may need
to communicate with each other, and hence there is a
need for a variable which will facilitate this communi-
cation. Second, a variable may need an initializing pro-
cedure which will allow it to function correctly. This
initialization is not a consequence of decomposition,
and hence the set of procedures has to be enlarged to

Figure 1. The backlog interface after Step 2. Note that it
contains relations “read” and “write” which have not ap-
peared in the previous code. These relations have to be sup-
plied by the programmer, who has an insight into the in-
tended part of the program.

Stepwise Refinement Revisited 83

include initialization. An existing part of a program is
complete when no new objects need be introduced by
the process of completion, i.e., all communications
among procedures have been served by appropriate
variables, and all variables have been properly initial-
ized. Completion steps are conceptually as easy as de-
composition and definition, and they extend the meth-
odology to handle medium-size programs, where the
ultimate set of objects cannot be predicted in advance.
Our methodology requires a completion step after each
decomposition step.

In the methodology, we also provide some supporting
activities that are helpful in the design process. One of
these is an update of the backlog interface. As new ac-
tive objects are introduced, they are added to the back-
log interface, while objects that have been defined are
removed from the backlog interface.

It is also useful to keep the list of all relations (based
on read and write) among the active objects, so that the
ranges are easily determined. When a new object is in-
troduced, new relations are added to the list; when an
object is defined, all of its relations will be removed
from the list.

Whenever a program part is complete, it can be
tested. The testing is based on the assumption that
while no code for the intended part exists, the program-
mer knows what the functions of the currently active
objects are and can hand-simulate their functions. The
hand-simulation is supported by stubs which control the
interaction between the programmer and the existing
part of the program. This is illustrated by the example
in the next section.

In summary, the methodology is a sequence of steps
described by the following:

Introduce the original main program;
REPEAT

define all objects of one or several ranges
OR

BEGIN
decompose selected objects;
complete the existing program

END;
update the backlog interface;
interactively test

UNTIL all objects are defined.

3. AN EXAMPLE

In this section, we will illustrate the methodology by an
example of a program which reads any date of this cen-
tury (i.e., any date from l/1/1900 to 12/31/1999),
and prints the corresponding day of the week.

We will write the program in an idealized PASCAL-

like language. Some comments on current program-
ming languages appear in Section 4.

As a starting step, we will describe the whole pro-
gram as a call of one procedure:

Step 0.

BEGIN
read and calculate date

END.- - -

The procedure is then decomposed:

Step 1.

PROCEDURE read and calculate date; - -
BEGIN

Read date;
calc&te distance;
determine the day;
print the-lay;-

END. -

By “calculate distance” we mean a procedure which
determines the number of days between the date pro-
cessed and a fixed “origin” date. To keep the number
small, the distance will always be represented as the
total distance MOD 7.

The next step after decomposition is the completion
step. We observe that information is passed from read-

data to calculate distance, from calculate distance to
determine-the-day, and from determine the day to
print the day. Hence we need three variables?0 facil-
itateIhe communication. Corresponding to the stepwise
refinement philosophy, the question of the types of these
variables will be postponed for later consideration:

Step 2.

VAR
date, distance, day;

Figure 1 contains the composite backlog after Step 2.
Verification of the program will be done via inter-

active testing, where stubs of active objects will support
the interaction with the programmer. The stubs for ac-
tive data and output data will be the most general type
available, i.e., a sufficiently long string of characters,
while stubs for procedures will support a dialog with the
programmer. When writing the stubs, the backlog in-
terface in Figure 1 is a handy tool.

Step 3.

VAR
date, distance, day, output: ARRAY [1. ,601 OF CHAR;

PROCEDURE read date; -
BEGIN

writeln(‘Execute read date.The date is:‘); -
read(date)

END;

84 V. Rajlich

PROCEDURE calculate the distance; - -
BEGIN

writeln(‘The date is’, date);
writeln(‘Execute calculate_the_distance.‘);
writeln(‘The distance is:‘);
read(distance)

END;
PROCEDURE determine-day;

BEGIN
writeln(‘The distance is’, distance);
writeln(‘Execute determine-day.‘);
writeln(The day is:‘);
read(day)

END;
PROCEDURE print-the-day;

BEGIN
writeln(‘The day is:‘, day);
writeln(‘Execure print the-day.‘);
writeln(The output is.?)
read(output)

END;

The program, together with the stubs, would be

translated into the programming language we are using
(see Section 4), compiled, and executed. Execution
would generate the following dialog between the com-

puter and the programmer:

COMPUTER:
PROGRAMMER:
COMPUTER:

PROGRAMMER:
COMPUTER:

PROGRAMMER:
COMPUTER:

PROGRAMMER:
COMPUTER:

Execute read date. The date is:
12/S/1984. -
The date is 12/S/84.
Execute calculate the distance.
The distance is: - -
3
The distance is 3.
Execute determine day.

- The day is:
WEDNESDAY
The day is WEDNESDAY.
Execute print-the-day.
The output is:
WEDNESDAY
(finishes the execution of the
program.)

The dialog illustrates the correctness of the existing

part of the program.
In the next step, we will define the variables day and

distance and their respective ranges.
Step 4.

VAR distance:integer;
day:Array[1 . .9] OF char;

PROCEDURE determine-day;
BEGIN

CASE distance OF 0:day: = ‘Sunday’;
1:day: = ‘Monday’;
2:day: = ‘Tuesday’;
3:day: = ‘Wednesday’;
4:day: = ‘Thursday’;

END
END;

5:day: = ‘Friday’;
6:day: = ‘Saturday’;

PROCEDURE print-the-day;
BEGIN

writeln(The day is’, day)
END;

PROCEDURE calculate-distance;
BEGIN

distance-procedure (distance)
END;

Note the way in which the procedure calculate_dist-
ante was defined. The procedure is in the range of both
the variable distance (defined), and the variable day
(undefined), hence it must contain a part which deals
with both variables. This part was called distance pro-
cedure. The only way distance procedure can deal-with
both defined and undefined vafiables is to equip it with
an actual argument which is the known variable, and
keep it in range of the unknown variable. This is a
purely mechanical and general step, applicable wher-
ever a procedure (or function) is in range of both un-
defined and defined variables.

In a similar way, we also deal with functions, where
the value to be returned is treated as another. argument.
The updated backlog interface is illustrated in Figure
2.

For the verification process, we may reuse the stubs
of the procedure read date and the variable date. The
procedure distance_pricedure has the following stub:

Step 5.

PROCEDURE distance procedure (VAR distance:INTEGER); -
BEGIN

writeln(‘Date is’, date);
writeln(‘Execute distance procedure’);
writeln(‘Distance is:‘); -
read(distance)

END;

The dialog will have a form analogous to the dialog
of Step 3. In the next step, we will decompose the var-
iable date and the procedure read date: -

Step 6.

VAR date:mm;
dd;
zz;

Figure 2. The updated backlog interface after step 4.

D/m
date \[. dlstancegmcedure(VAR distance:INTE.GER)

Stepwise Refinement Revisited 85

distancegrocedure(VAR distance:INTEGER)

Figure 3. The current backlog interface after step 6.

PROCEDURE read date;
BEGIN

read mm;
read-dd;
readzz;

END; -

The program is complete, hence no new objects are
obtained by the process of completion. The current
backlog interface is illustrated in Figure 3.

Note that distance procedure has not been decom-
posed, hence it “inhe&” arcs from all components of
the former variable date. Also we made an assumption
that procedures reads dd and read zz will check the
correctness of the values read (rejecting dates like 2/
30/ 1982) which created the need of arrows from mm
to read dd and read zz.

Agam, at this moment we may test the program in
the style of Step 3.

The next step is the definition of variables dd and zz
and their respective ranges. At this moment, we have
to decide how robust the program is to be, i.e., what
kind of input errors it must be able to recover from. At
one extreme, we may declare zz:1900. .1999 which
means no robustness at all, because every input error in
zz will abort the run of the program. The other extreme
is to declare zz:ARRAY [1. .4]OF CHAR, in which
case no typing error will cause an abort. A compromise
solution chosen here declares zz:INTEGER, where the
program will recover from many errors (all incorrect
integers), but abort with others (non-numerical sym-
bols).

Step 7.

VAR dd,zz:INTEGER;

PROC read dd;

BEGIN -

writeln(‘Enter the day.‘);

read(dd);
WHILE dd < 1 OR dd > month length DO _

BEGIN

writln(‘Incorrect. Enter a different day.‘);

read(dd);

END

END;

PROCEDURE read zz;
BEGIN

writeln(‘Enter the year.‘);

read (zz);

WHILE(zz < 1900 or zz > 1999)

OR February AND (dd = 29) AND (ZE MOD4 20)

DO

BEGIN

writeln(‘Incorrect. Enter a different year.‘);

read(zz)

END

END;

PROCEDURE distance procedure(VAR distance:INTEGER);

BEGIN

distance:=(distance mm+dd+(zz-1900)+(zz- 1901)DIV 4) MOD 7;

IF (zz MOD 4 = 07 AND zz # 1900 AND late month

THEN distance: = distance + I
END;

The backlog interface after Step 7 (and a completion
step) appears in Figure 4. Again, we may test the pro
gram with the help of stubs.

The logical step to select now would be to define mm
and its range. However, in order to demonstrate the
completion step for procedures, let us make a minor de-
tour and decompose distance mm instead. If we want
to rationalize this selection we may argue that at this
moment, we are still undecided about the format of
mm, the options being:

VAR
mm:INTEGER;

and

VAR
mm:ARRAY [1 . .3] OF char.

The value of distance-mm will be computed in a loop,
in which the lengths of individual months are
accumulated.

Step 8.

FUNCTION distance mm:INTEGER; -
BEGIN

distance mm:INTEGER;
WHILE-not over DO -

Figure 4. The backlog interface after Step 7 (and a comple-
tion step).

86 V. Rajlich

BEGIN
distance : = distance-mm + month-increment;
next month

END; -

When completing this program, we first notice that
not over, month increment, and next month have to
communicate through a variable. Let us call this

variable

VAR
month;

This variable is read in not-over, it is read in mon-

th increment, and it is both read and written in
next month. Tracing the code of function distan-
ce mm, it is obvious that this variable is read before
being written, and hence it is not properly initialized.
The program cannot work as it has been written, and it
must be completed by the appropriate initialization. Let

us introduce the procedure init_month, and then func-
tion distance mm will have the following form after the

step of completion;

CORRECTED FUNCTION distance_mm:INTEGER;
BEGIN
distance_: = 0;
init month;

WHILE not-over DO
BEGIN

distance mm: = distance-mm + month increment;
next month

-

END -
END;

The current backlog interface is shown in Figure 5.
Again the program can be tested in the style of Step 3.

In the last step, we will define both mm and month
and their respective ranges.

Figure 5. The backlog interface after step8.

Step 9.

VAR
mm,month:INTEGER;

PROCEDURE read-mm;
BEGIN

writeIn(‘Enter the month.‘);
read(mm);
WHILEmm>12ORmm<1DO

BEGIN
writeln(‘Incorrect. Enter a different month.‘);
read(mm)

END
END;

FUNCTION month_length:INTEGER;
BEGIN

CASE mm OF
1,3,5,7,8,10,12:month_length: = 31;
4,6,9,11 :month length: = 30;
2 :month-length: = 29 -

END
END;

FUNCTION February:BOOLEAN;
BEGIN

IF mm = 2 THEN February: = False
ELSE February: =TRUE

END;
FUNCTION late month:BOOLEAN;

BEGIN -
IF mm>2 THEN late month: =TRUE
ELSE late month: = FALSE

END; -
PROCEDURE init month;

BEGIN -
month: = 0

END;
FUNCTION not over:BOOLEAN;

BEGIN -
not over: = month I mm

END;
FUNCTION month_increment:INTEGER;

BEGIN
CASE month of

13 5 7 8 10,12:=month increment:=31; 7 9 9 , ,
4,6,9,11 : = month-increment: = 30;
2 : = month-increment: = 28 -

END
END;

PROCEDURE next month;
BEGIN -

month: = month + 1
END;

4. LANGUAGE CONSIDERATIONS

In Section 3, we used an idealized PASCAL-like lan-
guage. In general, we are constrained by the real-world
languages in which programs are written. In this sec-

Stepwise Refinement Revisited

tion, we will suggest how to use stepwise refinement in
some of the current programming languages. PASCAL is
the language which we use as an illustration, but the
comments apply to other programming languages as
well.

The first, most obvious consideration is that PASCAL
does not allow code to be written in the sequence sug-
gested by stepwise refinement. Instead, the program-
mer has to go back and forth, and he must respect the
order of statements of PASCAL with the resulting loss of
original clarity and purpose. Some syntax-directed ed-
itors [7-91 allow a more flexible order in which state-
ments may be entered, but the program-if printed
out-is still organized according to the rules of the orig-
inal language. We believe that a methodology-oriented
program organization has some very important self-
documenting properties, and hence this is a considera-
ble loss.

When writing programs by stepwise refinement, pro-
cedures and functions of previous sections can either be
considered to be closed procedures and functions, or
their bodies can be macroexpanded at each occurrence
of the call.

Macroexpansion was used in [10,l 11, and it is con-
siderably better from the point-of-view of the efficiency
of the resulting program. However, in the macroex-
panded text, the original structure and the original

steps are lost, and hence the clarity of the code is sub-
stantially diminished.

Moreover, certain PASCAL constructs are not suitable
for macroexpansion and require more complicated pro-
cessing. The most notable example is the WHILE-loop.

Suppose that we have a loop of the form

WHILE condition DO body;

where condition is a boolean function.
If it decomposes into

FUNCTION condition:Boolean;
BEGIN

prepare condition;
condition: = result of preparation - -

END;

then the resulting text of the loop should be:

prepare conditon;
condition: = result of preparation; - -
WHILE condition DO

BEGIN
body;
prepare condition;
condition: = result of preparation - -

END;

87

As seen in this example, the decomposed body of the
function “condition” appears in two places in the new
text. This fact may explain why beginning program-
mers find the WHILE loop so confusing. It also causes
considerable difficulty when specialized editors sup-
porting stepwise refinement in PASCAL [8] are
implemented.

Note that this problem does not arise in REPEAT-
UNTIL loops or in the LOOP-EXIT-END LOOP con-
struct of ADA [121, which are more natural constructs
from the point-of-view of stepwise refinement. Of
course, it also does not arise when we allow closed func-
tions to be used and do not invoke macroexpansion.

When using closed functions and procedures as the
constructs for stepwise refinement, the declarations of
variables without types (as in Step 2, Section 3) become
meaningless, and are best dealt with as comments in the
text. Also note that the organization of the declarations
in standard PASCAL leads to an almost complete loss of
the methodology-oriented order, with the consequent
loss in the clarity of the program.

The reasonable compromise is to combine macroex-
pansion or textual processing to merge small steps, and
deal with larger steps as closed subroutines.

ACKNOWLEDGMENTS

I wish to thank Bernie Galler and Frank Cioch who suggested

many improvements in this paper. I would also like to thank Rox-

ianne Carbary for typing this paper.

REFERENCES

1.

2.

3.

4.

5.

6.

7.

8.

D. K. Barstow, Knowledge-Based Program Construc-
tion, North-Holland, New York, 1979.
T. E. Cheatham, Jr. G. H. Holloway, and J. A. Town-
sley, Program refinement by transformation Proc. 5th
Conference on Software Engineering, San Diego, pp.
430-437.
E. B. Coffman, Problem Solving and Structured Pro-
gramming in Pascal, Addison Wesley, 198 1.
E. W. Dijkstra, Notes on structured programming, in
Structured Programming, Academic, New York, 1972.
A. N. Habermann, An overview of the Gandalf project,
Computer Science Research Report 1978-1979, Car-
negie-Mellon University, Pittsburgh, 1979.
Hans-Ludwig Hansen, and Monica Mullerburg, Con-
spectus of software engineering environments, in Tuto-
rial: Software Development Environments, A. J. Was-
serman, ed., IEEE Catalog No. EM0 187-5, pp. 462-

476.

G. Lyon, Language-Based Editors/Interpreters, Proc.
COMPSAC82 ConJ, 1982, pp. 611-612.
L. Petrone, A. DiLeva and F. Sirovich, DUAL: An In-
teractive Tool for Developing Documented Programs by

88 V. Rajlich

Step-Wise Refinements Proc. 6th International Confer-
ence on Software Engineering, IEEE Catalog No.
82CH1795-4, pp. 350-357.

9. T. Teitelbaum and T. Reps, The Cornell program syn-
thesizer: a syntax-directed programming environment,
Commun. ACM 24, 563-573 (Sept 1982).

10. N. Wirth, Program development by stepwise refine-
ment, Commun. ACM 221-227 (April 1971).

11. N. Wirth, Algorithms + Data Structures = Programs,
Prentice-Hall, 1976.

12. ADA, Military standard MIL-STD-1815, Department
of Defense, 1980.

13. R. A. Snowdon, P. Henderson, The TOPD system for
computer-aided system development, reprinted in A. I.
Wasserman, Tutorial: Software Development Environ-
ments, pp. 241-262.

